

International Journal of Information Engineering and Applications

2018; 1(1): 11-17

http://www.aascit.org/journal/information

TCP Flavors Simulation Evaluations over Noisy
Environment

Elsadig Gamaleldeen Elsadig Karar

Department of Computer Sciences, Faculty of Applied Sciences & Computer, Omdurman Ahlia University, Khartoum, Sudan

Email address

Citation
Elsadig Gamaleldeen Elsadig Karar. TCP Flavors Simulation Evaluations over Noisy Environment. International Journal of Information

Engineering and Applications. Vol. 1, No. 1, 2018, pp. 11-17.

Received: January 14, 2018; Accepted: January 29, 2018; Published: February 12, 2018

Abstract: The Transmission Control Protocol (TCP) Flavors was simulated using OPNET simulation tool in a noisy

wireless environment to observer TCP behavior and select the suitable protocol to be used. The simulation was done in a client

server network and get the output from the packet analyzers. The simulation is done in the noisy environment with a

configuration of a low bandwidth starting from 128 Kbps up to 1 MB, burst traffic and a high delay in RTT time to give a

really environment and the result was that the TCP New Reno is the best flavor that can be used in the noisy environment.

Keywords: TCP Flavors, Simulation, Noisy Environment

1. Introduction

In this Paper, the simulation of the TCP protocol was

implemented and discussed, there is real demand to setup

simulation environment to monitor TCP behavior. The analysis

and design are mainly done by the OPNET simulation tool.

2. Method

Figure 1. Model design life cycle.

The simulation is done through computers by modeling a

design for the systems and theoretical running systems,

simulations are executed through normal computers that are

available for the collection of the relative informational

results and the model design life cycle illustrated in Figure 1.

Learning by doing, is the main concept about systems in

study which modeling is required and operating them [1].

2.1. OPNET Architecture

OPNET provides a comprehensive development

environment for modeling and performance evaluation of

communication networks and distributed systems. The

package consists of a number of tools, each one focusing on

particular aspects of the modeling task [2]. These tools fall

into three major categories that correspond to the three

phases of modeling and simulation projects: Specification,

Data Collection and Simulation Analysis.

These phases are necessarily performed in sequence. They

generally form a cycle, with a return to specification

following analysis. Specification is actually divided into two

parts: initial specification and re-specification, data collection

and simulation cycle, as illustrated in Figure 2.

12 Elsadig Gamaleldeen Elsadig Karar: TCP Flavors Simulation Evaluations over Noisy Environment

Figure 2. OPNET Project cycle simulation.

Figure 3. OPNET TCP process model.

2.2. TCP Implementation in OPNET

The design that had been made was begin with process

model for the TCP initial process as Figure 3, node editor and

the network editor after that it follows the procedures until

the result. The study had cover TCP behavior and the

modeled of the TCP flavors it had examined:

a. Segment retransmission process (the order in which

segments are retransmitted).

b. Fast recovery vs. expiration of timeout timer.

c. Congestion window after drops

The simulation had also compared the result of the original

version of TCP with the modified one.

 International Journal of Information Engineering and Applications 2018; 1(1): 11-17 13

2.3. The Simulation Network Level

The scenario which had been designed to implement the

TCP protocol was consist of two nodes client and server with

two Packet analyzers one from the link server to client and

the other from client to server Figure 4 explain the network

level in the simulation scenario.

The Packet analyzers which drop designated packets to

observe TCP behavior and traffic can intercept and log traffic

passing over the network or part of a network. As data

streams flow across the network, the sniffer captures each

packet and, if needed, decodes the packet's raw data, showing

the values of various fields in the packet, and analyzes its

content according to the appropriate RFC or other

specifications that configure in the simulation.

The output from the packet analyzers that generated during

the simulation phase can be used as main data to be study

after the compilation process in the reports.

Figure 4. Network level in the simulation scenario.

2.4. Simulation Configuration

The simulation had been configuring to run requests for

the FTP from the client node to the server and TCP detects a

packet loss when:

a. Retransmission timer expires.

b. Duplicate acknowledgement is received for the

connection.

The TCP flavors differ in how they react to packet loss.

While all TCP implementations reset the congestion window

after retransmission timeout expiration to one maximum

segment size (MSS), they may proceed differently after

duplicate ACKs are received. The missing segment is always

resent immediately, but transmission of new or

unacknowledged data depends on the selected flavor.

The design had configured to compare the following flavors:

a. Tahoe – fast retransmit followed by slow start.

b. Reno – fast retransmit followed by fast recovery.

c. New Reno – similar to Reno, but does not have

congestion window and multiple times during recovery

process.

d. Selective acknowledgement (SACK) – selective

retransmission based on received selective

acknowledgements.

14 Elsadig Gamaleldeen Elsadig Karar: TCP Flavors Simulation Evaluations over Noisy Environment

3. Result

In the simulation, the Receive Buffer is set to 65,535 bytes

(64 kbps). Since this value is greater than the size of

transmitted file, the size of the TCP receive buffer will never

prevent data from being sent.

The Maximum ACK Delay is 0.001 sec. This will cause

ACKs to be sent almost immediately after receiving a

segment. The TCP Packet Analyzer node had been used to

selectively drop segments and to introduce additional

network delay to the segment. Segments to be dropped are

identified by their order. In this scenario, there are three

segments (23, 27, and 28) that are dropped by the

��������_	��
��_���	������ node Figure 5.

The simulation is done in the noisy environment with a

configuration of a low bandwidth starting from 128 Kbps up

to 1 Mbps, burst traffic and a high delay in RTT time to give

a really environment to system.

Figure 5. Sequence Numbers and ACK Numbers.

TCP Tahoe simulation test results

TCP Tahoe supports fast retransmission and resets the

congestion window to one MSS after segment

retransmission. It is the simplest one out of the four variants.

It doesn’t have fast recovery [3]. At congestion avoidance

phase, it treats the triple duplicate ACKs same as timeout.

When timeout or triple duplicate ACKs is received, it will

perform fast retransmit, reduce congestion window to 1, and

enters slow-start phase. In Opnet simulation the Tahoe

behave in Fast retransmit, no fast recovery and packet drops

introduced long delays in application response time due to

the resetting of the congestion window to one after fast

retransmission.

TCP New Reno simulation test result

The TCP New Reno on Hosts had been configuring by

enabling New Reno instead of fast recovery on both hosts by

changing “Fast Recovery” to “New Reno” configuration on

all the nods.

TCP New Reno differs from TCP Tahoe at congestion

avoidance. When triple duplicate ACKs are received, it will

halve the congestion window, perform a fast retransmit, and

enters fast recovery [4]. If a timeout event occurs as

explained in Figure 6, it will enter slow-start, same as TCP

Tahoe. TCP New Reno is effective to recover from a single

packet loss, but it still suffers from performance problems

when multiple packets are dropped from a window of data.

Figure 6. Comparison between TCP Tahoe and TCP New Reno.

 International Journal of Information Engineering and Applications 2018; 1(1): 11-17 15

Figure 7. TCP New Reno on Hosts Result.

When run the simulation for New Reno the following

points represent the result:

a. Congestion window is halved after fast retransmission

and then increased by one MSS for each received ACK.

b. Fast recovery ends when ACK for retransmitted data is

received.

c. Congestion window is then set to half of pre-fast-

retransmission value.

d. Assumes that multiple segments from the same window

of data are not likely to be lost.

e. Accurate most of the time.

f. Because of this assumption, multiple segment losses

can produce application response times that are worse

than Tahoe TCP Figure 7.

The New Reno is suitable to be used in simulation for the

TCP noisy environment because it’s clear after the simulation

is that:

a. Only halve the congestion window once for one

window of data

b. Do not end fast recovery when ACK for retransmitted

segment is received, but rather end it only after ACK for

the last ACK segment at the time the fast-retransmitted

segment is ACK Figure 8.

c. Very minor fix to Reno algorithm.

But there is a Problem with TCP Reno if multiple packets

are dropped from the same window of data, congestion

window will be halved multiple times [5]. This can lead to

slower response times than if not using Fast Recovery at all.

For that the New Reno will be used to avoid this problem.

Figure 8. TCP Reno vs TCP New Reno on server site.

TCP SACK simulation test result

When configuring TCP SACK on Hosts and run the

Simulation kernels the collect results are generated by

duplicated the New Reno scenario and name it “SACK”.

SACK TCP adds a number of SACK blocks in TCP packet

[6], where each SACK block acknowledges a non-contiguous

set of data has been received. The main difference between

SACK TCP and Reno TCP implementations is in the

behavior when multiple packets are dropped from one

window of data Figure 9. SACK sender maintains the

information which packets is missed at receiver and only

retransmits these packets. When all the outstanding packets at

the start of fast recovery are acknowledged, SACK exits fast

16 Elsadig Gamaleldeen Elsadig Karar: TCP Flavors Simulation Evaluations over Noisy Environment

recovery and enters congestion avoidance.

After an expiration of the round-trip time out timer in all

the other TCP flavors it clear that sender retransmits all un

ACK data, even though some might have been successfully

delivered and additional information carried in TCP header

allows receiver to ACK data selectively report blocks of

received data [7]. The TCP SACK is not suitable to be used

in the noisy environment and that due to the following points:

a. Sender can inter missing data and retransmit

“selectively”.

b. Implementations are typically Reno-based.

c. In order for a connection to support SACK, both ends

must support it.

This is due that sack is a window based [8] that uses the

options field of TCP to precisely inform the sender which

segments were not received [9]. This enables the sender to

retransmit only those segments that are lost, thereby not to

waste network bandwidth [10].

Figure 9. TCP sack on Hosts result.

4. Discussion

To make a comparison between the flavors many concepts

had been consider and they are:

a. Observe TCP behavior after multiple packet loss

b. Monitor congestion window

c. Collect application response time for different flavors

Due to the server heavy traffic, the simulation result was

taken from the workstation node.

As seen in Figure 10 the simulation for the flavors in the

noisy environment and High RTT value the comparison

result is:

a. ECN offers the best performance followed by SACK

and New Reno.

b. Reno has the worst response time for this case.

c. In contrast, for a one segment drop, Reno performs

better.

From the above comparison, the best TCP flavors to be

used to test the estimation of TCP noisy environment is TCP

New Reno.

Figure 10. TCP flavors comparison.

 International Journal of Information Engineering and Applications 2018; 1(1): 11-17 17

5. Conclusion

In a noisy environment and when there is a low bandwidth

TCP flavor the New Reno is suitable to be used in simulation

for the TCP noisy environment because it’s clear after the

simulation is only halve the congestion window once for one

window of data and do not end fast recovery when ACK for

retransmitted segment is received.

References

[1] Caini and R. Firrincieli, 2004. "Packet Spreading Techniques
to Avoid Bursty Traffic in Long RTT TCP Connections", in
Proc. IEEE VTC Spring, Italy.

[2] Omogbohun Omueti, Modupe, 2007. TCP-ADaLR: TCP
WITH ADAPTIVE DELAY AND LOSS RESPONSE FOR
BROADBAND GEO SATELLITE NETWORKS. Master of
applied science. USA: Simon Fraser University.

[3] N. Dukkipati and N. McKeown, 2006. Why Flow-Completion
Time is the Right Metric for Congestion Control. ACM
SIGCOMM Computer Communication Review, vol. 36, no. 1.

[4] A. Vishwanath, V. Sivaraman, and D. Ostry, 2009. "How
Poisson is TCP Traffic at Short Time-Scales in a Small Buffer
Core Network?” In Proc. IEEE Advanced Networks and
Telecommunication Systems (ANTS), India.

[5] Mr. R. D. Mehta, Dr. C. H. Vithalani, Dr. N. N. Jani, 2010.
"Enrichment of ‘SACK’ TCP performance by delaying fast
recovery", International Journal of Advanced Engineering
Technology E-ISSN 0976-3945.

[6] Constantinos Dovrolis, 2005. "Passive and Active Network
Measurement-New Methods for Passive Estimation of TCP
Round-Trip Times": 6th International Workshop, PAM 2005,
Boston, MA, USA.

[7] A Razdan, ANandan, R Wang, MY Sanadidi, M Gerla, 2002.
“Enhancing TCP Performance in Networks with Small
Buffers, Proceedings”, IEEE/ICCCN' 2002, Miami, Florida,
Nov. 2002.

[8] Russ White, 2014. The Art of Network Architecture: Business-
Driven Design (Networking Technology). 1st Edition. Cisco
Press.

[9] IP Micro-Mobility Home Page, 2016. IP Micro-Mobility
Home Page. [ONLINE] Available at:
http://www.comet.columbia.edu/micromobility.

[10] Steel Central for Performance Management and Control |
Riverbed application and network performance management
solutions | Riverbed. 2017. Steel Central for Performance
Management and Control | Riverbed application and network
performance management solutions | Riverbed. [ONLINE]
Available at: http://www.opnet.com.

