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Abstract: The problem of biodiversity impairment not only poses a global threat to the planet’s biosphere and causes global 
health issues, it is also a cumbersome pièce de résistance for mathematical modeling. Already the definition of biodiversity 
requires knowledge of the hierarchical structure of an ecological environment and taxonomic complexity of life forms in all of 
their manifestations. Not only the enumeration of easily recognized, large vertebrate species, but an estimation of all living 
species present in a given area, forms the ultimate challenge for biodiversity estimation. This is an important goal for enabling a 
scientifically sound approximation of biodiversity impairment. In this paper, the analogy of the fractal geometry of nature and 
the fractal appearance of ecosystems is followed, in order to define a constitutive approach for estimating the local and global 
biodiversity of an ecosystem. Moreover, following the rationale of percolation theory and Mandelbrot’s (1983) definition of the 
bounds of a critical fractal dimension in a hierarchically stratified system, the notions of critical biodiversity and biodiversity 
resilience strength (BRS) are proposed. It is concluded that in order to understand the dynamics of biodiversity change in a 
stressed, stratified environment such as the global biosphere, not only the stratification into trophic levels, but also short and long 
distance migration effects have to be considered. 

Keywords: Biodiversity, Biodiversity Resilience Strength, Fractal Dimension, Similarity and Mass Dimension,  
Uniformity Index, Percolation Probability 

 

1. Introduction 

The global decline of biodiversity has been assigned by the 
UN as one of the major challenges for human well-being in the 
new millennium [1, 2]. Estimating the biodiversity at a local 
scale, however, not only has been shown to be tedious because 
of the variety of assessment methods for animal abundance [3], 
or because of differences in nomenclature and determination 
of life forms, or in unacquainted backyards of living 
organization [4], but also because of the inherent complexity 
of population dynamics in ecosystems with multiple trophic 
levels and species [5]. 

In this paper, we start with a review of current biodiversity 
definitions (2. Theoretical Background). The dynamics of 
biodiversity change, in theory, can be derived from a matrix 
representation of local species abundances (following Fisher’s 
formula) [6]. In order to incorporate dynamic, multiple species 
interactions into a so-called Biodiversity Tensor Equation 
(BTE), however, knowledge of the time-derivatives of 
biodiversity (change), both locally and globally, is lacking. 

Moreover, the applicability of the dynamic equations is 
hampered by the problem of perturbations that aren’t strictly 
local, because also long distance interactions following 
migration of species may occur. 

Instead of a mean field approach, therefore, an approach is 
presented for incorporating the fractal, spatial structure of 
ecosystems, in analogy with the structural and scaling analysis 
of multifractal systems [7] (3. Modeling the Fractal Nature of 
Ecosystems). An important concept derived from percolation 
theory, the critical (percolation) probability is also used to 
characterize the critical dimensionality of a hierarchical 
cluster [8], which to our opinion characterizes the hierarchical 
nature of ecosysytems with multiple trophic levels. This 
percolation notion, moreover, may become helpful to 
understand the notion of biodiversity resilience strength (4. 
Estimating the Biodiversity Dynamics in an Ecological 
Framework). In addition to the fractal approach, in analogy 
with Turing’s use of Fibonacci series for describing plant 
phyllotaxis [9], a timeless, stepping stone approach for 
predicting biodiversity changes is also discussed. 
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2. Theoretical Background: 

Definitions of Biodiversity 

2.1. Relative (Mean) Species Abundance 

The earliest notions of a quantitative estimate of 
biodiversity resulted from statistical considerations on the 
abundance of species in a biological environment. In the 
geometric series model of Motomura [10, 11], the (relative) 
species level of abundance is a sequential, constant proportion 
of the total number of individuals in the community. This is in 
fact a simplification of Fisher’s [6] Log series model, 
represented by the formula: 

ln(1 )
N

S α
α

= +  

with S = the number of species in the sampled community, N = 
number of individuals sampled and α = a constant derived 
from the sample data set. 

From this the number of species at a certain abundance is 
derived: 

n

n

x
S

n

α ⋅=  

with Sn = the number of species with abundance n and x = 
positive constant (0 < x <1) derived from data set and 
generally approaching value:= 1. The parameter α is called 
Fisher’s dimensionless α and is used as a measure of 
biodiversity (see below). 

Alternatively, Preston [12] postulated that species 
abundances – when binned logarithmically in a so-called 
Preston plot – follow a Normal (Gaussian) distribution, partly 
as a result of the Central Limit Theorem. This resulted in a Log 
normal distribution meaning that the abundance distribution is 

lognormal, or 
2( )

0
aRn n e −= and, hence 0n

N
a

π=  

In this formula N represents the estimate of the total number 
of species (derived from the area under curve); n0 is the 
number of species in the modal bin (peak value), and n = the 
number of species in R bins distant from the modal bin, a = 
constant derived from the data set. 

2.2. Biodiversity of Communities as Function 

of Biomass 

In a more dynamical approach, Vandermeer and Lin [13] 
proposed to estimate biodiversity as function of prey biomass 
and functional response of predators, with biomass for i-th 
competitor resp. prey 

(1 )i i i i j i j j j
j i j

X r X X X X a Pα
∗

≠

= − − − Θ∑ ∑  

where ri is the intrinsic increase rate for species i, aj is the 
predation rate of species j on i, etc. The predator biomass of 

species k is given by the formula: k k k i i k kP a P X m P
∗

= Θ −  with 

mk the mortality rate of predator k, and 
1

(1 )i
i ib X

Θ =
+

 the 

functional response of the i-th predator on Xi. 
However, an important caveat has to be made, since 

interactions considered between competitors and predators 
occur at one or two trophic levels, at most! 

2.3. Biodiversity Representation as Matrix of 

(Local) Abundances 

When abundance data of (all) known species are available, 
they can be represented in a n x n symmetric matrix, (1) 
provided n = the (maximum) abundance, and (2) that 
abundances can be measured accurately. Based on Fisher’s 
formula (see 2.1) for Sn (i, j), the i-th entry of the i-th row can 

be defined as ix iα ⋅  

This may seem an interesting result from the viewpoint of 
matrix calculus, namely that when A represents the 
Biodiversity matrix with only positive, non-zero values on the 
diagonal, then: 

det 0
in

i

x
A

i

α ⋅= ≠∏  

represents a measure of Local Biodiversity. 
However, it is an almost impossible task to estimate all 

species abundances in an ecosystem without causing 
interference, especially when also observations at different 
trophic levels have to be made so that visualization with 
remote sensing is not applicable. 

Further applications of matrix calculations devoted to the 
biodiversity problem may be found in analogy with similar 
fields of research [14]. An intuitive notion of the “(affine) 
matrix subspace intersecting the cone of positive definite 
matrices” [15]1 may be found in analogy with “finding the 
loci of the points in ℜ3 satisfying the ‘general second-degree 
equation’ (for which no simple method exists for simplifying 
equations of degree greater than two)”. Solutions of these cone 
intersections may be represented by convolution surfaces of 
paraboloids, hyperboloids, ellipsoids. An important question 
is what can we might learn from a geometric representation of 
the biodiversity paradigm? 

In the next section we will explore the potential benefits of a 
fractal approach of the physical phenomena in our planet. In 
the following section (in 4), we will investigate how 
biodiversity changes may fit into that fractal approach. 

                                                             

(1 ) For instance Parrilo and Jadbabaie [15] suggested that: “the problem of 
checking if a polynomial can be decomposed as a sum of squares is equivalent to 
verifying whether a certain affine matrix subspace intersects the cone of positive 
definite matrices, and hence an SDP feasibility problem.” 
(Parrilo and Jadbabaie, p. 291). (* SDP= semidefinite programming). Definition: A 
matrix A in ℜnxn is positive definite if (I) A is symmetric and (II) X*AX > 0 for 
every non-zero X in ℜn (note that X*AX is a real number – a one-by-one matrix; 
alternatively, it is the value of a quadratic form at the point X*=(x1, x2, …, xn); so 
(II) makes sense. Hence, a matrix A is positive definite if (and only if) all of its 
eigenvalues are positive real numbers [16]. 
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3. Modeling the Fractal Nature of 

Ecosystems 

3.1. Topological and Fractal Dimensions of 

Nature (theory) 

The concept and methods of modeling the fractal geometry 
of nature date back to the foundational work of Benoit 
Mandelbrot [8]. As exemplified in Figures 1 and 2, the fractal 
nature of many biological (Figure 2) and geological objects can 
be described using the so-called Mandelbrot set (Figure 1). 

Mandelbrot embarks on his journey into the fractal 
geometry of nature with three so-called classical fractals, e.g. 
with the question of the length of the Coast of Britain2. It 
appears that the observed total length depends on the scale of 
some prescribed length ε (called the yardstick length by 
Mandelbrot). Namely, with ε becoming increasingly smaller, 
the total length L (ε) tends to increase without limit. 
Mandelbrot acknowledges for the formula (following below) 
to the posthumously discovered work of the British 
mathematician Lewis Fry Richardson (1881-1953). 
Richardson empirically found a relation between the 
logarithm of the length of the side of equal-sided polygons 
(e.g. squares) and the logarithm of the total length of some 
coast lines and frontiers between different countries3. 

For F the number of fragments of chosen length ε, the total 
length adds up to the length 

1( ) DL Fε ε −≈  [8] 

with D ‘some’ exponent, which according to Richardson, had 
“no particular significance”, but appears to be the fractal 
dimension4. Mandelbrot compares Richardson’s formula with 
the following empirical formula for the triadic Koch curve [20] 
- intuitively it is obtained by progressively breaking up line 
segments and inserting a triangle at the breaking points -, 
where D appears to satisfy the equation5: 

13 4 3D− =  which is the case when log4 log3D = 6 [8] 

For fractal objects, it is more convenient to speak about the 
similarity dimension7, where the similarity of each part to the 

                                                             

(2) BB Mandelbrot [17] (fide Mandelbrot, 1983). 
(3) BB Mandelbrot (1983), p. 33. 
(4) In the work of Mandelbrot (1983) a formal distinction is introduced between the 
topological dimension DT of a set, which is always an integer, and the fractal 
dimension D, which in fact is the dimension as formulated by Hausdorff [18] and 
put in final form by Besicovitch [19] (fide Mandelbrot 1983, p. 15). In case of the 
well-known Euclidean spaces, which are called dimensionally concordant sets, it 
appears that DT = D. Then, according to Mandelbrot, “a fractal is by definition a set 
for which the Hausdorff Besicovitch dimension strictly exceeds the topological 
dimension.” (Mandelbrot, [8], p. 15). 
(5) BB Mandelbrot (1983), p 36. 
(6) When inserting D= log 4 / log 3 into Richardson’s formula (called the ‘coastline 
dimension’ by Mandelbrot, p. 44), we obtain: 

3

log 4 (log 4 log 3) log 4/3( ) 1 log 4/3log 3 log 3 log 33 3 3 3 4 / 3
−−

= = = =  

(7 ) For Mandelbrot (ibidem, p. 37) in most cases - and according to many 
mathematicians - this similarity dimension equals the Hausdorff dimension (see 
footnote 3 and also Marcelli, 2019), and, ‘in their context’ there is ‘no harm in 
thinking of the fractal dimension as being synonymous with similarity dimension’. 

whole is deduced by the ratios: 
( ) 1 1r N b N= =  (for a line divided in N=b parts) 

2
1 1( )r N b N

= =  (for a plane divided in rectangles) 

1/
1 1( ) Dr N b N

= =  (in general), which can also be 

formulated as 

1/log ( ) log1 (log )Dr N N N D= = −  [8]. 

An alternative expression for this similarity dimension 
follows: 

1DNr =  which is equivalent to 1log logD N r= 8 

However, when self-similarity is not absolute, i.e. where 
unequal parts of ri are allowed (ordered with increasing length 
rm), then the following important extrapolation results: 

1D
m

m

r =∑  [8]9. 

To explain the formula for D above, consider the 
topological dimension (d) (DT in the notation of Mandelbrot) 
of for instance a smooth curve of length l. It can be 
approximated by a polygonal of N(l) line segments (N 
representing the number of segments of length l) which in the 
limit approaching zero, is given by the formula: 

0

ln ( )
lim 1

lnl

N l
d

l→= − =  [21]. 

Consider that in the above equation ln N (l) / ln l the 
zero-approaching limit for l tends to the indefinite ratio – 
( ∞ −∞ ), which, using the method of G. de l’Hôpital 

(1661-1704), equals unity. In analogy, the fractal dimension of 
a set can be defined, using the box counting method, or 
packing or Tricot dimension [22]: 

( )( ) EN l l −∆≈  with 0

ln ( )
( ) lim

lnl

N l
E

l→∆ = −  [21] 

which coincides with the topological dimension, whenever 
the set E is regular. Moreover, if there exist a real D and a 
finite positive measure µ (like the mass density), such that for 
all x ∈ E, with Br(x) being the ball of radius r centered at x, the 
following theorem is used: 

log [ ( )]

log
rB x

D
r

µ →  then D = dim E, 

where D is called the mass dimension. If the convergence is 
uniform on E, then D = dim E = ∆ (E) [21]. According to 
Marcelli [21], p. 11, “Mandelbrot has popularized the 
Hausdorff-Besicovitch dimension or mass dimension, since 
the measure (by which physical objects are measured) is very 
often a mass, dim E, which turns out to be one of the most 
understandable dimensions for the majority of physics 

                                                             

(8) BB Mandelbrot (ibidem), p. 37. 
(9) BB Mandelbrot (ibidem), p. 57. 
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problems.” 
Another important result of a fractal geometry of natural 

objects results from the notion of defining the critical 
percolation threshold of a network. According to Mandelbrot 
[8] the ‘percolation’ notion goes back to the work of Daniel 
Bernoulli (1700-1782), as for instance introduced by Shante 
and Kirkpatrick [23]. In the example of a Bernoulli lattice, e.g. 
made of sticks consisting of insulating vinyl or of conducting 
copper, it is easily imagined that a sufficient connectivity of 
conducting copper sticks in the lattice results in electric 
conductance throughout the entire network, called percolation 
of the network10. The ecological analogue of this percolation 
threshold, also called critical (percolation) probability (pcrit) in 
terms of the biodiversity is discussed below (see 3.2 and 4.4). 
Earlier, the importance of the percolation notion was also 
recognized in immune networks [24, 25]11 and, in ecology, in 
the role of habitat fragmentation [26]. 

3.2. Applying the Fractal Dimension to 

Ecosystems 

We may wonder how the multiple interactions between 
species, and within species too, of an ecosystem could be 
described using abstract, mathematical tools such as fractals. 
However, according to Mandelbrot [8], fractals not only are 
useful to describe geometrical patterns in the geology and 
morphology of our planet, or the branching patterns of trees 
and river beds, or the anatomical folding of our brains and the 
ramifications of the lung bronchioles and even smaller 
structures, but also the spread of galaxies and galactic lacunae 
12. Intuitively, the distribution of niches occupied by biological 
species in an ecosystem, shows similarities with the abstract 
notion of Cantor ‘dust’, used by Mandelbrot [8] to describe 
any physical system revealing burst and gaps, also known as 
noise 13 . According to Mandelbrot, from a topological 
viewpoint all Cantor sets can be defined as sets of dimension 
DT = 0, because “any point in the set is by definition cut from 
the other points, without anything having to be removed to cut 
it”14. Alternatively, the use of Peano curves [27]15 – i.e. a 
variant of the Koch curves where points of self-contact are 
allowed – results in plane-filling curves, for which D 
approaches DT = 216. For the fractal dimension, one may either 
adhere to the notion of similarity dimension or to the notion of 
mass dimension (see 3.1). 

                                                             

(10) BB Mandelbrot (ibidem), p. 126, 216 ff. 
(11) W Allaerts [25], p. 168. 
(12) See modeling of galaxies and galactic lacunarity in Mandelbrot (ibidem), pp. 
288-318. 
(13) See BB Mandelbrot (ibidem), p. 74-82: Mandelbrot cautions for a lot of 
reserve among physicists (and others) against making reference to the ‘monstrous’, 
i.e. mathematically uncanny objects described by Cantor (but also to the Koch and 
Peano curves), even so that he had to ”erase every mention of Cantor” in his work 
on Cantor dusts (p. 79). Historically, it was noted that Georg F.L.P. Cantor 
1845-1918) not only was an outstanding mathematician, creator of Set theory and 
many others, but also that he met with harsh criticism and opposition, during his 
life and long after his death. 
(14) BB Mandelbrot (ibidem), p. 78. 
(15) G Peano (1890). 
(16) BB Mandelbrot (ibidem). p. 58-73. 

As to the notion of percolation of a fractal cluster, the 
critical threshold for percolation defines whether a network of 
clusters is coherent or whether it falls apart in non-connected 
clusters (10). An ecological application of percolation theory 
was found in the effect of habitat fragmentation (in a 
neotropical rain forest) on the persistence of a population of 
army ants (Eciton burchelli) [26]. Using random-walk 
modeling, these authors found that a critical value of 0.4072 
(or 40,72% of the patches being removed), resulted in 
extinction of the ant populations. So, even in huge reserves, 
habitat fragmentation may result in extinction of certain 
keystone species. 

In order to call a structure a fractal, it is mandatory that 
some rule of self-similarity should apply. Analogous to 
Marcelli’s definition of mass dimension, we may define the 
fractal uniformicity of an ecosystem in terms of the distance 
lIN between neighbors (or couples) of the same species and the 
distance lNIN to the nearest non-identical neighbor (predator or 
competing species): 

ln

ln
NIN

IN

l
U

l
∝  

Biodiversity, however, is inversely related to this 
uniformity index U. From wildlife observation it follows that 
high biodiversity indices or so-called biodiversity hot spots17 
are often found in remote areas, at geological ridges (like 
mountain ranges) or in ecosystems with a maximum number 
of ecological ‘niches’ within short range, characterized by 
various physical parameters (like temperature, humidity, 
altitude above sea level, tree size and altitude above the 
ground, soil composition, presence of caves, etcetera, e.g. in 
tropical rain forests). The impact of these cumulative effects 
results in an ecological phase space, identifiable with a set of 
dimensions with fractal nature. 

Consider the ecological niche of a species, basically, the 
niche habitat - being the physical space in which a species 
may live and find shelter for reproduction (i.e. in contrast 
with the behavioral niche) - could be de-composed in a 
number of foraging-sheltering dipoles fs-i/+I

 (Figure 3), where 
i is an index (positive integer number) reflecting the trophic 

level of the species. The distances ˆ ( )
ÎN

l t and ˆ ( )NINl t  have 

to be considered as expected mean values, but are not 
necessarily the metric distance between two sites: they may 
also reflect the time intervals between two events taking 
place. When visiting a rock-breeding colony of sea birds (e.g. 
the Gannet, Sula bassana), it appears that the close distance 
of breeding couples is determined by the limited space 
available and the protection against predators, that may rob 
the nests when they are unattended (e.g. the time window for 
an attack) (Figure 4). 

The characterization of the foraging-sheltering dipoles also 
reveals a cascade of trophic levels, where producer-, 
competitor-, parasite- or predator species can be identified at 
each level. However, similarities as well as dissimilarities may 

                                                             

(17) See for instance the BBC documentary-series “The Americas with Simon 
Reeve” (5x1 hours). 
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exist at different trophic levels, resulting in a number of 
similarity terms with increasing index m (see 3.1), in which 

the (time-dependent) expected ˆ ( )U t  takes the role of 

similarity dimension: 

ˆ ( )
/ 1U t

i i
m

fs− + ≈∑  

The terms of the expression above add up to unity, so these 
terms may be regarded as successive probability terms of a 
biodiversity index, reflecting the successive probabilities of 
the occurrence of certain indicator species, characteristic for 
the quality of an ecosystem. 

Also, the proportions PON, PNON, of occupied-, resp. 
non-occupied niches to the maximal number of different 
niches to be likely found at a certain location may be derived 
from: 

/

ln
1 1

ln
i IN

NON ON i i
i i

i

N l
P P

N fs− += − ≈ −∑
∑  or 1 loc

NON

opt

B
P

B
≈ −  

where Bloc, Bopt represent the local, resp. optimal biodiversity 
of a given ecosystem. 

According to Mandelbrot [8], in order to translate the 
critical percolation probability (pcrit) into a critical threshold 
for fractal clusters or ‘curds’, defining the upper and lower 
bounds to a critical fractal dimension (Dcrit) also depends on 
the dimensional diameter (E= volume1/E)(10). For Mandelbrot, 
estimating the content of the intersection of a fractal cluster 
(curd) with an Euclidean space, e.g. a plane (perpendicular to 
some axis), is equivalent to defining the topological 
dimension of the overlapping space. This in turn, is helpful to 
determine the critical percolation of a fragmented network 
(so-called stratified), or to answer whether or not the cluster is 
connected or falls asunder. 

For a stratified random fractal, Mandelbrot [8]18 uses a 
lattice divided into bE subintervals (b is called the lattice base). 
Then, with E the dimensional diameter of the cluster as 
defined, Mandelbrot [8] derives the following expressions for 
the upper, resp. lower bound on the critical fractal dimension 
(Dcrit): 

Dcrit, upper bound: Dcrit satisfies 11
2

critD E Eb b b −> +  (for b≥ 3, 

this makes percolation ‘almost certain’)(18), and: 
Dcrit, lower bound: Dcrit satisfies logcrit b critD E p> +  (for b>>1 

and pcrit the critical probability in Bernoulli percolation) (18). It 
remains to be demonstrated which model best suits 
multi-species ecological networks, either the latter bounds of 
Dcrit, or, the rather manageable formula of Pcrit for H. A. Bethe 
(1906-2005) lattices with coordination number z (as suggested 
in immune networks) (11), namely: 

1

1critP
z

=
−

 [24]. 

                                                             

(18) BB Mandelbrot (ibidem), p. 210 ff. 

4. Estimating Biodiversity Dynamics 

in an Ecological Framework 

4.1. Biodiversity Decline and the Biodiversity 

Tensor Equation 

It has been reported in the island theory of McArthur and 
Wilson [28, 29], that biodiversity decline causes a gap in the 
ecological food web. This is for instance exemplified by 
large whales that consume high amounts of krill, hereby 
controlling a maximum number of species. However, when 
whales die, especially in the arctic region, only a few number 
of predators take benefit (e.g. polar bears). Hence, large 
predators have a far greater impact on the biodiversity than 
primary producers. 

Under the present conditions of a globally declining 
biodiversity [30], there is an urgent need to understand the 
dynamics of biodiversity changes. Compared to the models 
presented in theoretical studies (see 2), the matrix 
representation has to be extended to include biomass (e.g. 
per age class), i.e. it has to be regarded as a volume metric. 
Theoretically, a biodiversity tensor may be constructed 
containing all relevant data on (1) species number per trophic 
level, (2) abundance per species and (3) biomass per age 
class. Then the following (differential) equation may be 
constructed for the Global Biodiversity Loss as a function of 
time: 

2
1

1localglobal dB
globaldt

dB
B T S

dt

+
−

+= − + ∇ − ⋅ ∆  

with B1-, B2+ the biodiversity at top level (impaired), at a 
sub-top level B2+ (increased) or 1

globalB+∇ when global 

dispersal at top level taking place, etc. The last, “increase of 
entropy” factor (T∆S) is well established at the level of 
chemical reactions (between atoms and molecules) and even 
at the scale of black holes and galaxies [31], but there is quite 
some reserve among theoretical physicists to apply the notion 
of entropy at the level of macroscopic, biological objects like 
in (meta-) populations. So far, there is not another approach 
for estimating the entropy change, except for the relation of 
the notion of information state (H) defined as negentropy [32]: 

1

log
n

i i
i

H p p
=

= −∑  

According to the second law of thermodynamics, in a 
closed system the entropy production is zero, implicating that 
a change in entropy is always reflected by a change in heat or 
work, so this also holds for the negentropy of the system. The 
problem with the Earth’s biosphere however, is whether or not 
it may be regarded truly as a closed system? And, 
consequently, we cannot conclude that the biosphere as a 
whole is (or is not) a robust, sustainable hyper-equilibrium 
system, in analogy with the notion of hyper-object as 
formulated by Morton and others [33]. 
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4.2. Integral Operators and Lebesgue 

Measure Applied to Non-differentiable 

Functions (Theory) 

However, a more important caveat results from the 
uncertainties resulting from a lack of knowledge about the 
time-dependency of the abundances of species, when not only 
growth and reproduction, but also migration parameters are 
allowed. Strictly, the relationship between biodiversity and the 
first time-derivative (speed of biodiversity change), as well as 
with the second time-derivative (declining or increasing speed 
of biodiversity change) are not known. Also, it has not been 
elucidated yet whether the biodiversity matrix (represented in 
2.3) is a differentiable function19. In mathematical theory, the 
use of an integral operator LK is suggested for such 
non-differentiable functions. For a measurable function K on 
ℜ2 (K is called the kernel of the integral operator), this integral 
operator is defined as: 

( ) ( , ) ( )kL f x K x y f y dy
∞

−∞

= ∫  

which operator has the properties of being linear and bounded, 
based on an important property of the Čebyšev norm20: 

{ }
}));()(max({.

));(),(),(max(.)( 2

baxxf

bayxyxLabxfL kk

∈

∈−≤
 

{ }2

0
.max( ( , ) ( , ) ( ; ) )k kL b a L x y x y a b≤ − ∈  [35] 

The aim of the above described integral equation is to 
establish its order (1st, 2nd or 3rd) by investigating the solutions 
for the equation 

( ) ( , ) ( )
b

a

h s K s t x t dt= ∫  for which the form of the solution is 

given by the product of the arbitrary functions g and h, 
satisfying the linear form (with λ ∈ℜ or λ ∈C) 

( )g h h K xλ⋅ = +  [35]. 

According to Heil [34], the integral operator thus defined is 
a natural generalization of the ordinary matrix-vector product. 
With A an m x n matrix with entries aij, and let u be a vector in 
Cn, then the product Au ∈ Cm and its components are given by 

1

( )
n

i ij j
j

Au a u
=

=∑  with i = 1, …, m. 

Intuitively, the importance of the (Lebesgue) integral 

                                                             

(19) Given the similarity with Mandelbrot’s analogy with Cantor dusts (see  3) ⁋

and Koch curves (where the drawing of a tangent is impossible !), it is very likely 
that these are non-differentiable functions. 
(20) According to Heil [34], the here presented integral operator refers to the 
Lebesgue integral and Lebesgue measure, after the work of the mathematician 
Henri Lebesgue (1875-1941). An important property is that if the kernel K is a 
square-integrable function on ℜ2, then Lk is a bounded mapping on L2 (ℜ), 

satisfying the Euclidean norm 
2kL K≤ . Combined with the Banach space 

property, the limits of these mappings are characterized by the Banach Fixed Point 
Property [35} (see also [25]). 

operator may be inferred from the nature of the Exterior 
Lebesgue Measure (E), which can be interpreted as the 
infimum taken over all finite or countable collections of boxes 

Qk in ℜd, satisfying kk
E Q⊆U , or 

inf ( )ke
k

E vol Q
 =  
 
∑  with the box volume defined as 

( ) ( )
d

i i
i

vol Q b a= −∏  [36]. 

From the (Lebesgue) measurable set of (nonnegative) 

functions on a measurable set 
d

E ⊆ ℜ , Heil [36] defines the 

Lp-norm as ( ) 1

( )
p p

p E
f f t dt= ∫  then Lp (E) is the space of 

all functions for which 
p

f is finite. Moreover, it can be 

shown that Lp (E) is a Banach space, allowing us to define an 
(essential) supremum norm for the function f (t) (t∈ E) [36]. 

When t represents time, this would not only allow for 
calculating biodiversity changes (although it is strictly not 
known how biodiversity changes with time), but also for 
studying the seasonality of population changes, using 
so-called Euler (1707-1783) differential equations. According 
to Reinhardt and Soeder21, cycloid arches may be obtained at 
solution of these equations, of the form: 

( ) (1 cos )f t c r α= − −  

However, these formulas so far lack an adequate translation 
in known ecological systems, predominantly due to a lack of 
empirical data from the field. Nevertheless, they may become 
supportive to several thought experiments, in which the 
evolution of global biodiversity is represented by paraboloid, 
hyperboloid or ellipsoid convolution spaces (see 2.3). 

Alternatively, a timeless approach for describing 
biodiversity dynamics in analogy with the notion of stepping 
stones and Fibonacci sequences could be useful in a fractal 
theory of ecosystems (see 4.3). In theory, using the 
mathematical constructs for fractal phenomena, the notion of 
being measurable and bounded is extended to so-called 
‘monstrous’ functions (13), with properties that are not valid 
everywhere, or non-differentiable or discontinuous in their 
domains. In this respect, it is interesting to recall Mandelbrot’s 
interpretation of the Liouville (1809-1882) theorem and 
ergodicity principle of spaces considered as hyper-volumes, 
using the Peano-like dispersion construction22. 

4.3. Timeless Fibonacci Series and Local 

Biodiversity 

The number of species interacting with one another are an 
important parameter for defining the coordination number of 
the ecological network, and, (in analogy with immune 
networks) also the critical percolation probability (see 3.2). 
We may benefit from an analogy with the notion of stepping 
stones and a (partly) posthumously published theory of Alan 

                                                             

(21) F Reinhardt & H Seder [35], p. 369. 
(22) BB Mandelbrot (ibidem), p. 62. 
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M. Turing (1912-1954) 23  on the series of Fibonacci 
(pseudonym of Leonardo de Pisa, ca. 1170-1250). Namely, in 
an optimal, space-filling network, such as occurring in plant 
phyllotaxis [9], the coordination numbers tend to the numbers 
of a Fibonacci series. Turing remarked that not only the 
well-known sequence 0,1,1,2,3,5,8,13… but also other 
sequences satisfy the Fibonacci law (23). Given Fn-1, Fn, Fn+1.. 
the consecutive terms of the above series, then not only 
applies 2

1 1 ( ) 1n
n n nF F F− +− = −  (which is easily verified, 

starting from the numbers 1,2,3..), but also the equations of the 
form 0 1 2n n np p F p F−= +  yielding various applications derived 

from these Fibonacci numbers, such as the following set of 
equations: 

1 1n n np p p+ −= +  for each n (23) 

1 1n n nq q q+ −= +  then for each n also follows: 

1 1 1 0 0 1( ) ( )n
n n n np q p q p q p q+ +− = − −  (which is independent 

of n)(23). 
Hence, according to Turing, if the terms pn, pn+1, qn, qn+1 

satisfy the Fibonacci equation 1 1n n nF F F+ −= + , then the linear 

combination above represents an invariant property, called 
Wronskian property of the Fibonacci equation (23). So far, 
applications of this property have been described in plant 
phyllotaxis [9] (Figure 5). The property refers to a similarity 
index, that in theory may be useful for predicting (local) 
biodiversity decline or resilience too, when the coordination 
numbers of the ecological network are well characterized. 

4.4. Biodiversity Resilience Strength (BRS) 

It remains to be demonstrated what the relation is between 
the biodiversity index PON of a given ecosystem, the critical 
(percolation) probability (Pcrit) of that ecosystem (see 3.2), and 
the Biodiversity Resilience Strength (BRS), as being the 
capability of a strained system to recover after deformation 
caused by survival stress in a global system of limited 
resources. The vulnerability of an ecosystem is known to be 
especially great in the case of the (local) extinction of large 
predators and within island populations [28], but also in 
anthropogenic, monotonous plants with high uniformity index. 
Mathematically, these events indicate far-from-equilibrium 
situations, for instance in nonlinear systems with forced 
oscillations where amplitudes becoming infinite. Or, the 
amplitude (A) of the oscillation with frequency (ω) 
approaching a critical value (ω0) tends to infinity: 

0
2 2

0

( )
N

A
ωω

ω ω
∝

− . 

In ergodic systems [39], describing dynamical systems that 
are deterministic of nature, it is assumed that no random 
perturbations or noise may influence the dynamic equations. 

                                                             

(23) The subsequent exposition of the “Wronskian property of solutions of the 
Fibonacci equation” belongs to unpublished notes from A.M. Turing kept at King’s 
College Archive Center (KCC/AMT/c/25/34), that were also not included in the 
Collected Works of A.M. Turing, Volume Morphogenesis, edited by P.T. Saunders 
[9]. They are reproduced with permission from King’s College Archive Center (© 

PN Furbank, London; see also [37]). 

In ecological systems, however, the perturbations are essential 
to the dynamics of the system. Making use of the box volume 
measuring method (see 4.2), we may rewrite the critical 
percolation probability (Pcrit,i), representing the risk for an 
ecosystem to collapse, in terms of the critical biodiversity, Bcrit. 
By definition, an ecosystem consists of more than one trophic 
level (namely: primary producers, primary and secondary 
predators,…). For an ecosystem at the i-th trophic level, then: 

,
, 1/

, ,( )
loc i

crit i m
loc i crit i

i

B
P

B B
=

−∏  

This would implicate that if the biodiversity has reached a 
critical value at one of the trophic levels, the ecosystem would 
already collapse. Therefore, the BRS not only has to be defined 
in terms of the absolute value of the distance of the local 
biodiversity (Bloc) from the critical biodiversity, scaled to the 
optimized biodiversity average for a given ecozone (see 
formula below), but also migration terms (Mi,j) for invading 
species from neighboring areas at distance Rij have to be 
incorporated. For, it has been demonstrated that ‘extinction 
debt’ and ‘immigration credit’ (and species turnover) are 
important mechanisms for keeping the local biodiversity in 
balance [39]. 

1/2
,,

, 2
,,

( ) i jloc crit i
i loc crit i

i i jopt opt i j

MB B
BRS N B B

N B R

−
∝ − −∑ ∑  

This implicates, however, that the biodiversity and BRS do 
not depend solely on the local characteristics or mean field 
descriptions of an ecosystem, but they also depend on the 
interactions at short distance and sometimes also at long 
distance (especially in case of birds or species that can invade 
islands from overseas). Also it is well known that in pristine, 
newly formed territories (e.g. after volcanic eruptions) an 
important role in occupying the new territories is played by 
pioneer species. 

To conclude, not only the application of the formulas 
presented above needs empirical field data, also the 
mathematical solvability of the equations needs further 
research. In the case of representing biodiversity distribution 
and its disturbances as deviations of for instance a paraboloid 
convolution space (Figure 6), we suggest the mathematical 
counterpart of these questions could be similar to the problem 
of “decomposing a polynomial as a sum of squares” or the 
problem of “finding the loci of the points in ℜ3 satisfying the 
general second-degree equation” [15] (see 2.3). To our 
opinion, this question may remain an interesting challenge for 
future mathematical modeling applied to a biological problem. 

5. Discussion 

Mathematical modeling has proven to be very successful in 
describing the quantitative fluctuations and ecological 
interactions between a limited number of species (e.g. rabbits 
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and foxes) in a homogeneous area24. Further improvements 
have been presented to incorporate heterogeneous areas, or to 
describe patchy spread within an area or interactions between 
a larger number of species, or within hosts and species with 
multiple (sexual and asexual) reproductive cycles like in 
fungi25. So far, only limited success has been achieved in 
describing biodiversity changes in a dynamic, multispecies 
system such as presented by Vandermeer and Lin [13], but 
also here only very few trophic levels are included (see 2.2). 
We previously noted the usefulness of the notion of 
‘permanence’ of certain keystone species in a multi-species 
dynamic system [5, 14]. 

In the present study an approach is followed in order to 
comprehend biodiversity changes in complex ecological webs. 
Hereby, the analogy with the methods of describing the fractal 
geometry of nature according to Mandelbrot [8] appears 
useful, the more since a lot of species have a profound impact 
on shaping the landscape, for instance through their effect on 
vegetation, which in turn depends on / affects physical and, in 
long term, also geological parameters (take for instance the 
influence of either rain forest or sand desert on the 
microclimate, but also the dependence of microclimate on 
geological structures like mountain ranges). 

In order to apply the fractal geometry of nature to 
ecosystems, a dual approach is followed. First, a translation of 
the fractal dimension in terms of similarity dimension [8] or 
mass dimension [21] is applied to patterns of self-similarity in 
ecological webs, using the notion of an inverse uniformity 
index. The probability terms of this uniformity index, based 
on the occurrence of certain indicator species, may constitute a 
tool for characterizing the quality of an ecosystem (see 3.2). A 
notion used in percolation theory, namely the critical 
(percolation) probability, suggested by Mandelbrot [8] to 
represent the critical dimensionality of a hierarchical cluster 
below which it falls apart, was found to be useful in 
formulating a critical biodiversity threshold (see 4.4). 

Moreover, an attempt is given to formulate an equation 
describing the biodiversity changes in a global, dynamic 
world, called the biodiversity tensor equation. However, in 
contrast to the well-known dynamic systems describing 
multiple (non-linear) equilibria or chemical dynamic 
equilibria, the present global ecosystem is thermodynamically 
not well characterized. In particular, the second law of 
thermodynamics requiring a closed ecosystem, is not 
validated globally due to energetic exchanges and processes 
affecting the planet as a whole, like accumulation of 
greenhouse gases and global warming. Nevertheless, 
relatively novel mathematical techniques may become useful 
to become applied to the complex, non-differentiable 
functions found to approximate the fractal patterns of 
ecosystems and their dynamic behavior. Mathematical 
modeling may also corroborate intuitive notions, like the 
notion that biodiversity cannot be adequately described in 
terms of local or mean field approximations, but requires (long) 

                                                             

(24) See JD Murray [40]. 
(25) Reviewed in W Allaerts [41]. 

distance interactions to account for extinction ‘debts’ and 
immigration ‘credits’ [39]. The stratified nature of a fractal 
ecosystem moreover implicates that these 
extinction/immigration balances may occur at different 
trophic level, which further enhances the notion of 
unpredictability of changes in a large ecosystem at the verge 
of a global collapse, like these induced by climate warming. 

However, more research will be needed both in terms of 
collecting empirical field data as well as in terms of 
developing new mathematical tools and new heuristics to 
combine both worlds of science: ecology and applied 
mathematics. 

 

Figure 1. a. Initial image of a Mandelbrot Set (© Wikimedia Commons: 
Mandelbrot Set). The Mandelbrot Set represents a complex generalization of 

the iteration of the quadratic polynomial 2:cP z z c→ +  with c a complex 

parameter. The coloured image is obtained by depicting in black if a point c 
belongs to the subset of the plane given by the formula 

{ }: sup | (0) |n N cM c C P∞
∈= ∈ < ∞ . More colors are obtained by defining the 

color of points not belonging to M according to how quickly the sequence |Pc
∞ 

(0)| diverges to infinity. 

 

Figure 2. Image of plant leaf of Cyclamen sp. showing a colour pattern 
resembling the Mandelbrot Set in Figure 1 (© 2009 Biological Publishing 
A&O; van der Linden [42]). The (contest) question for readers of the journal 
bi-logical (Vol. 2 [2]) was to give an explanation or a mechanism of a 
biological reaction-diffusion system, in the sense of Turing, that could 
generate a pattern resembling the Mandelbrot Set, like observed in these 
Cyclamen plants. 
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Figure 3. Scheme representing a hypothetic ecosystem consisting of 
foraging-sheltering dipoles (fs-i/+i) and interspecies interactions between 
trophic levels i, j, k.. The overall picture is that of a Bethe lattice with 
interactions through foraging/predating (white), sheltering (black) and 
parasitic (red) elements. When going down from top-predator level to the level 
of primary producers, the number of interspecies interactions increase, 
defining the coordination number. In addition to the number of interacting 
species, the coordination number is also influenced by the interaction between 
individuals of the same species (repulsion arrows, inset). 

 

Figure 4. Breeding colony of the Gannet (Sulla bassana). The distance 
between breeding couples is determined by the available space and the time 
window for protection against an attack of the nest by predators (© Mint 
images, reproduced from Alamy Stock pictures). 

 

Figure 5. Scheme representing the parameters for global biodiversity change 
(evolution) or anthropogenic biodiversity loss (in time). The global dynamics 
of speciation (and concomitant extinction, whether or not anthropogenic) 
during evolution is represented by a paraboloid centered along the time axis. 
The relationship between global and local biodiversity changes is not only 
characterized by biodiversity sinks and ridges (high biodiversity regions) on a 
manifold (hypothetical image of the biosphere), but depends also on 
migration patterns, both airborne and in ocean migration patterns. 

 

Figure 6. Diagram of a sunflower with the florets numbered (from 
KCC/AMT/C/25/95; © PN Furbank, London) and computer image following 
the stack-and-drag model developed by F van der Linden (see Allaerts [37]). 

Similar to their use in phyllotaxis (in the sense of Turing) 
[43], the connectivity numbers of interacting species in an 
ecosystem, when forming a Fibonacci series, offer an 
alternative approach for estimating biodiversity changes 
(based on the Wronskian properties of solutions of the 
Fibonacci series). 
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