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Abstract 
The contribution introduces an airway scaling procedure, which assumes (a) a fractal 

anatomy of the human lung and (b) a generation-related variability of bronchial 

morphometry in a chaotic fashion. Basic scaling of the branching system was conducted 

by application of an inverse power-law including the fractional dimension of the 

anatomic object. Simulation of intrasubject diversity of the measurements, on the other 

side, was realized by using a normalized and repeatedly corrected variant of the logistic 

equation primarily introduced by Verhulst. Two morphometric data sets were 

theoretically approximated with the help of the scaling procedure, thereby assuming a 

morphometric diversity covered by a 60%-range. In both cases, excellent prediction of 

experimental data was provided. 

1. Introduction 

Based upon numerous morphological studies conducted in the past century [1-5] the 

human tracheobronchial tree is known as progressively branching structure. Preliminary 

theoretical models described the lung architecture in terms of a symmetric construct, 

within which each parent tube bifurcates into two equally sized daughter tubes from the 

trachea to the terminal bronchioles. As a consequence of that, all airway tubes belonging 

to a certain order or generation (z) of the dichotomous branching tree are characterized 

by exactly the same physical dimensions [1, 2]. Assumption of ideal dichotomy also 

enables the calculation of the number of branch segments (N) in each generation 

according to N = 2
z
. 

In the meantime, it is a well-known fact that the daughter airways arising at a given 

bifurcation commonly differ in their measurements (diameter, length). In addition, they 

are usually marked by different bifurcation angles with regard to the parent tube. All 

these peculiarities result in a highly asymmetric architecture of the human lung [6-8]. 

From a theoretical point of view, branching asymmetry has been modelled in terms of 

two approaches hitherto: In the stochastic model airway dimensions of a given 

generation are randomly varied by application of related probability density functions [9, 

10]. By using fractal concepts, on the other side, the lung is regarded as an object, which 

lacks a characteristic scale and is distinguished by its self-similarity [11, 12]. However, 

consideration of the tracheobronchial tree either as a probabilistic construct or as an 

anatomic fractal requires the availability of morphometric measurements carried out on 

human lung casts [1, 2, 13]. 

Within the human lung mean airway diameter and length in a given generation are 

subject to a decrease with respect to the preceding generation. According to classical 

approaches downward scaling of the airway tubes from the trachea to the terminal 

bronchioles follows an exponential function and uses a single order-related scaling factor 

(α). Hence, mean dimension (diameter and length) of the branches in a selected  
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generation z may be obtained from the formula 

z
z α⋅= )0S()S( ,                           (1) 

Where S(0) denotes the respective tracheal dimension. By 

setting the scaling factor to 0.67 < α < 0.73 a good 

approximation of the morphometric data presented by Weibel 

[1, 2] is provided. In order to consider the above stated 

complexity of the lung architecture, the single scale 

presented in Eq. (1) is replaced by a multiplicity of scales [14, 

15]. This is achieved by definition of a probability function 

P(α) including a distribution of scaling functions [15-17]. As 

outlined by Nelson and co-workers [17], application of 

multiple scales results in a modification of S(z) to S(z/α) due 

to the dependence of airway dimensions on the the z/α
th
 

generation. The relationship between S(z) and S(z/α) is then 

given by 

ααα∫
∞

=
0

)P()/S()S( dzz ,                   (2) 

with P(α) representing the functional form of the size 

distribution. If, for instance, probabilistic scaling is assumed, 

P(α) adopts the form of a Gaussian normal distribution. If, on 

the other hand, P(α) is only represented by a single point, a 

deterministic structure is generated and Eq. (1) becomes 

valid again (Figure 1). Based upon Eq. (2) West and co-

workers [12] argued that airway dimensions better decline as 

an inverse power-law of the following form: 

)A()S( zzz µ= .                             (3) 

In the equation noted above µ denotes the power-law index, 

which may be related to the fractional dimension. The term 

A(z) is a function reflecting harmonic periodicity and is 

expressed by the equation 
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where λ describes the overall range of scales, whilst An 

denote the relative weights of the harmonic terms used for 

the data fit. It could be demonstrated that the lung-

morphometric data provided by Raabe and co-workers [13] 

can be adequately modelled with the assumptions 

summarized in Eq. (3) and (4). 

Although assumption of harmonic periodicity has been 

pointed out as an appropriate step for the mathematical 

description of realistic lung structures, it also bears some 

disadvantages. First, natural constructs such as the human 

lung are characterized by a morphology, where no structural 

element is completely equal to another one. In this case a 

non-periodic (chaotic) concept represents a good alternative 

for scaling purposes. Second, the tracheobronchial 

architecture, on the one side, exhibits a certain amount of 

intrasubject variability, which can be covered by harmonic 

functions to a certain degree, but, on the other side, also 

shows high intersubject variability. Hence, excellent fit of 

one morphometric dataset does not force the high-quality fit 

of another. In this contribution a non-harmonic and non-

periodic scaling procedure is introduced, which may be 

applicable to a wider range of morphometric data. The 

concept of chaotic scaling, whatsoever, is based on the so-

called logistic equation originally defined by Pierre François 

Verhulst in the year 1837 [18]. 

 

Figure 1. (a) Different functions describing the distribution of scaling 

factors over a predefined range. In the case of a deterministic lung structure 

only a single scaling factor occurring with 100% probability is provided. (b) 

Cumulated distribution functions depicting the probability density. Here, the 

chaotic distribution of scales deviated significantly from the probabilistic 

approach. 

2. Methodology 

2.1. Brief Description of the Logistic 

Equation 

The logistic formula represents an excellent example of 

how complex chaotic behaviour can arise from simple non-

linear equations. Although largely used in population ecology, 

the equation has found lots of scientific and non-scientific 

applications during the past decades. In general, the equation 

can be written as 

)1(r1 nnn xxx −⋅⋅=+ ,                           (5) 



 International Journal of Bioinformatics and Computational Biology 2017; 2(1): 1-6 3 

 

where x0 denotes the initial value, whereas r is a constant. If 

the constant adopts a value between 0 and 1, x rapidly tends 

to zero. For 1 < r < 2, x monotonously approximates the 

value 0.3, whilst for 2 < r < 3, x approaches the value 0.6 in 

an alternating fashion. In the case of 3 < r < 3.57 the 

mathematical sequence alternates between 2, 4, 8, 16, 32, etc. 

frequency points. For r > 3.57 the sequence starts to become 

chaotic, whereby any periodicity gets lost with further 

increase of the constant (Figure 2). 

 

Figure 2. Graphic presentation of the logistic equation and its typical chaotic behaviour. In the concrete case the initial value was set to 0.5, whereas the 

constant adopts a value of 3.7. 

2.2. Application of the Logistic Equation to 

Airway Scaling 

In the mathematical approach presented here airway 

scaling is principally based upon a modified version of the 

inverse power-law described in Eq. (3). The new formula 

writes as 

),F(),S( nzznz ⋅= µ
,                        (6) 

where F(z,n) denotes a specific function used for an optimal 

fit of morphometric data. This generation-related function 

expresses intrasubject variability of airway scaling by 

adopting the following form: 

),V()0F(),F( nznz ⋅= .                       (7) 

In the equation noted above F(0) has to be regarded as 

Null-function fitting the mean values of the studied 

morphometric measurements, whereas V(z,n) represents a 

normalized function including the Verhulst dynamics. It 

commonly writes as 
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with N(z) denoting the number of airway tubes in generation 

z. In order to obtain higher accuracy of the mathematical 

model, the function V(z,n) is submitted to two separate 

correction processes. The first one generates higher 

symmetry of the chaotic distribution around the mean value, 

thereby generating a new function V*(z,n) of the form 

)),MIN(),(V(),k(),d(),V(),(V* nznznznznznz −⋅−+= ,                                         (9) 
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In Eq. (9)–(11) MIN(z,n), MAX(z,n), and RANGE(z,n) represent the minimum, maximum, and range of the data set 

generated for a given airway generation z. A second correction procedure allows the new adjustment of the range covered by 

the values of the distribution. For this purpose, a new function V**(z,n) of the form 

)),MIN(),((V*
),RANGE(

),(RANGE*
),(MIN*),*(V* nznz

nz

nz
nznz −⋅+=                                 (12) 

is defined, where MIN*(z,n) and RANGE*(z,n) denote the 

newly constituted values for the minimum and the range of 

the data. Finally, V(z) in Eq. (7) has to be simply substituted 

by V**(z,n) generated with the help of Eq. (8)–(12). 

Preliminary application of the fractal scaling model including 

chaotic dynamics for the description of intrasubject 

variability of generation-related airway morphometry was 

carried out by simulation of the morphometric data sets of the 

human lung published by Weibel [1, 2] as well as Raabe and 

co-workers [13]. 

3. Results 

According to the results of lung scaling provided in 

Figures 3 and 4 the theoretical model assuming a fractal basic 

structure and chaotic behavior with regard to intrasubject 

variability generates a plausible close-to-reality architecture 

of the tracheobronchial system. Both airway diameter and 

airway length are subject to a continuous decrease after an 

inverse power-law function. Thereby, inaccuracy produced 

by the chaotic approach also declines permanently with rising 

generation. This phenomenon may be regarded as result of 

the increasing number of bronchial tubes included in more 

distal generations, which improves the significance of the 

statistical computations. 

For an appropriate validation of the model two 

morphometric data sets [1, 2, 13] were simulated. With 

regard to the morphometric lung data provided by Weibel 

and co-workers [1, 2], differences between theoretical 

approach and real measurements are mainly observable for 

generations 3 to 5, where a slight overestimation of data by 

the model is given. In the case of the airway diameters all 

experimental data points plot within the SD-intervals of the 

related theoretical predictions. Differences of mean values 

are commonly on the order of several percent, but may 

increase to > 20% in exceptional cases. A more complex 

situation is given for the airway lengths, because airways of 

generation 3 represent a statistical outlier, which cannot be 

satisfactorily explained by the model (discrepancies > 30%). 

For the other generation good correspondence between rea-

lity and model can be reported again. 

Simulation of the morphometric data set provided by 

Raabe and co-workers [13] provides a similar picture as 

already reported for the Weibel-lung. Regarding the airway 

diameters, differences between mathematical approach and 

reality range from several percent in the proximal and central 

lung areas to > 30% in generations 3 to 5 as well as in the 

most peripheral lung regions. For the airway lengths, the 

same difficulty as observed for the Weibel-lung can be 

recognized, with maximal discrepancies between model and 

reality again exceeding 30%. 

 

Figure 3. Simulation of morphometric lung data provided by Weibel and co-

workers [1]: (a) airway diameters, (b) airway lengths. 

4. Discussion 

The current study could clearly demonstrate that chaotic 

distributions such as those produced with the logistic 

equation [18] are of great value for the description of 

morphometric variability occurring in single airway 

generations. Based upon various morphometric data sets [1, 2, 

13], order-related ranges of single airway dimensions 

(diameter, length) are highly significant in part, with small 

respiratory bronchioles and much larger segmental 

bronchioles being present in the same generation. As argued 

by Nelson and co-workers [17], this intrasubject variability 

may be best described by harmonic (periodic) scaling 

functions, which develop around a mean value. Detailed 

statistical analysis of the morphometric data set provided by 

Raabe and co-workers gave rise to an alternative hypothesis, 

according to which any kind of lung-morphometric diversity 

is ideally covered by normal-distributions [19-28]. These 



 International Journal of Bioinformatics and Computational Biology 2017; 2(1): 1-6 5 

 

mathematical functions, whatsoever, reflect a symmetric and 

well predictable distribution of data and, thus, only find 

occasional realization in natural systems. Since the ground-

breaking studies of Benoît Mandelbrot it has to be regarded 

as given fact that predictability of most natural constructs is 

partly restricted due to their highly chaotic behaviour [11]. 

 

Figure 4. Simulation of morphometric lung data provided by Raabe and co-

workers [15]: (a) airway diameters, (b) airway lengths. 

As clearly shown in the results section, fit of lung-

morphometric data by application of fractal scaling and 

chaotic functional dynamics is marked by high success. 

Depending upon the scaling range covered by the logistic 

equation, experimental data can be more or less reliably 

predicted by the theoretical model. In the concrete case, a 

range of the produced distribution covering a 60%-interval 

around the mean already enables the prediction of high 

morphometric diversity. It has to be clearly mentioned in this 

context that generation of a hypothetical branching system 

with the help of Eq. (6)−(12) represents a rather simple 

procedure, which can be programmed by using any basic 

software (e.g., MS-Excel, Matcad, Matlab, Mathematica). 

Compared to the stochastic lung model [23-28] the 

calculation routines are characterized by much lower 

expenditure but significantly higher variability. 

The high variability of the current concept is provided 

insofar as it enables the construction of a deterministic 

branching system (for 1 < r < 3), an architecture 

characterized by respective periodicities (3 < r < 3.57), and a 

tracheobronchial tree including a highly non-periodic and 

non-harmonic morphometry (r > 3.57). In this context, 

further applicability of the scaling model has to be briefly 

discussed. The approach is primarily thought to provide the 

lung architecture for future particle transport and deposition 

models [19-23]. Particle behaviour in a fractal lung with 

realistic intrasubject variability of airway morphometry has 

been already discussed in numerous publications, but has not 

been realized hitherto. 

5. Conclusion 

Based on the data presented here it can be concluded that 

fractal lung models are able to describe realistic 

morphometric scenarios in the meantime. The phenomenon 

of morphometric variability within a given generation can be 

solved in different ways. One of these solution procedures 

includes the application of chaotic systems, among which the 

logistic equation is conspicuous due to its simplicity on the 

one hand and its adjustability in the other. Future studies will 

provide a more detailed insight into the multiplicity of 

applications provided for this innovative concept. 
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