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Abstract: In this paper, we embark on a historical review of the mathematical models developed in the previous century, 
that were devoted to the study of the geographical spread of biological infections. The basic notions of connectivity, continuity 
and distance norm as applied by successive bio-mathematicians, starting with the names of Volterra, Turing and Kendall, are 
highlighted in order to demonstrate their usefulness in several new areas of bio-mathematical research. These new areas 
include the well-known fields of community ecology and epidemiology, but also the less well-known field of multicellular 
pathway prediction. The biological interpretation of these abstract mathematical notions, as well as the methodological criteria 
for these interpretative schemes and their corroboration with empirical evidence are discussed. In particular, we will focus on 
the boundedness norm in polynomial Lyapunov functions and its application in Markovian models for community assembly 
and in models for cellular pathways in multicellular systems. 
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1. Introduction 

The geographical spread of infectious diseases in an 
inhabited area or worldwide, has been a matter of primary 
concern for a long time, not only for practitioners and health 
policy makers but also for epidemiologists and mathematical 
biologists. Since the formulation of Kermack and 
McKendrick’s model [1] - for the evolution in time of a 
contagious disease in a closed population – many adaptations 
of their model have been put forward [2-4]. Kermack and 
McKendrick’s deterministic model [1] forms the basis for 
analytical solutions for the spread of an epidemic, using a 
Volterra-type nonlinear integral equation set [5]. This model 
was also an inspiration for Turing’s model for morphogenesis 
through a reaction-diffusion mechanism [6, 7]. Kendall’s [2] 
modification of this model resulted in a space-dependent 
analogue leading into a set of ordinary differential equations 
(ODE’s). Kendall achieved this simplification by taking for 
the infectivity at each point a weighted spatial average of the 
density of infectives [4]. Kendall claims that a particular 
result of this model is that it predicts the conditions for an 
epidemic to develop into a pandemic, named as the 

‘pandemic threshold theorem’ (PTT) [2]. According to this 
PTT, there will be a pandemic if and only if the population 
density σ exceeds the threshold density ρ ≡ γ/β, being the 
ratio of the intrinsic removal (γ) and infection (β) rates. In 
Kendall’s model, the removal of ‘infected-and-infectious’ 
individuals occurs either by recovery of the disease (by 
acquiring immunity) or by death. Moreover, Kendall [2] 
suggests that the ‘severity’ of the pandemic, indicated by the 
parameter ζ, is obtained from the equation 

1 e
σζ ρζ −= −                              (1) 

which always has the root ζ= 0 and a unique positive root if 
and only if σ > ρ, which is the pandemic threshold condition 
(1). According to Diekmann [4], this interpretation is similar 
to the hair-trigger effect described by Aronson and 
Weinberger [8]. No matter how little infectivity is introduced 

                                                             

(1) This results from the monotone nondecreasing property of e - ρζ /ρ, provided 
that σ > ρ. The unique positive root may be found from the equation 

( )ζ
σ
ρζ −−= 1ln . 
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in an arbitrarily small subset of the plane, eventually there 
will be a large effect at every point, provided the threshold is 
exceeded [4]. 

During the past decades, several alternative models were 
presented [9, 10], including models for the spreading of 
biological populations in spatially non-uniform conditions 
(e.g. [11]). Also, models have been worked out to encompass 
other aspects of the propagation of infectious diseases [12-
14]. Finally, new paradigms were launched for the dispersion 
of individuals or particles, using topologically distinct 
approaches for defining the spatial connectedness of 
biological phenomena [15-17]. Diekmann and Heesterbeek 
[18] pointed to the difficulty of combining a deterministic 
description for the development of an epidemic outbreak (and 
especially the end of the outbreak) and a stochastic model 
that predicts new outbreaks. Models with combined 
deterministic and stochastic components are called ‘hybrid 
models’ [19, 20]. At a demographic time scale, repeated 
epidemic outbreaks are well documented, e.g. in the case of 
measles and influenza [14, 21, 22]. Nevertheless, Diekmann 
and Heesterbeek know of only one paper in which a 
stochastic version of the Kermack-McKendrick ODE model 
is elaborated [20], which paper is an application of the 
asymptotic methods (i.e. approximate solutions) of the 
Fokker-Planck equation [18]. 

The impressive amount of mathematical papers found in 
literature, however, has not simplified the task of 
practitioners, policy makers or even biologists, in order to 
apply and interprete these mathematical tools for a given 
situation. And, although recent studies in mathematical and 
computational biology (e.g. [18]) have succesfully 
incorporated new biological, epidemiological and 
mathematical insights, for the average non-mathematical 
reader it is quite an elusive operation to grasp the ingredients 
of the mathematical argumentation. This is especially 
relevant when new outbreaks of known and unknown viruses 
are startling, like the epidemics of a recent past, like foot-

and-mouth-disease (2000-2001), the Severe Acute 

Respiratory Syndrome (SARS) pandemic (2002-2003), the 
Avian Influenza epidemic (2004, 2014,…). Under these 
circumstances, comprehensive models to predict the 
geographical spread of infections may become matters of 
national priority. 

The central notion in the geographical spread of 
contagious diseases is called the contagion of the disease 
(e.g. between a susceptible individual and an infectious 
agent). For predictive modeling, the geographical spread of 
this contagion has to be translated in mathematical terms. In 
order to deal with complex biological problems at an 
operational level which is easier to handle, the so-called 
conjugacy principle [23] constitutes a key approach. This 
conjugacy principle is synonymous to the bypass principle, 
which is a way of dealing with complexity by means of 
constructing a bypass which promotes a passage of the 
solution of a problem in a three-stage reduction process. The 
first and last stages are each other’s inverses, so the bypass 
has the (abstract) form: 

W = S T S –1 

where W is called the conjugate of T under S [23]. 
Although no perfect transformation exist in nature, when a 

conjugate is found for a given problem, the bypass principle 
requires the symmetry of the transformation process. In the 
present study, inverting the bypass is successful if the 
medical consequences of for instance the contiguity between 
susceptible and infectious agent can be read off from the 
predicted geographical spread of contagion. However, the 
complex notion of contagion in itself can be de-composed 
into few basic notions, like the notions of norm 

(boundedness), continuity and connectivity. 
The most interesting aspect of the bypass principle is that 

it may be instructive when applying these notions from the 
field of epidemiology into the very different fields of 
biological science. Therefore, we will first analyse the use of 
these notions in mathematical models for the spread of 
infectious diseases (Section 2). Next, the biological 
interpretation of the theoretical outcome of some selected 
models will be explored (Section 3). In the last two sections, 
examples are given of the application of these notions in the 
fields of community ecology (Section 4) and multicellular 
pathway prediction (Section 5). 

2. Mathematical Background 

2.1. Norm (Boundedness) 

One of the most basic notions in mathematical modelling 
with respect to spatial dispersion is the notion of ‘norm’. 
Mathematically speaking, a norm | V |, for instance of a 
vector or a matrix (in ℜn x n) is any mapping from ℜn x n into 
the real numbers ℜ which has the following properties: 

i) | V | = 0 if and only if V = 0 
ii) | V + W | ≤ | V | + | W | (triangle inequality) 
iii) | c V | = | c |. | V | for any V in ℜ n and scalar c in ℜ 
Intuitively, it is understood that the norm of a vector 

represents its length, or, in Euclidean space ℜ n, the euclidean 
norm is simply the distance between two points. When 
enlarging our scope to all possible spaces, for instance when 
working with matrices in ℜ m x n, several norms like 
maximum (or box norm), euclidean and matrix norms can be 
used altogether. Some very useful results may come about. 
For instance, the euclidean norm of a matrix equals the 
square root of the trace (tr) of A* A (and: A* is the transpose 
of matrix A). When a non-symmetric matrix, say A m x n, is 
multiplied by its transpose (A n x m), a symmetric (n x n) 
matrix is the result. The trace of a symmetric matrix is the 
sum of the entries on its main diagonal. The euclidean norm, 

or ( * )tr A A , is a current technique in scaling analysis like 

Procrustes analysis [25, 26]. According to Gower [26], 
scaling and rotation of matrices, in order to minimize the 
residual sum-of-squares (i.e. to find the best-fit 
configuration), can be seen as a multivariate form of analysis 
of variance. 

Another important norm related to m x n matrices is the 
spectral norm || A ||. Let λ be the largest eigenvalue of A*A, 
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then || A || is given by λ  [24]. The spectral norm is used in 
the convergence criterion for infinite series of matrices. 

For, if || A || ≤ a k, and if 
0
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2 

+... converges for | x | < 1 and diverges for | x | > 1, the 
matrix power series 1 + A + A

2
 +... converges if || A || < 1 

[24]. The latter rule is called the convergence criterion 
further on in this paper. 

An example of the use of the supremum norm (2) for the 
analysis of the geographical spread of infections is found in 
Diekmann [4]. The Banach space on Ω (3), denoted as BC 
(Ω), is considered a convenient framework for this study 
when functions on this Banach space (CT) are equipped with 
the supremum (sup) norm: 

0 ( )|| || sup || [ ] ||
TC t T BCf f t≤ ≤ Ω=                      (2) 

In section 3, we will further discuss the biological 
interpretation that can be given to this construction. The 
requirement of the sup norm is also named the boundedness 

criterion. Diekmann [4] uses the sup norm, together with the 
continuity and Lipschitz condition (see section 2.1. 
“Continuity”), to demonstrate the existence of a unique 
solution U to the nonlinear integral equation describing the 
geographical spread of an epidemic. The Lipschitz condition 
and sup norm enable to construct a series of mappings from 
CT into CT: 

Rf: u → Rf u: Rf u = Q u + f 

The rationale of these mappings is pointed out when they 
are used in an iteration procedure. If we put u 0 = f, and 
subsequently u n+1 = Q u n + f, then the limit of u n for n → ∞ 
in CT converges to the unique solution u [4]. This follows 
from the boundedness of the mapping as formulated in 
Banach’s contraction mapping theorem (see below). It is 

                                                             

(2) The supremum norm is related to the max or Čebyšev norm: || x || = max ({ | x 

1 |, | x 2 |... | x n |}). Compared with the euclidean norm, the following relationship 
exists [24]: 

max | v 1 | ≤ ∑
=

n

i

iv
1

2  for any V in ℜ n with V = (v1,... v n) 

Also, the supremum, resp. infimum, is defined by the convergence theorem of 
monotone increasing, resp. decreasing, series. 
(3) Let us recall that a Banach space is a completely normed space, i.e. a space 
where every fundamental or Cauchy sequence converges. A sequence a n is called 
a Cauchy sequence (or fundamental sequence) if for each ε > 0 a natural number n 

δ exists, so that d (an,am) < ε for all 
m,n ≥ n δ. The Banach space thus defined by Diekmann is the space of bounded 
continuous functions 
f: [0,T] → BC (Ω), f equipped with the sup norm, and Ω being a closed subset of 
ℜ n [4]. 

important to note that in the terminology of Diekmann, the 
function Q u (t) represents the Volterra part of the nonlinear 
differential equation: 

0

0

( , ) ( ( , )) ( ) ( , , ) ( , )
t

u t x g u t S A x d d f t xτ ξ ξ τ ξ ξ τ
Ω

= − +∫ ∫    (3) 

with 
0

( , )
( , ) ln

( )

S t x
u t x

S x
= −  

and ( ) 1 yg y e−= − . The variables S and A in Diekmann [4] 

represent the density of susceptible individuals (S) and the 
infectivity (A) at a certain position x due to an infection at a 
position ε (or the contagion, see below for mathematical 
interpretation). The parameter τ is the ‘age of illness’ that one 
infective has acquired at the moment of infection [4]. 

In equation (3) the Volterra part thus is of the form: 

0
00

( , )
[ ] ~ (1 ) ( ) (...)

t
S t

Qu t S A d d
S

τ ξ ξ ξ τ
Ω

−−∫ ∫  

The major advantage of Diekmann’s approach is that once 
a solution at some time T ∈ (0,T0] is found, an iteration 
procedure can be formulated following the steps: 

i) u 0 = f 

ii) u n+1 = Q u n + f 

The spatial function describing the contagion - or the 
distance between x and ε - is the more difficult part of 
Diekmann’s model. It has the nature of a radial function, 

W(x,ξ) = V (x-ξ) 

and is used by Diekmann (1978) in an iterated convolution 
procedure. According to Diekmann (1978) it can be 
demonstrated that the only non-divergent solution of the 
infinite series of convolutions of V with itself (4), namely: 

( ) ( ) ( )

n

v x v V x dξ ξ ξ
ℜ

= −∫  

implicates that v(x) ≡ c (constant function), or, the function 
v(x) describing the minimum of {w(x),p} with w(x) a 
nonlinear convolution equation of the distance function V(x-
ξ) and some threshold p, itself represents a constant function 
or w(x) ≡ p. 

Diekmann [4] believes the infimum norm p of the iteration 
procedure: 

p ≤ u = inf u[∞] (x) 

                                                             

(4) The convolution transformation on two functions f1(t), f2(t) is an application of 
operational calculus that makes use of the product of the Laplace transforms or 
images (F1,F2) given by 

dtdtffedtffLpFpF
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−=
0

21

0

2121 )()()()()()( ττττττ  

In this formula, the Laplace transform (L) relates a real valued function f(t) to the 
infinite integral of the complex function e- pt

 f(t), where p = a + bi (and a > 0) 
(e.g. [27], p. 464). 
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corresponds to the threshold of the epidemic (see Kendall’s 
pandemic threshold theorem, [2]). 

Thieme [3] uses a quite different approach to discriminate 
the geographical spread of an epidemic due to the contacts 
between infective individuals at the one hand, and the spread 
of an epidemic due to the ‘self-increase’ of the infectious 
agents at the other hand. This distinction, needless to say, is 
biologically very important, for instance in view of the 
differences between bacterial and viral infections, or between 
viral and parasitic diseases requiring eukaryotic vector 
species for their distribution. However, also Thieme [3] uses 
the sup norm to demonstrate that a maximum bounded 
solution exists for the final size of an epidemic. 

2.2. Continuity 

The notion of continuity seems as difficult to grasp as it is 
fundamental in topology and analysis. The ambition to 
provide a rigorous foundation for the notion of continuity, as 
opposed to discontinuity, and which notion appears 
indispensable for infinitesimal analysis and differential 
calculus, dates back to the work of Richard Dedekind (1831-
1916) and Georg Cantor (1845-1918)(5). In abstract terms, a 
function is called (locally) continuous in x, if for every 
environment V of f(x) an environment U of x exists, such that 
f 

–1
 of V (f[x]) is contained in U(x). The continuity of a 

function f thus requires the continuity of its inverse f 
–1. 

Dedekind [28] is very concerned and rather dissatisfied with 
the lack of ‘a purely arithmetic and perfectly rigorous 
foundation for the principles of infinitesimal analysis’ and 
criticizes the use of sheer geometric evidence. Also the 
concept of a limiting value (shortly limit) is attributable to 
Dedekind’s inheritance, and this concept forms the basis of 
differential and integral calculus. Continuously differentiable 
functions can be used in an iteration procedure, in order to 
find a numerical solution of an equation when analytical 
solutions fail. Therefore, however, the convergence criterion 
must be fulfilled (see section 2.1). Or, the iteration function x 

→ g (x): x n+1 = g (x n) has a unique solution, if and only if 
g(x) < 1 (convergence criterion). 

The pendant of convergence and continuity criteria for 
iteration procedures in topological spaces is found in 
Banach’s contraction mapping theorem. For a Banach space 
(see footnote 3), the theorem states that a mapping T of the 
metric space M to itself has a unique fixed point in M. 
Banach’s contraction mapping theorem can be applied to a 
set of differential equations (of continuously differentiable 
functions) to demonstrate that iteration procedures converge 
to a unique solution, referring to a fixed point of the mapping 
(see also [4]). Essential to the contraction mapping T is the 
Lipschitz condition [30], namely that there exists 0 < k < 1 
such that d(Tx,Ty) ≤ k d(x,y) for all x,y in M [31]. Contraction 

                                                             

(5) “If space has at all a real existence it is not necessary for it to be continuous; 
many of its properties would remain the same even were it discontinuous. And if 
we knew for certain that space was discontinuous there would be nothing to 
prevent us, in case we so desired, from filling up its gaps, in thought, and thus 
making it continuous (...)” ([28]; fide [29], p. 575). 

mappings, i.e. fulfilling the Lipschitz condition, thus 
represent a class of mappings that do not increase distances 
[32]. In section 3.2. we will further comment on the 
biological interpretation of Diekmann’s [4] use of Banach’s 
contraction mapping theorem. 

2.3. Connectivity 

The physical or biological concept of connectivity is quite 
distinct from the topological concept of connectedness, 
although the latter may have some use to give a formal 
definition of the biological concept (see also [33]). In 
topological terms, connectedness of a space means that 
whenever it is decomposed as a union A ∪ B of two 
nonempty subsets, then A and B have some point in common 
or some point of A (resp. B) is a limit point of B (resp. A) 
[34]. The property of connectedness in general depends on 
the dimension and the homotopy type of a space [34]. For 
compact spaces, i.e. topological spaces that are both closed 
and bounded, n-dimensional structures can be simplicially 
approximated by an n-dimensional simplex. The advantage 
of a simplicial approximation sf of a function f is that this sf is 
continuous and homotopic to f. Consequently, the continuity 
of the polyhedral structure, from which the simplex is 
derived, is no longer required. 

Simplicial approximation, like for instance used in graph 

theory [35], indeed may become a useful approach to study 
the connectivity of biological networks, when no complete 
topological characterization of the biological objects in these 
networks is possible [33]. Examples are easily found in the 
connectivity patterns of food chains, disease transmission 
(infectivity) or intra-species communication. However, the 
incorporation of the biological determinants related to the 
‘connectivity process’ remains the most tedious part of 
mathematical modelling in these biological systems. 

Recently, spatial models have been worked out for 
biological phenomena that handle with individuals as discrete 
units and that abandon the space-averaged concentration 
notions that are typical of mean-field diffusion models [15, 
36, 37]. These spatial individual-based models, also called 
correlation models, are kindred to probabilistic cellular 
automata and have some advantages compared to the more 
classical mean-field models [15]. The mathematical structure 
of these correlation models is based on the idea that two 
individuals are neighbours if they regularly interact with each 
other. This relation is the result of the geographical 
distribution of individuals (essentially two-dimensional) or 
“it may represent some more complex interaction structure 
such as that seen in childhood diseases like measles or 
sexually transmitted diseases like HIV/AIDS” ([15], p. 103). 
Therefore, Rand concludes, although the global structure is 
two-dimensional the local structure can be of a higher 
dimension. The correlation equations are derived in a number 
of steps, including some approximations of the space-
averaged numbers of neighbours of a site (being another site 
or an edge) and measures to incorporate biases in the 
correction terms. The latter are important to ensure that the 
remaining variation can be modeled as random noise and a 
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stochastic differential equation can be obtained ([15], p. 105). 
A variation on the above model is found in the so-called 

contact process [38]. Applied to the dynamics of the spread 
of infection, the population is represented as a lattice of 
susceptible (S) or infected (I) individuals. Infection and 
recovery take place at a given rate, defining the 
transmissibility (β) and recovery process (ν) of the disease. 
At a critical transmissibility β c long-range correlations 
become important and the pair approximation of the contact 
process is only poor. Below the critical β c the infection dies 
out [38]. According to Rand [15], comparison of different 
models allows for estimating the value of β c for a particular 
disease. 

In other studies, the connectivity of the network is defined 
in terms of the probability of two nodes to be linked to each 
other [16, 17]. In a scale-free network this connectivity 
distribution forms a continuum between a power law or an 
exponential distribution [17]. Albert and Barabási [17] found 
that in evolving networks the probability of a node i to 
increase its connectivity k was described by the following 
differential equation: 

11
( )

( 1)
i i

j

j

k k
p q m m

t N k

+∂
= − +

∂ +∑  [17] 

where p, q, m represent the probability to add new links, the 
probability to rewire new links and the number of links 
connecting a new node to the system, respectively. The 
system size N and the total number of links ∑j kj vary with 
time according to a simple linear relationship, namely: 

N (t) = m0 + (1 – p – q) t (with m0 the initial number of 
‘isolated nodes’) and ∑j kj (t) = (1 – q) 2mt – m. 

Assuming that ki changes continuously, and defining the 
unit of time in the model as one event (attempt to 
growth/rewire or new link), Albert and Barabási (2000) 
derive the following connectivity distribution: 

[ ] ( , , )
( ) ( , , )

p q m
P k k p q m

γκ −≈ +  

where κ (p,q,m) = A (p,q,m) + 1 and γ (p,q,m) = B (p,q,m) + 1. 
The connectivity distribution thus follows a power law, 

when A and B meet certain restrictions. The meaning of A 

can be obtained from translating the restrictions set to the 
validity of the latter expression, namely that A (p,q,m) + m + 

1 > 0. For fixed p and m this restriction translates into: 

max
(1 )

min 1 ,
(1 2 )

p m
q q p

m

 − +< = − + 
 [17]. 

The connectivity distribution as expressed by the power 
law (see above) thus only holds for q< q max, i.e. the 
connectivity does not equal or exceed the peak value of q. 
For q > q max, the equation for P(k) crosses from a scale-free 
(power law) regime to an exponential. The value of B is 
defined by the values chosen for p,q,m, namely: 

2 (1 ) 1
( , , )

m q p q
B p q m

m

− + − −=  [17]. 

From the preceding analysis, we especially retain the 
property of an evolving network at a low connectivity state, 
corresponding to biological networks that are immature or 
not fully grown: in that case the probability distribution 
follows a power law instead of an exponential distribution. 

3. Biological Interpretation 

3.1. Idealization 

Application of mathematical principles and models to 
biological systems necessarily occurs through a process of 
abstraction and idealization of the biological system [33, 39-
41]. This also holds for mathematical models describing the 
geographical spread of an epidemic, or the geographical 
spread of an invading species or biological infection [42]. 

For instance, for Diekmann’s [4] application of Banach’s 
contraction mapping theorem, the uniform boundedness and 
continuity of the mapping functions (describing the 
biological infectivity) are crucial. To meet the requirement of 
boundedness (see section 2.2), the influence of boundaries 
has to be incorporated in the infectivity function. According 
to Diekmann [4] this means that the boundary has no active 
influence on the spread of the infection outside a certain 
habitat. Diekmann’s model therefore especially relies on 
infections in a bounded environment, whereas anisotropic 
boundary effects are considered less important. The 
continuity with respect to the geographical spread of the 
susceptible species (denoted by x) is another idealization of 
the Diekmann model (for a discussion see [11]). The 
geographical spread of the infectious agent (ξ) in the 
Diekmann model [4] is normalized to unity, suggesting that 
no coupling exists between the spatial parameters x and ξ. 

A distinct type of idealization is found in Thieme [3] in 
order to describe the habitat where spreading of the epidemic 
takes place. As the habitat for the susceptible population, 
Thieme [3] chooses a Borel measurable subset of ℜn (n= 1, 2, 
3,...). Borel measurable subsets mean that an infinit, 
countable set of open or closed subsets can be found (with 
cardinal number ≤ the cardinal of the natural numbers). If the 
Borel measurable subsets are also bounded, they are called 
Lebesgue-measurable. Bounded functions are measurable, 
even when they are not continuous, because discontinuous 
measurable functions can be approximated by continuous 
ones. The use of Borel measurable subsets, enables Thieme 
[3] to restrict solutions of the epidemic to the functions on an 
ordered topological space (ℵ), obtained by the union M+ of 
bounded subsets provided with the pointwise convergence 
topology. Using monotone increasing (decreasing) sequences 
{X (u p)} that converge towards a sequence X (u), and taking 
benefit of Banach’s contraction theorem (see section 2.3), the 
fixed point properties of these sequences enable to imply the 
existence of an isotonic (resp. antitonic) compact operator on 
the topological space ℵ. The isotonic (resp. antitonic) 
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compactness implies convergence towards a minimum (resp. 
maximum) solution on this topological space. According to 
Thieme [3], the extrapolation from the union of bounded 
measurable subsets M+ to ℜn is biologically important in 
order to be able to analyse the intensity of the infectious 
influence of an epidemic when far removed from its origin. 
The slightly different framework used by Diekmann [4] is 
that of the Banach space of bounded continuous functions on 
a closed subset of ℜn (see section 2.1). 

3.2. Functionality 

In biological systems, material distances between two 
objects are usually the euclidean distance in E

3
. When 

mapping functions that diminish euclidean distances are 
implicated (see section 2.2.), a ‘biologically’ functional 
interpretation (6) of these mappings is essential for biological 
relevance. A general concern is to avoid entering infinities 
(singularities) into the model. Similar to the horror vacui, 

there is also the scientific horror of infinite regress ([23], p. 
15). In models for the spread of epidemics, we prefer not to 
ascribe massive invasions of infectious agents to an 
unknown, extra-terrestrial origin, neither do we explain full 
recovery from disease to some miraculous effect or Deus ex 

machina. 
According to Diekmann [4], biological relevance for 

instance is found in the hair-trigger effect of a biological 
infection: “no matter how little infectivity is introduced in an 
arbitrarily small subset of Ω, eventually there will be a large 
effect at every point” ([4], p. 119). Both Thieme [3] and 
Diekmann [4] claim that their models demonstrate Kendall’s 
pandemic threshold theorem: the biological threshold to an 
all or nothing geographical spread of an epidemic. It is 
important to note that in Diekmann’s model both biological 
interpretations, the threshold phenomenon and the hair-
trigger effect, are related to the same condition, namely that: 
γs0 > 1 in the equation 0. (1 ) ( )x

x s e fγ ∞−
∞ = − + ∞  

Putting ( ) 0inf ( )fx x∞ >= ∞ , then x satisfies the 

homogenous equation 

0. (1 )yy s eγ −= −  

which can only be positive for γs0 > 1 ([4], p. 118). 
Knowing that s0 = inf x ∈ Ω S0 (x) and 

0

inf ( , , )x A x d dγ τ ξ τ ξ
∞

∈Ω
Ω

= ∫ ∫  

indicating respectively the infimum of the density of 
infectives (S0) at time 0 in x, and the infimum of the total 
infectivity at x due to a homogenously distributed density of 
infected individuals during the whole course of the disease. 
Diekmann’s [4] model thus requires both infectivity and 
density of infectives (at homogeneity) to be non-zero and 
positive, in order to have a pandemic or general epidemic. If 

                                                             

( 6 ) ‘Biologically’ functional has quite a different connotation than the 
mathematical ‘function’ concept: it is rather comparable to the ‘functor’ notion in 
algebraic topology, without the bijective property (see also [43]). 

γs0 ≤ 1, the epidemic will not spread. 
Finally, the biological relevance of Diekmann’s [4] and 

Thieme’s [3] models can be inferred from the occurrence of 
traveling wave solutions. Traveling wave solutions are 
solutions of the form u(t,x) = w(x + ct), thus depending on 
the linear combination of the independent variables x and t. 
Therefore, a substitution of these variables of the form ξ = 

x+ct 

is recommended, which leads to the solution of the nonlinear 
convolution integral equation: 

( ) ( ( )). ( )cw g w V dξ η ξ η η
∞

−∞

= −∫  with ξ = x+ct and where 

0

( ) ( ). ( )cV H V c dξ τ ξ τ τ
∞

= −∫  [4] (see also footnote 4). 

H(τ) denotes a non-negative distribution parameter on the 

time axis, for which 
0

( ) 1H dτ τ
∞

=∫  

The existence of a non-trivial solution for Vc depends on 
the value of c ([4], p. 125). 

Before to proceed with the extrapolation of these 
functionalities to any biological system, it is however 
important to validate some of the assumptions made to derive 
the model. Among the assumptions formulated in Diekmann 
[4], we retain the following shortlist: (a) there are no changes 
in the susceptible population due to birth or migration (p. 
110); (b) the disease induces permanent immunity, or 
susceptible individuals, once infected, cannot become 
susceptible again (p. 116); (c) the habitat space Ω does not 
consist of parts which are isolated with respect to infection 
(p. 119); (d) there is always a fraction of the susceptible 
population that escapes from being infected (p. 117). The 
combination of these 4 assumptions, taken together with the 
interpretation that all susceptible individuals “walk around 
during the day and return to their homes for the night” ([4], p. 
110), yields a biological system which is neither realistic nor 
generally applicable (see e.g. [11, 42] for more realistic 
approximations). 

3.3. Extrapolation 

Basically, extrapolation of results obtained from 
mathematical modelling is achieved in either one - or a 
combination - of the following approaches: generalizing the 
model by dropping one or more of the model assumptions 
(see examples in section 3.2), or extending the model by 
applying to a different, less restricted domain (or habitat, in 
the present case). 

Similarly, in the posthumously published work of A. M. 
Turing on morphogenesis in plants [44], the functions 
describing the geometrical patterns of leafs (phyllotaxis) on a 
cylinder are considered instrumental to describe diffusion 
patterns in the plane. Or, according to Turing, functions in the 
plane having the symmetry of a lattice may be considered as 
obtained by unrolling the surface of a cylinder [45]. 
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Applications are found in the geographical spread of an 
epidemic, Turing suggests. The situation where a lattice is 
changing with time may not only be interesting to describe 
the change of a phyllotactic pattern during plant growth, it 
may also apply to a changing lattice in the plane [46]. Turing 
uses the notion of ‘flow matrices’ that can be imagined to 
picture the change in the lattice as being due to “leafs being 
carried over the surface of a lattice by a fluid (whose velocity 
is a linear function of position)” ([44], p. 75). 

However, the calculations of the functions describing these 
processes, according to Turing, were very difficult, and, 
moreover, before the advent of electronic computers in the 
following decades, they were practically unsolvable (see also 
[7]). 

According to Diekmann and Heesterbeek [18], it is the 
combination of deterministic behaviour describing the fading 
out of an epidemic with the stochastic processes of new 
outbreaks, that causes the biggest methodological challenge. 
In other network models [16, 17], random graphs are used to 
demonstrate that fading of an epidemic is not due to 
infections falling below a critical threshold. On the contrary, 
it is suggested that due to the occurrence of highly connected 
nodes, the latter may serve as reservoirs from which new 
outbreaks eventually emerge. Scale-free networks are 
considered “extremely heterogeneous, their topology being 
dominated by a few highly connected nodes (hubs), which 
link the rest of the less connected nodes to the system” ([16], 
p. 651). 

In the following sections, the application of the previous 
mathematical notions and methods into very different fields 
of the biological sciences are broached, namely the fields of 
community ecology and pathway prediction in multicellular 
organisms. A central problem in these new applications is the 
scarcity of available empirical data to corroborate the 
assumptions of the theoretical models, as for instance in the 
issues of biodiversity and the predictability of tumour 
metastasis [47, 48]. 

4. Community Ecology 

Two decades ago, it was already noted that “something 
was wrong in community ecology”, that was linked with the 
gap between theory and empirical work (reviewed in [49]). 
Not only the lack of agreement about the meaning of basic 
terms and the confusion about the theoretical foundations 
seemed at stake. Also the quantitative analysis, aiming at the 
description of the processes of how the abundance of one 
species affects the abundance of another, appeared not 
suitable for describing how the species of a community 
change altogether [49], leaving aside the question how 
biodiversity of entire ecosystems changed and may further 
evolve in the present era [47]. Only a ‘minimum’ number of 
species, say a few predators and prey species, so far could be 
readily modelled. Moreover, many of the issues related to the 
turnover of species in natural communities, according to Law 
[49], are qualitative rather than quantitative. Also in the 
theories derived from Markovian models, the description of 

the community state is essentially qualitative and even 
subjective, namely, it may be based on the presence or 
absence of certain indicator species [49]. However, there 
exist an indirect way of measuring the effect of reduced 
biodiversity in models where the skewness of antigen 
exposure is essential for understanding the development of 
immunoglobulin-E mediated allergic diseases [50]. A 
possible way out of the impasse described above, concerning 
the qualitative changes in species composition, according to 
Law [49], may be found in considering only those subsets of 
species (from a regional pool), that have the property of 
persistence. This means that only the species are preserved 
that persist, i.e. that “have more than a transient existence”. 
Taking the threat of a global declining biodiversity in mind, 
an alternative approach could envisage the interactions that 
are crucial for survival and to focus especially on the species 
that are threatened with extinction. It is one of our next 
project goals to pursue this approach to find an alternative 
method for the estimation of biodiversity or an alternative 
formulation of the mean species abundance (MSA) as an 
index of global biodiversity decline [47]. 

Following the persistence approach, Law [49] developed 
criteria for coexistence of n species, using a system of 
coupled ordinary differential equations (ODE) in an n-
dimensional non-negative phase space. The criterion for 
coexistence of n species, according to common practice in 
theoretical ecology, is to evaluate the Jacobian matrix (J) in 
order to establish the existence of an equilibrium point ẑ with 
the property of asymptotic Lyapunov stability (7). The test for 
asymptotic stability consists of evaluating the eigenvalues of 
J at the equilibrium point, of which the real parts should all 
be strictly negative: 

J = a ij with ( )( )
z

ij i i
xi

a x f x
x

∧
=

∂= ⋅
∂

 [49] 

A serious drawback of this method, according to Law [49], 
is that the property only applies for a small region around the 
equilibrium point, where the dynamic equations can be 
linearized. An alternative for the property of asymptotic 
stability (in the sense of Lyapunov) is to replace it by the 
more powerful alternative of global asymptotic stability 
([51]; reviewed in [49]). In this approach, the property of 
global asymptotic stability implies that “no orbit can tend 
from the interior to the boundary”, and the species therefore 
will coexist. Permanence of a species in this system is 
defined as “a ‘skin’ of thickness δ > 0 around the boundary of 
the phase space”. ODE’s are then said to be permanent if “all 
orbits not initially in the boundary remain at least at a 
distance d > δ from the boundary” [49]. Following this 
approach, some aspects of community dynamics can be 
predicted, as permanence forms a criterion for persistence, 
although it still has its limitations ([49], p. 152). 

                                                             

(7) A solution of a differential equations used for describing dynamical systems is 
called Lyapunov stable if the solutions that start near an equilibrium point ẑ, stay 
near ẑ. If, moreover, a solution ẑ is Lyapunov stable and all solutions that start 
near ẑ converge to ẑ, then ẑ is called asymptotically stable. 
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Nevertheless, it might help explaining why invader species 
might become permanent inhabitants, or why invasion 
resistance might prevent them from doing so. Also, the 
permanence algorithm for community assembly is supportive 
to the formulation of a final phase of (ecological) succession, 
consisting of two possible kind of end states, that are also 
corroborated by ecological findings. The first is that “a 
resident community is uninvadeble by any other species from 
the regional pool”. The second is consistent with the “union 
of three or more subsets”, which are communities that 
replace one another in a cyclic sequence (or when more 
complicated: a heterocyclic sequence) ([49], p. 164-165). It is 
obvious that these modelling studies may become helpful in 
describing ecologically stable communities, which show a 
diversity similar to the wide range of ecological habitats of 
the planet. The so far unwitnessed decline of global 
biodiversity however, probably with an anthropogenic 
signature, remains very hard to harmonize with what may be 
intrinsically called ‘stability’ analysis. 

5. Pathway Prediction in Multicellular 

Organisms 

The analogy of transfer, from the assembly of biological 
species in an ecological community to a ‘community’ of cells 
in a multicellular organisms, seems logical but summons two 
important caveats. First, the stability of the multicellular 
organism is only a relative stability, because individuals are 
not only subject to a limited life cycle, but also diseases, 
dysfunctional behaviour of groups of cells or malignant cell 
proliferation may alter the survival of parts of the organism 
as well as of the individual as a whole ‘micro-cosmos’. 
Moreover, the stability of the multicellular organism is not a 
goal in itself. Rather its stability reflects the qualitative 
appearance and performance of the organism in terms of an 
individual’s well-being, and as such, it is the main purpose of 
medical care. One may argue that this approach is similar to 
the viewpoint that biodiversity is not solely a measure of 
numerical density of the total pool of species, but also a 
matter of functional performativity of ecosystem diversity, as 
it is perceived in various aspects of human culture, economy, 
and public health [47]. 

The question of a sustainable, healthy individual therefore 
surpasses the questions of morphogenesis (of a species and of 
the individual) as well as questions related to the various 
attempts to free the body of unwanted cells (of different 
kinds). Rather it poses the problem of sustainability of a 
heterogeneous, differentiated population of billions of cells in 
a functionally organized way, the healthy organism. The 
predictability of molecular and cellular transitions following 
distinct cellular pathways, indeed forms the main concern in 
cell reprogramming (stem cell regeneration) and the control 
of tumour metastasis [48]. 

In order to model cell lineage transformations in a 
multicellular organism, the problem of state transitions in 
theory can be approached by the use of Markovian models. 

In mathematical terms, Lyapunov functions can be useful, as 
suggested by Law [49]: 

( ) ih
i

i S
P x x

∈
= ∏  reflecting the probability of a series of 

events, for some choice of hi > 0. 

In the multicellular environment of an organism, an event 
can be defined as either a molecular interaction between 
biomolecules or as a migration event of a cell, as for instance 
in circulating immune cells or metastatic tumour cells [48]. 
The probability of an event, drawn from a multitude of 
possible interactions or migration steps, has to exceed a 
threshold value to be a real possibility. Herein, clinical and/or 
metabolic data are essential to obtain information on the 
incidence of possible interactions (and diagnostic cues for 
visualization of these events). 

In an n-dimensional Euclidean space this results in a set ℳ 
of n x n matrices, for which a boundedness norm has to be 
defined, similar to the problem of asymptotic stability in 
community ecology (see ⁋ 4). In practical applications, 
however, finding a common Lyapunov function may become 
increasingly hard as the dimension n goes up [52]. The 
problem is also known as the approximation method of the 
Joint Spectral Radius (JSR). The JSR represents the 
maximum growth rate obtained by taking arbitrary products 
of the matrices Ai from the iteration series 1 ( )k k kx A xσ+ =  

where the index σ(k) results from a mapping from the 
integers to a finite set of indices {1,… m}. The JSR is 
formally defined as: 

1

1 1{1,..., } 2
( ,..., ) : lim max ...k

k
m k km

A A A A Aσ σσ σρ →∞ ∈=  

[52] 

According to Parrilo & Jadbabaie [52], a sum of squares 
(SOS) approximation shows the best results in order to obtain 
a class of bounds on the JSR that guarantee contractiveness 
properties for all the matrices in the set ℳ (see also the 
notion of Banach contraction mapping, ⁋ 2.2). Namely, it 
seems possible to obtain upper bounds on the JSR by 
replacing norms with homogenous polynomials p (x) (of 
degree 2d), following the topological properties of 
compactness (of the unit ball in ℜn) and continuity of a 
strictly positive homogeneous polynomial p (x) (see also ⁋ 
2.3). 

Applications of this methodology are found in the 
metaheuristics of Ant Colony Optimization (ACO) 
algorithms, which have been proven to be useful in complex 
optimization problems, such as protein side-chain 
conformation and protein-protein interaction analysis [53]. It 
is suggested that with a number of adaptations of ACO to the 
context of multicellular networks, the heuristics of ACO 
could also become useful in the analysis of cellular pathway 
prediction [48]. 

6. Concluding Remarks 

Starting from a historical survey of the modelling of 
infectious diseases, as originally formulated in the days of 
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Volterra, Turing and Kendall, we analysed the abstract 
notions of norm/boundedness, continuity and connectivity 
throughout several areas of bio-mathematical research. These 
areas are not confined to the classical, mathematical roots of 
epidemiology, but also to some more recent applications such 
as community ecology and cellular network modelling. 

On the one hand, it may be noted that the achievements 
and possibilities of mathematics and computation technology 
have generated the notion of computability of almost any 
complex problem. On the other hand, the limited availability 
of empirical data, from the field, or from the clinic or 
metabolic data bases, still hampers the practical usefulness of 
the mathematical models. As mentioned earlier, a thorough 
analysis of the biological issues at stake in for instance a 
declining biodiversity, environmental degradation or 
individual health impairment, may become instrumental for 
the fine-tuning of the bio-mathematical and computation 
techniques.  
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