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Abstract: This paper first presents the extended Legendre wavelet (ELW) defined on interval (-r, r) (r is a rational number). 

Second, the integral operator matrix is calculated by using the ELW. Finally, the ELW and operational matrix obtained are 

applied to solving a ordinal differential equation (ODE). The good results of this numerical experiment demonstrate that this 

method is valid and applicable. 

Keywords: Legendre Wavelet, Extended Legendre Wavelet, Integral Operator Matrix 

 

1. Introduction 

It is very important to select a suitable basis function in 

numerical methods. Generally, orthogonal functions have 

received considerable attentions in solving analysis, optimal 

control and various problems of dynamic systems [1-2]. 

Especially, applications of Legendre wavelet integral and 

derivative operators for numerical approximations of the 

ODEs can be found in the references [1-11]. The essence of 

this method is that the ODEs are converted to a system of 

algebraic equations by using the operational matrices of 

integration or derivative [1]. For example, Razzaghi Yousefi 

[1] derived Legendre wavelet operational matrix of 

integration which is defined on the interval [0,  1)  and this 

approach is implemented to solve the ODE. Pandey et al. [3] 

proposed Legendre wavelet operational matrix of derivative 

technique to solving the ODE. 

In this paper, we focus on the calculation of the integral 

operator by the ELW. Firstly, using the translation property of 

Legendre wavelet, a conception of the ELW defined on the 

interval ( ,  )r r−  is presented. Secondly, the Legendre 

wavelet operational matrix of integration is calculated on 

sub-interval other than on the whole interval [0,  1)  as in the 

literature [1]. The main advantage of this computation is that 

the operational matrix of integration is lower dimensional 

matrix compared with other methods. Thus, it simplifies for 

solution system of algebraic equations with less storage space 

and execution time. 

The organization of the paper is as follows. In Section 2, 

descriptions of Legendre wavelet bases and its rich properties 

are demonstrated, then the ELW is proposed. Section 3 

computes the ELW operational matrix of integration on the 

interval [ / ,  ( 1) / )
n n

l a l a
− −+ . Section 4 applies the the ELW 

operational matrix of integration to solving a linear equation. 

The good results of the numerical experiment show that our 

method is very effective. Conclusions of the proposed method 

in this paper are given at the end in Section 5. 

2. Properties of Legendre Wavelet 

In this section, Legendre wavelet [2] is introduced and its 

properties are analyzed and then the translation property is 

demonstrated by using the property of its structure. 

2.1. Legendre Wavelet 

For decomposition level 0,  1,  2,⋯n = and translation 

0,  1,  2, , 2 1⋯
nl = − , we define the sub-interval, i.e., element 

[2 ,  2 ( 1))
n n

nlI l l
− −= + . For 1,2,⋯p = , define ,p nV  as a 

subspace of piece-wise polynomial functions satisfying 

, { :
nlp n IV f f= is a polynomial of degree strictly less than

p ; and f  vanishes elsewhere}. 

We now start to review Legendre polynomials and 

Legendre wavelet bases. Let ( )kL x  denote Legendre 

polynomial of degree k , which is defined as follows 
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0 ( ) 1L x = , 1 ( )L x x= , 

2 1

2 3 1
( ) ( ) ( )

2 2
k k k

k k
L x xL x L x

k k
+ +

+ += −
+ +

.       (1) 

Then, at the level of resolution 0n = , let ( )k xϕ  denote 

Legendre scale functions defined as 

2 1 (2 1),         [0,  1],
( )

0,                                   [0,  1].

k
k

k L x x
x

x
ϕ

 + − ∈= 
∉

     (2) 

The whole set 
1
0{ }p

k kϕ −
=  forms an orthonormal basis for 

,0pV . Generally, the subspace ,p nV  is spanned by 2
n

p  

functions which are obtained from 0 1, ,⋯ kϕ ϕ −  by dilation 

and translation, i.e., 

, ,:p n p nlV V= = span
/2

,{ ( ) 2 (2 ),      0 1,      0 2 1}n n n
k nl kx x l k p lϕ ϕ= − ≤ ≤ − ≤ ≤ − .               (3) 

In order to intuitively understand Legendre scale functions, we let 3p = , the scale 2n = , then Figure 1 plots the basis 

functions ,2 ( )k l xϕ  which defined on the whole interval [0,  1) . 

 

Figure 1. The six Legendre wavelet bases. 

2.2. Translation Property of Legendre 

Wavelet 

Actually, Legendre wavelet approximates a function by 

piece-wise Legendre polynomials, which are defined on the 

sub-interval nlI . Consequently, Legendre wavelets that are 

defined on the interval [0,  1) can be obtained by using a 

translation operator transformation on Legendre wavelet 

defined on the sub-interval. 

Here, a concept of translation operator is defined as 

( ) :   ( ) ( )T l f f x g x→ .              (4) 

The operators ( )rightT l , ( )leftT l  denote the function ( )g x  

obtained from the function ( )f x  by translation l  times by a 

certain unit ( 2 n− or na−  in this paper) on the right and left, 

respectively. 

Lemma. Legendre wavelet defined on the whole interval 

[0,  1) can be obtained by using the translation operator 

( )rightT l  transformation on Legendre wavelet defined on the 

sub-interval [0,  2 )
-n , i.e., 

, , 0( )[ ( )]k nl right k nT l xϕ ϕ= ,             (5) 

which 
/2

, 0 ( ) 2 (2 ),     0 1}n n
k n kx x k pϕ ϕ= ≤ ≤ −  and 

1, ,2 1⋯
n

l = − . 

Furthermore, the interval of the definition can be extended 

by using the translation property of Legendre wavelet. Thus, a 

concept of the DLW is presented. 

2.3. Extended Legendre Wavelet 

In this section, a concept of the ELW is demonstrated. Now, 

if the interval [0,  1)  is divided by a positive integer a
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( 2)a ≥ , then Legendre wavelet defined on the interval 

[0,  )
n

a
−  can be obtained by 

/2

, 0

2 1 (2 1),        0 ,
( )

0,                                              .

n n n
k

k n a

a k L a x x a
x

otherwise
ϕ

− + − ≤ <= 


  (6) 

Similar to Lemma, Legendre wavelet defined on the 

interval [0,  1)  is obtained as the form of 

, , 0( ) ( )[ ( )]k nl right k n ax T l xϕ ϕ= ,          (7) 

where 0,  1, , 1⋯
n

l a= − . 

Theorem. Legendre wavelet defined on the interval ( ,  )r r−
( ' nr l a−= is a rational number) can be obtained as the form of 

, , 0( ) ( ')[ ( )]k nl k n ax T l xϕ ϕ= ,           (8) 

where ', ,0,  1, , ' 1⋯ ⋯l l l= − −  and 'l  is a positive integer 

such that ' nr l a−= . 

Based on the result in (8), we obtain the ELW defined on the 

interval ( ,  )r r− . For example, we let 3p = , 1n = , 2a =  

and ' 2l = , then we plot the ELW on the interval ( 1,  1)−  as 

Figure 2 

 

Figure 2. The twelve extended Legendre wavelet bases. 

In addition, the ELW base is an orthogonal set. It is easy to 

prove this conclusion by using simple variable substitute. 

3. Operational Matrix of Integration 

by the ELW 

In this section, we first calculate the integral operator matrix 

by Legendre wavelet defined on the interval nlI . Second, we 

use similar method to compute the ELW operational matrix of 

integration on the interval [ / ,  ( 1) / )
n n

l a l a
− −+ , where 

' ' 1l l l− ≤ ≤ − . 

Generally, we let , 0, 1, 1,[ ,  , , ]⋯
T

k nl nl nl p nlϕ ϕ ϕ −Φ = and for 

any [ / 2 ,  ( 1) / 2 )
n n

x l l
− −∈ +  we obtain 

, ,
/2

( ) : ( )
n

x

k nl p p k nl
l

x dx P x
− ×Φ = Φ∫ ,         (9) 

where p pP ×  is the integral operator matrix and its elements 

are computed by the formula as 

( 1)/2

1, ' 1 , ',
/2 /2

( ) [ ( ) ] ( )

n

n n

l x

k k k nl k nl
l l

P x dx x dxϕ ϕ
−

− −

+
+ + = ∫ ∫ .    (10) 

Then, we have 
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(2 1) (2 1)

⋯

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋱

⋯

n
p pP

p p

p p

p p

p p

− −
×

 
 
 
 ×− 

× 
 × ×
 −

× × 
=  × −

× 
 + × − 
 + × −
 

+ × − − + × − 

.           (11) 

For all l , it is easy to prove that the elements of the integral 

operator matrix p pP ×  are the same on each sub-interval nlI  

by simple variable substitute. 

Finally, we can compute the integral operator matrix by the 

ELW on the the interval [ / ,  ( 1) / )
n n

l a l a
− −+  by using the 

above similar technique. We let 

, 0, 1, 1,[ ,  , , ]⋯
T

k nla nla nla p nlaϕ ϕ ϕ −Φ = and for any

[ / ,  ( 1) / )
n n

x l a l a
− −∈ +  we obtain 

, ,
/

( ) : ( )
n

x

k nla p p k nla
l a

x dx EP x
− ×Φ = Φ∫ ,        (12) 

where p pEP ×  is the ELW integral operator matrix and its 

elements are computed by the formula as 

( 1)/

1, ' 1 , ',
/ /

( ) [ ( ) ] ( )

n

n n

l a x

k k k nla k nla
l a l a

EP x dx x dxϕ ϕ
−

− −

+
+ + = ∫ ∫ .  (13) 

4. Application on Solving the ODE 

In this section, we consider the linear differential equations 

of the form 

,         ( 1) 0,          [ 1,  0.5)y y x y x′ + = − = ∈ − −      (14) 

with exact solution 

1
( ) 2 1

x
y x e x

− −= + − .             (15) 

We let 3p = , 1n =  and ' 2l = −  and assume that 

' , '( ) : ( )
T
l p nly x C x= Φ ,             (16) 

where ' 0,1, 2 1,1, 2 2,1, 2[ , ]
T
lC c c c− − −=  and 

, ' 0,1, 2 1,1, 2 2,1, 2( ) [ ( ), ( ), ( )]
T

p nl x x x xϕ ϕ ϕ− − −Φ = . Now, for every 

[ 1,  0.5)x ∈ − − , we integrate on this interval 

1 1 1

x x x

y dx ydx xdx
− − −

′ + =∫ ∫ ∫ .         (17) 

We first compute the approximation 

, ' , '

3 1
[ ,  ,  0] ( ) ( )
4 2 4 6

T
p nl p nlx x q x

−= Φ = Φ , which q  is a 

vector. Second, using the result in (12), we can convert the 

ODE (16) to a system of algebraic equations 

'( )
T T

lE P C P q+ =                 (18) 

for 'lC . we solve this equation (17) and obtain the ELW 

approximation solution of E.q. (14), i.e., the ELW coefficients 

' [ -0.1245  -0.0579  0.0103]
T
lC = .         (19) 

Table 1 and Figure 3 illustrate the numerical results for the 

example. 

Table 1. Exact and estimated values of ( )y x . 

x 

y 
-0.95 -0.9 -0.85 -0.65 -0.55 

Exact -0.0475 -0.0903 -0.1286 -0.2406 -0.2747 

Estimated -0.0476 -0.0897 -0.1278 -0.2413 -0.2745 

 

Figure 3. Result for the example with 3,  1,  ' 2p n l= = = − . 

This simple example demonstrates the validity and 

applicability of the ELW operational matrix of integration to 

solving the ODE. 
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5. Conclusion 

In this article, a new numerical method is developed using 

the ELW operational matrix of integration for the ODE in 

(14). The numerical result shows that the method is efficient 

and accurate. The DLWG method is applicable to both linear 

and nonlinear problems of the ODEs. 
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