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Abstract: Forward error detection and correction codes have been widely either used of storage applications or transferred 

through a wireline or wireless communication media systems for many years. Due to the unreliable wireless links, broadcast 

nature of wireless transmissions, interference, moreover, noisy transmission channel, frequent topology changes, and the various 

quality of wireless channel, there are challenge to provide high data rate service, high throughput, high packet delivery ratio 

(PDR), low end-to-end delay and reliable services. In order to address these challenges, several channel coding scheme are 

proposed. In this paper, detailed overviews of the major concepts in error detection and correction codes are presented. The paper 

provided fundamentals of Low Density Parity Check (LDPC) codes, and a comprehensive survey of the binary and non-binary 

LDPC codes is provided. 
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1. Introduction 

During the past decade, many schemes have been proposed 

to increase the reliability of the wireless network and 

communication systems, in order to fulfill the quality of the 

data in a high data rate wireless network applications, such as 

telephone conversations, video conference and television 

cameras. In wireless networks and wireless digital 

communication applications, channel coding have received 

considerable attention, since some data bits might be exposed 

to attenuation or distortion due to interferences, channel noise 

and multi-path fading. In addition, both random and burst 

errors occur during transmission in noisy communication 

channel. These types of errors increase the bit-error-rate (BER) 

which results in bad quality transmission. Channel coding is 

considered one of the major boosts, which enhances the 

performance of wireless networks at higher data rates. In 

wireless network applications and real time application 

systems, low complexity and shorter codeword length in 

channel coding scheme are preferred. Channel coding is used 

for point-to-point communication over a single channel, and it 

uses the error correction coding to improve the error 

performance of the wireless link. It is implemented at the 

physical layer to recover erroneous bits through redundant 

parity check bits added inside a packet. The error retrieval 

capability for channel coding depends on the specific coding 

and the amount of redundant bits. 

Transmissions in the wireless networks are jeopardized by 

the injection of errors or erasure of symbols data. Errors are 

caused by the channel noise or by the multi-path fading 

channel. Recently, Low Density Parity-Check (LDPC) codes 

[1] have been extensively developed and regarded as the best 

channel coding schemes. The error correction capability of the 

LDPC codes depends on the codeword length and the 

characteristic of the parity check matrix H [1-2]. The decoder 

gives a better performance with a larger codeword (i.e. large 

size of G matrix) and with good parity-check matrix H. In 

practice, to achieve a better BER performance with LDPC 

codes close to the channel capacity, the length of the LDPC 

codeword used should be in the order of thousands of bits [1]. 

The LDPC decoding is effective only when the parity-check 

matrix has a relatively large column weight [3]. The matrix 

multiplication for this big codeword size demands huge 

memory, computational requirements and more complex 

decoding [4, 5, 2]. Consequently, the existing decoding 

algorithms are either too costly to implement [6]. Furthermore, 

LDPC codes require iteration in the detection and correction 

error processes around 10 to 50 times of iteration [7]. For 

example, the average number of iterations for iterative 

decoding of the LDPC (1008, 504) code with belief 
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propagation (BP) and uniformly most powerful (UMP) 

BP-based decoding algorithms, is 50 and 200 [8]. Besides, the 

decoder fails to correct errors if the number of errors occurred 

is greater than the error correction capability of the decoder 

regardless of the number of iterations [2]. For practical 

applications, these codes are inappropriate to be used since 

they involve high encoding-decoding complexity. Therefore, 

the need of efficient channel codes with lower encoding and 

decoding complexity, and lower memory size requirement, 

which do not require any iteration in the decoding process, is 

quite obvious. 

2. Background 

This section provides background of basic concepts of the 

channel coding such as, Hamming, RS, and LDPC codes. 

Nowadays, wireless networks applications and digital 

communication have become part of day-to-day life. Robust 

wireless data transmissions are taken for granted. Any real 

wireless communication system is plague by errors that occur 

from time to time in data transmissions and from many 

different sources such as random noise, interference, channel 

fading, etc. Reliable data transmissions would be impossible 

without the use of error control techniques. Error detection 

and correction especially in a high reliability and high data 

rate wireless network applications have been receiving 

considerable attention and have been become an important 

part of networking and data communications. Best networks 

must be able to transfer data from source to destination or 

from one node to another node with complete accuracy and 

reliability. Using the error detection and correction techniques 

improves the network performance in terms of enhanced 

throughput, decrease in BER and reduction of end-to-end 

delay. Therefore, there is requirement to research in the area of 

coding theory to design codes for channels that are power and 

bandwidth limited. 

Different types of channel coding (error correction coding), 

along with their properties are reviewed. Fundamentals, 

concept, and types of network coding are introduced. This 

chapter also introduces the concept of joint network with 

channel coding schemes and the benefits of this joint. The 

second part of this chapter contains the review of related 

works in error correction codes, specific for low density parity 

check (LDPC) code. In addition, literature review of wireless 

network coding and joint network with channel coding is 

presented. 

Normally, there are two strategies to combat the errors 

namely stand alone and combined. The first one is the 

automatic repeat request (ARQ) [9-10]. The ARQ 

retransmission method is often implemented because it is very 

simple to use in many actual networks. ARQ used with error 

detection and not error correction system, as correction is 

much harder. The basic idea is that if any errors are found, the 

receiver notifies the transmitter of the existence of errors. The 

transmitter then resends the data until they are correctly 

received. In general, the codes used with ARQ are CRC 

(Cyclic Redundancy Checks) [11]. Such systems provide 

reliable transmission for networks. 

The second strategy, known as the forward error correction 

(FEC), not only detects but also corrects the errors, so that data 

retransmission can be avoided. In many practical applications 

retransmission may be difficult or not even feasible at all. The 

retransmission becomes more critical in real time applications, 

such as video conference and remote control in wireless 

sensor network (WSN) that depends on live broadcast. In this 

case, FEC is the only practical solution. The common feature 

of communication channel is that information emanates from 

a source and is sent over the channel to a receiver at the other 

end. The channel in noisy in the sense that what is received is 

not always the same as what was sent. Thus if binary data is 

being transmitted over the channel, when a 0 is sent, it is 

hopefully received as a 0 but sometimes will be received as a 1 

(or as unrecognizable). The fundamental problem in coding 

theory is to determine what message was sent on the basis of 

what is received. 

3. Channel Coding Overview 

Channel coding is an error-control technique used to 

provide robust data transmission through imperfect channels 

by adding redundancy to the data. There are two important 

classes of channel coding methods namely, block, and 

convolutional coding. In information and coding theory, error 

detection and correction are techniques which enable the 

reliable delivery of digital data over unreliable 

communication channels [11]. Error detection and correction 

especially in a high reliability and high data rate wireless 

network applications have been receiving considerable 

attention and have become an important part of networking 

and data communications. Best networks communication 

must be able to transfer data from source to destination or 

from one node to another node with complete accuracy and 

reliability. Therefore, for reliable networks, it is desirable to 

detect and correct the error at the destination node without 

need to send a retransmit request again to the sender node. By 

using the error detection and correction techniques the 

network performance will improve by increasing the 

throughput and PDR, and decreasing the BER and end-to-end 

delay. 

The use of error correction, however, is not free. The 

redundancy acts as overhead and it costs the transmission 

resources (e.g., channel bandwidth or transmission power). 

Therefore, the redundancy is better to be as small as possible. 

A quantitative measure of the redundancy is the coding rate Rc 

which is defined as the ratio of the message length k to the 

codeword length n as shown in Eq. 1 

�� = �
�                       (1) 

The maximum value of Rc is 1 when no redundancy is 

added (i.e., when the information is uncoded). Coding 

performance and coding rate are two opposing factors. When 

more redundancy is added, the error correction capability is 

strengthened, but the coding rate drops [12]. 
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3.1. Types of Channel Coding 

Depending on how redundancy is added, there are two 

families of codes, namely block codes and convolutional 

codes. Block coding encodes and decodes data on a block 

by-block basis. In this case, data blocks are independent from 

each other. Block codes denoted by (n, k), k is the message 

length, n is the codeword length and r = n - k is the parity bits 

or check bits. A Generator Matrix G (of order k × n) is used to 

generate the code. In contrast, the convolutional codes work 

on a continuous data stream and their encoding and decoding 

operations depend not only on the current data but also on the 

previous data. The general construction of G matrix is shown 

in Eq. (2) 

G = �I	 P��×�                (2) 

where, Ik is the k × k identity matrix and P is a k × (n - k) 

matrix selected to give desirable properties to the code 

produced. 

In addition, there are systematic and nonsystematic codes. 

When the redundancy is explicitly appended to the message, 

the code is systematic. On the other hand, if the redundancy is 

implicitly embedded in the codeword, the code is said to be 

nonsystematic. Systematic codes are always preferred in 

practice, because the message and the parity are separated; in 

this case, the receiver can directly extract the message from 

the decoded codeword. The proposed code namely low 

complexity parity check (LCPC). 

3.2. Considerations of Selecting the Channel 

Code Scheme 

Selecting channel-coding scheme for a practical application 

is not an easy task. In fact, many factors it needs to take into 

account: error detection and correction capability, decoding 

complexity, error types, signal power constraints and 

processing latency. However, no single channel coding 

scheme works for all applications. In Shannon’s theorem, the 

longer the code, the better the error correcting performance. 

On the other hand, longer code means higher decoding 

complexity and larger processing latency. The decoding 

process dominates the overall computational cost of an error 

control system. In real time application, large amounts of 

latency are not preferred. Therefore, we have to make a 

trade-off between the performance and complexity when 

selecting the channel code scheme. The ensemble average 

bound on uncorrected error probability can give us an estimate 

of how the performance and the complexity are related. For 

block codes of length n and coding rate Rc, the bound PE is: 

�� ≤ 2����(��)                 (3) 

Where, EB(Rc) is positive function of Rc and is completely 

determined by the channel characteristics. 

In addition, the type of errors encountered during data 

transmission is another important consideration. There are two 

types of errors, random errors and busty errors. Random errors 

affect the data independently. Busty errors are contiguous. An 

error control code must match the error type in order to be 

effective. Most codes are designed to combat random errors; 

only a few codes such as Reed-Solomon codes are good for 

correcting burst errors. With redundancy added, the coding 

rate Rc = k/n be comes less than unity and the effective data 

rate is reduced. To maintain the same data rate, we need to 

raise the overall throughput. An increase in throughput 

translates into more channel bandwidth. 

3.3. Hamming Codes 

Hamming codes are one of binary linear block 

error-correcting codes that were proposed by Hamming [13]. 

Hamming codes provide single bit error correction and double 

bit error detection. The parameters for Hamming codes for any 

positive integer m ≥ 3 are � =  2� − 1, k = n - m and dmin = 3 

[14]. Hamming codes are able to protect four bit information 

(data bits) from a single error in a codeword by adding three 

redundant bits to the data bits. The generator matrix G and the 

parity check matric H for Hamming (7, 4) code are shown in 

Eq. 4 and Eq. 5 respectively [2]. 

In Hamming (7, 4) code, a message that has four data bits is 

transmitted as a 7-bit codeword by adding three error control 

bits. The three bits to be added are three even parity bits. 

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

G

 
 =
 
  

              (4) 

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

H
 

=  
  

              (5) 

The inability of Hamming code for not being able to correct 

double bit error can be attributed to the limited number of 

syndrome. In Hamming code (7, 4), the H matrix consists of 3 

rows and 7 columns which account for 8 values of syndrome 

vector [15]. In case of single bit error, there are 7 possibilities 

of error pattern when the codeword length is 7 bits. In this case, 

each error pattern is assigned one syndrome vector. In case of 

double bit errors, there are 21 possibilities of error pattern, and 

the Hamming code does not have this number of syndromes 

(i.e., 21). Hamming code (7, 4) only has 8 syndrome vector 

(i.e., 2
m
) and m = 3. Therefore, in case of double bit error, each 

2 or 3 error patterns are assigned one syndrome vector. This 

makes the correct operation difficult and impossible because it 

cannot precisely detect the correct error pattern from the 2 or 3 

error patterns. In addition, Hamming code cannot detect more 

than two bit errors (e.g., burst error) [15, 16]. 

The minimum Hamming distance is defined as dmin = n-k, 

where n = 7 is the codeword length and k = 4 is the message 

length, and dmin = 3. The number of errors that a block code 

can detect and correct is determined by its minimum 

Hamming distance dmin. This is defined as the minimum 

number of places where any two codewords vary. In general, 

the number of errors u that can be detected for a block code is 

u = dmin - 1. For example, at m = 3, the codeword length n = 7, 

message length k = 4 and dmin = 3. Where, t is the number of 
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errors that a block code can correct as shown in Eq. 6. Since, 

the Hamming code has a minimum Hamming distance dmin = 3; 

it can only correct one bit error for each 7 bits transmitted. 

Therefore, the percentage of error correction is (1/7= 

14.285%). 

� = �� !"�#
$ % = 1                (6) 

3.4. Reed Solomon (RS) Codes 

Reed Solomon (RS) [17] codes are one of the block error 

correcting codes, used in a wide range of digital 

communication and data storage applications. RS codes are 

the subset and the extension of the nonbinary Bose Chaudhuri 

and Hocquenghem (BCH) codes as well as linear block codes, 

as in the same way the BCH codes are extension of the 

Hamming codes [18]. RS codes are a good kind of channel 

coding techniques used for correcting a burst error in the 

fading channel and suitable for data block transmission. A 

particular RS code is specified as RS (n, k) with s-bit symbols, 

where n is the code length and k is the length of the data word. 

This means that the encoder takes k data symbols of s bits each 

and adds parity symbols to make an n = 2
s
 -1 symbol 

codeword. There are (n-k) parity symbols of s bits each. The 

minimum distance of RS codes is (n - k + 1). The number and 

type of errors that can be corrected in RS code depends on the 

characteristics of that code [11], [17]. An RS decoder can 

correct up to t symbols that contain errors in a 20 codeword, 

where 2t = n - k. To increase the capability of error correction, 

the number of the parity code must increase. This means, the 

value of t in RS code must be large. 

If s = 3, n is 7, and when the number of parity is 3, k is 4. 

The maximum number of symbols errors that can be corrected 

by RS code is t, which is given by, � = &(� − ')/2). 
So, based on t value the RS (7, 4) code can correct only one 

symbol error from the 7 codeword symbols that are 

transmitted. When the symbol size is 3, the worst case happens 

when only one bit error occurs in separate symbols. In this 

case the error correction is 1/21× 100 = 4.7619%. This value 

is small compared to the percentage of error correction in 

Hamming (7, 4) code, and this explains why the Hamming (7, 

4) code has better BER performance compared to the RS (7, 4) 

code. The best case for RS (7, 4) code occurs when there are 

only all bits in a one symbol is errors. This means the 

percentage of error correction is the number of errors in one 

symbol over the total number of symbols bit transmitted (i.e. 

3/21 = 14.285%). 

Therefore to increase the capability of error correction, the 

value of t in RS code must be large, which means that the 

number of the parity code must increase, leading to increased 

complexity in encoding and decoding processes. 

As an example: A popular Reed-Solomon code is RS (255, 

223) with 8-bit symbols. Each block contains 255 codeword 

bytes (2040 bits), of which 223 bytes are data and 32 bytes are 

parity. For this code: n = 255, k = 223, s = 8, 2t = 32, and t = 

16. 

A large value of t means that a large number of errors can be 

corrected, but it requires more computing power than a small 

value of t and increases complexity. One 21-symbol error 

occurs when 1 bit in a symbol is wrong or when all the bits in a 

symbol are wrong. RS (255, 223) decoder can correct 16 

symbol errors. The worst case occurred when 16 bit errors 

might occur, and each one of these bits is in a separate symbol 

(byte), so that the decoder could correct a maximum of 16 bit 

errors from the 2040 bits (255×8). The percentage of error 

correction is (16/2040 = 0.784%). The best case occurred 

when complete 16 byte errors happened so that the decoder 

could correct 128 bit (16×8) errors from the 2040 bits. The 

percentage of error correction is 128/2040 = 6.274%. Thus, 

there is limitation in the number of errors that the decoder can 

correct errors in each block. This limitation depends on the 

number of parity bytes. RS codes are particularly suited to 

correcting burst error (where a series of bit errors in the 

received codeword). In addition, RS algebraic decoding 

procedures can correct errors and erasures. An erasure occurs 

when the position of an error symbol knows. A decoder can 

correct up to t errors or up to 2t erasures. 

RS codes are based on a special area of mathematics known 

as Galois fields or finite fields. A finite field has the property 

that arithmetic operations (+, −, ÷, ×) on the field elements 

always have a result in the field. An RS encoder or decoder 

needs to carry out these arithmetic operations. The codeword 

in RS codes is generated using a special polynomial. All valid 

code words are exactly divisible by the generator polynomial. 

The general form of the generator polynomial is: 

g(x) = (x−a1)(x−ai+1) ….. (x−a1+2t)       (7) 

The codeword is constructed by using: 

c(x) = g(x) × m(x)               (8) 

where, g(x) is the generator polynomial, m(x) is the 

information block, c(x) is a valid codeword. 

3.5. Low Density Parity Check (LDPC) Codes 

One of the leading families of error-correcting codes is 

known as Low-Density Parity-Check (LDPC) codes which 

were first developed in 1963 by Gallager [1], [19] and revived 

by Mackay and Neal 20 in 1996 [20]. An LDPC code can be 

described by specifying its parity check matrix H, which is an 

m×n binary matrix. The name "low density" refers to the fact 

that the matrix H is very sparse [21]. The LDPC code, also 

known as the Gallager code, was invented in 1962 [19]. LDPC 

was the first error correcting code that allowed data 

transmission rates close to the theoretical maximum the 

Shannon limit [20], and this existed only for long code lengths 

(at least a few thousands of bits). The LDPC code was ignored 

since its introduction, owing to its difficulty in implementation 

largely because its decoding complexity exceeded the 

hardware capacity. 

In 1990s, Mackay and Neal rediscovered the code [22]. 

Basically, there are two different possibilities to represent 

LDPC codes. Like all linear block codes they can be described 

via matrices. The second possibility is a graphical 

representation. The matrix defined in Eq. 9 [23], [24] is a 

parity check matrix with dimension m × n for a (8, 4) code, 
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wr for the number of 1’s in each row and wc for the number of 

1’s in each column. For the matrix to be called low density the 

two conditions wc ≤ m and wr ≤ n must be satisfied. In order 

to do this, the parity check matrix should usually be very large. 

The LDPC code is regular if wc is constant for every column 

and wr is constant for every row. On the other hand, if wc and 

wr are not constants, the LDPC code is irregular. In general, 

the BER performance of irregular LDPC codes are better than 

those of regular LDPC codes by up to 0.5 dB [25], [12]. Eq. 9 

is an example of the H matrix for regular LDPC code since it 

contains two 1’s per column and four 1’s per row for all 

columns and rows. Figure 1 is a Tanner graph that represents 

the H matrix for regular LDPC (8, 4) code, where wc = 2 and 

wr = 4 as shown in Eq. 9 [23]. 

0 0 0 1 0 1 1 1
0 1 1 0 1 0 0 1

H
1 1 0 0 1 1 0 0
1 0 1 1 0 0 1 0

 
 =
 
  

             (9) 

 

Figure 1. Tanner graph of LDPC (8, 4) code. 

The error correction capability of LDPC code also depends 

on the codeword length and the characteristic of the parity 

check matrix. The decoder gives a better performance with a 

larger codeword (i.e., big size of G matrix) and with good 

parity-check matrix [2]. In practice, to achieve a better BER 

performance with LDPC codes close to the channel capacity, 

the length of the LDPC codeword used should be in the order 

of thousands of bits. For example, the simulation results show 

that to obtained a BER of 10
-6

 within 0.04 dB of the Shannon 

limit, a block length of 10
7
 is needed [26]. The matrix 

multiplication for that big codeword size demands huge 

memory, computational requirements and more complex 

decoding. Besides, the decoder fails to correct errors if the 

number of errors occurred is greater than the error correction 

capability of the decoder regardless of the number of iterations. 

On the contrary, our proposed low complexity parity check 

(LCPC) codes give a good BER performance with small 

codeword and this is one advantage of LCPC codes. 

To verify codeword, LDPC code uses a large binary 

parity-check matrix H. Each row and column of H will have a 

predetermined number of ones, which is designed to be a very 

low fraction of the total number of elements. The rows 

correspond to parity-checks on those bits and the columns of 

H correspond to the bits of the received message. In practice, 

to achieve a better BER performance with LDPC codes and 

close to the channel capacity, the codeword length of the 

LDPC used is in the order of thousands of bits. In addition, a 

good LDPC code should possess a large minimum distance 

dmin and no short cycles in its Tanner graph. The matrix 

multiplication for that big code word size demands huge 

memory, computational requirements and more complexity to 

the decoding. However, this is considered as one of the 

disadvantages of LDPC codes. In any way, the decoder fails to 

correct errors if the number of errors occurred is greater than 

the error correction capability of the decoder regardless of the 

number of iterations. 

The disadvantages of the LDPC codes include higher 

encoding complexity, longer latency than turbo code, and poor 

performance compared to turbo codes when code length is 

short [12]. LDPC code has been adopted in several standards 

including IEEE 802.16 (WiMAX) [27], IEEE 802.3 (10G 

Base-T Ethernt) [28] and DVB-S2 (satellite transmission of 

digital television) [29], [30]. The algorithm to decode LDPC 

codes is available in different names; the most common are 

belief propagation algorithm, message passing algorithm and 

sum-product algorithm. 

4. Encoding and Decoding Algorithms 

of LDPC Codes 

Compared to others types of error correction codes, the 

encoding algorithm of LDPC poses a challenge [12] because 

the generator matrix G of an LDPC code is usually not sparse. 

In addition, due to the large size of the matrix, the 

conventional block encoding method could require a 

significant number of computations. For example, the G 

matrix of LDPC codes for a code rate 0.5 with codeword 

length of 8,000 bits and the message length of 4,000 is a 

matrix of (4,000 ×  8,000). The encoding process (i.e., 

multiplication of the G matrix with the message) requires 10
7
 

XORs (i.e., more complexity) even if we assume the density 

of the matrix to be as low as 0.2 [12]. The complexity of 

encoders and decoders grows rapidly as the code length 

increases. 
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LDPC decoding adopts an iterative approach. The LDPC 

decoding operates alternatively on the bit nodes and the check 

nodes to find the most likely codeword c that satisfies the 

condition cH
T
 = 0. Several decoding algorithms exist for 

LDPC codes. For hard-decision decoding, there is the 

bit-flipping (BF) algorithm [31-33]; for soft-decision 

decoding, there is the sum-product algorithm (SPA) [34-37], 

also known as the belief propagation algorithm [4] and 

message passing algorithm [38-40]. To obtain convergence to 

true optimum iterative soft-decision decoding of LDPC, 

Tanner graph should not contains cycles or contains a few 

cycles as possible. Tanner graph of proposed LCPC codes no 

contains cycles and this is one advantage of LCPC codes. 

There are two types of LDPC codes depending on the 

properties of the G and H matrices elements. These types are 

binary and non-binary LDPC codes. A non-binary LDPC code 

is simply an LDPC code with a sparse parity check matrix 

containing elements that could be defined over finite fields GF 

(2
i
), where i is a positive integer greater than 1. Davey and 

MacKay [41] presented the idea of LDPC codes over finite 

fields, proving that they could achieve enhanced performance 

over their binary counterparts with increasing finite field size. 

Mackay also showed how the sum-product algorithm could be 

extended to decode non-binary LDPC codes, but the overall 

complexity was much higher. Therefore (during that time), the 

decoding of non-binary LDPC codes was restricted over small 

finite fields. 

LDPC codes became very popular in several applications 

such as the digital satellite broadcasting system (DVB-S2), 

Wireless Local Area Network WLAN (IEEE 802.11n) and 

WiMAX (802.16e) [42]. LDPC codes are widely used in 

recent research for their excellent performance and ability to 

perform very close to the Shannon capacity limit [20]. 

However, there are some challenging issues in their 

implementation: how to design an LDPC code in the case of a 

finite block length, and how to reduce the complexity in 

encoding and decoding, storing the parity check matrix and 

reducing the longer latency and the number of iteration [43]. 

Belief propagation algorithm and min-sum algorithm are two 

major decoding algorithms used in LDPC codes [22]. 

Four classes of geometric approach to the construction of 

LDPC codes are constructed based on the lines and points of 

Euclidean and projective geometries over finite fields by [4]. 

Codes of these four classes have good minimum distances and 

their Tanner graphs [44] have girth 6. The advantage of 

finite-geometry LDPC codes can be decoded in different ways, 

ranging from low to high decoding complexity and from 

reasonably good to very good performance. These decoding 

methods include Gallager’s bit flipping (BF) decoding [1], 

one-step majority-logic (MLG) decoding [11], weighted MLG 

decoding [45], weighted BF decoding, a posteriori probability 

(APP) decoding [19] and iterative decoding based on belief 

propagation (commonly known as sum-product algorithm 

(SPA)) [22, 8, 46-48]. They perform will be very well with 

iterative decoding. Moreover, they can be put in either cyclic 

or quasi-cyclic form [4]. The performance of the LDPC codes 

over finite fields GF(q) is better than the binary LDPC, at 

short and medium block lengths. Nonetheless, the decoder of 

LDPC GF(q) has more complexity [49]. 

Two types of LDPC codes, Binary and Non-Binary LDPC 

codes [50-52]. Binary LDPC (B-LDPC) codes show good 

error correction capability and channel capacity utilization for 

large block lengths. The short codeword lengths exhibit poorer 

performance [53] because of short cycles in parity matrix. 

Non-binary LDPC (NB-LDPC) codes are defined in Galois 

field GF (q), i.e. the elements of the field are 0, 1,...., q-1. 

NB-LDPC codes were found to have better performance than 

binary codes at short and medium codeword lengths. However, 

higher the order of the field better is the performance at the 

cost of encoder/hardware complexity. 

4.1. Binary LDPC Codes 

Binary LDPC (B-LDPC) codes show excellent error 

correction capability and channel capacity utilization for large 

block lengths. For short codeword lengths they exhibit poorer 

performance due to short cycles in parity matrix [53]. 

B-LDPC codes, are discovered by Gallager in 1962 [19], who 

proposed the bit flipping (BF) decoding and one-step 

majority-logic (OSMLG) decoding algorithms [1]. Mackay 

[20] have rediscovered the performance of LDPC on Gaussian 

channels. They studied the theoretical and practical properties 

of BF and min-sum algorithms of LDPC. Mackay has shown 

the LDPC approaching Shannon limit in long code length [20]. 

Since their rediscovery, a great deal of research has been 

conducted in the study of code construction methods, 

decoding techniques, and performance analysis. Fossorier et 

al. [8] proposed two simplified versions of the belief 

propagation algorithm for fast iterative decoding of LDPC 

codes on the AWGN channel. These two algorithms do not 

require any knowledge about the channel characteristics. With 

hardware-efficient decoding algorithms such as the min-sum 

algorithm, practical decoders can be implemented for 

effective error control. Therefore, binary LDPC codes have 

been considered for a wide range of applications such as 

satellite broadcasting, wireless communication, optical 

communication, and high density storage systems. Kim et al. 

[43] proposed binary LDPC code structure using cyclic shift 

matrices and an efficient LDPC code construction algorithm 

using the characteristic matrix to achieve fast construction 

time, low encoding complexity and reduced memory. 

Luby et al. [25] presented an improvement in Gallager’s 

results by introducing irregular parity-check matrices and a 

new rigorous analysis of hard-decision decoding of these 

codes. Also, an efficient method for finding good irregular 

structures for such decoding algorithms was shown. 

Richardson and Urbanke [47] presented a general method for 

determining the capacity of LDPC codes. This method was 

implemented under message-passing decoding when used 

over any binary-input memory less channel with discrete or 

continuous output alphabets. Kou et al. [4] presented four 

classes of LDPC codes constructed based on the lines and 

points of Euclidean and projective geometries over finite 

fields. 

Kim et al. [43] proposed an LDPC code structure using 



110 Salah Abdulghani Alabady:  Binary and Non-Binary Low Density Parity Check Codes: A Survey  

 

cyclic shift matrices and an efficient LDPC code construction 

algorithm using the characteristic matrix. The number of rows 

(column) in the characteristic matrix was B times smaller than 

those in the parity check matrix. They demonstrated that the 

construction time required for the proposed LDPC code is 

much smaller than that required for a conventional LDPC 

code with the same codeword length and code rate. In addition, 

the proposed LDPC code can achieve those improvements in 

complexity without performance degradation. Zhong and 

Zhang [23] proposed a block-LDPC design approach that joint 

LDPC code encoder-decoder for practical LDPC coding 

system. Miladinovic and Fossorier [31] presented a proposed 

decoding algorithm for improving the hard-decision 

bit-flipping decoding for LDPC codes. The authors have been 

shown that the proposed decoding algorithm provides slows 

down the decoding in the case of an ideal code whose bipartite 

graph has a tree structure, with no performance gain to be 

expected. 

A class of message-passing decoders for LDPC codes was 

proposed by Ardakani et al., [54] who proved that, if the 

channel is symmetric and all codewords are equally likely to 

be transmitted, an optimum decoding rule should satisfy 

certain symmetry and isotropy conditions. The simulation 

results showed that algorithm B, in the case of regular codes, 

was the optimum binary message-passing algorithm in the 

sense of minimizing message error rate. In addition, algorithm 

B remained optimum in the case of irregular codes, if the 

variable nodes did not exploit structural knowledge of their 

local decoding neighborhood. In addition, they found a bound 

on the achievable rates with Gallager’s Algorithm B. An 

improved bit-flipping decoding algorithm for high-rate 

Finite-Geometry Low Density Parity-Check (FG-LDPC) 

codes is proposed [55]. The improvement in performance and 

decrease in decoding delay were observed by flipping multiple 

bits in each iteration. The results showed that the proposed 

algorithm achieved a tradeoff between performance and 

complexity for FG-LDPC codes. In addition, a modification of 

Improved Weighted Bit Flipping (IWBF) was proposed. The 

modified algorithm was called Multiple Bit-Flipping (MBF) 

which could update multiple bits in each iteration. This 

modification led to improvement in performance in terms of 

both the Bit-Error Rate (BER) and Frame-Error Rate (FER), 

and drastically speeded up the decoding process. 

Irregular LDPC codes using Belief Propagation (BP) 

decoding algorithm for Binary Input Additive White Gaussian 

Noise (BIAWGN) channel is designed [56]. The knowledge of 

the Signal-to-Noise Ratio (SNR) at the receiver is required to 

achieve ultimate performance in the case of BP algorithm over 

BIAWGN channel. An erroneous estimation of the SNR at the 

decoder is referred to as SNR mismatch. The irregular LDPC 

codes performed better in the presence of mismatch compared 

to the conventional irregular LDPC codes that are optimized 

for zero mismatches. 

In addition, the designed code showed good performance 

even outside the mismatch range of interest. Chilappagari and 

Vasic [57] investigated the error-correction capability of 

column weight three LDPC codes when decoded using the 

Gallager A algorithm and extended the results to the bit 

flipping algorithms. A necessary condition for a code to 

correct all error patterns with up to k ≥ 5 errors was provided 

to avoid cycles of length up to 2k in its Tanner graph and 

proved that a code with a Tanner graph of girth g ≥ 10 cannot 

correct all error patterns with up to g/2 errors. This result 

settled the problem of error-correction capability of 

column-weight-three LDPC codes [57]. 

Oh and Parhi [58] proposed improved normalized min-sum 

(MS) decoding algorithm and novel MS decoder architectures 

with reduced codeword length using nonuniform quantization 

schemes for LDPC codes. The proposed algorithm introduced 

a more exact adjustment with two optimized correction factors 

for check-node-updating computations, whereas the 

conventional normalized MS algorithm applies only one 

correction factor. In addition, the proposed nonuniform 

quantization scheme could reduce the finite word length while 

achieving similar performances compared to a conventional 

quantization scheme and provided a significant performance 

gain without any additional computation or hardware 

complexity. The simulation results showed that the proposed 

4-bit nonuniform quantization scheme achieved an acceptable 

decoding performance unlike the conventional 4-bit uniform 

quantization schemes. Sassatelli and Declercq [59] have 

introduced a new class of LDPC codes, named hybrid LDPC 

codes. Hybrid LDPC codes are characterized by an irregular 

connectivity profile and heterogeneous orders of the symbols 

in the codeword. The class of hybrid LDPC codes can be 

asymptotically characterized and optimized using density 

evolution (DE) framework, and a technique to maximize the 

minimum distance of the code is presented. Hybrid LDPC 

codes are allowed to achieve an interesting trade-off between 

good error-floor performance and good waterfall region with 

non-binary coding techniques. 

An implementation-friendly binary message-passing 

decoding method for time invariant decoding for LDPC codes 

that do not require the degree information of variable nodes or 

degree dependent parameters is introduced [60]. An 

estimation and analysis methods for the extrinsic error 

probability (EEP) and code optimizations for the proposed 

time invariant decoder were developed. The proposed method 

offered similar performance as the existing methods for 

time-invariant decoding in most cases, while it facilitated 

efficient circuit implementations of the LDPC decoder. Table 

1 summarizes the related works in binary LDPC codes. Belean 

et al. [61] have proposed FPGA hardware architectures 

approach implementation for short length LDPC decoders 

based in the belief propagation and minsum algorithms. The 

LDPC decoder implementation is suitable for applications that 

use short-length LDPC codes, due to its parallel computation 

capabilities. 

In [62], the authors proposed a blind binary LDPC encoder 

identification scheme for M-quadrature amplitude modulation 

(M-QAM) signals. To estimate the unknown signal amplitude, 

noise variance, and phase offset for ,-QAM signals, the 

expectation maximization (EM) algorithm is developed. In 

addition, the authors investigated the average iteration number 
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needed for the EM algorithm to converge for different 

modulation orders. An iterative reliability-based modified 

majority-logic decoding algorithm for two classes of 

structured low-density parity-check codes is presented [63]. 

To recover the performance degradation that caused by the 

simply flipping operation, the authors design a turbo-like 

iterative strategy. In [64], exact density evolution of LDPC 

codes over the Binary Erasure Channel (BEC) is presented. 

The authors derived and expressed upper bounds on the 

threshold by bounding multivariate evolution functions as 

single-variable minimizations. In [65], a new method for 

decoding of LDPC codes over the AWGN channel is proposed. 

The proposed method is applied using a standard 

belief-propagation (BP) decoder followed by list erasure 

decoder. The performance of the proposed method is analyzed 

mathematically and demonstrated by simulations. 

The authors in [66] presented a novel method of 

low-complexity near-maximum likelihood (ML) decoding of 

quasi-cyclic (QC) LDPC codes over the binary erasure 

channel. ML decoding is applied to a relatively short window 

which is cyclically shifted along the received sequence. The 

idea is similar to wrap-around decoding of tail-biting 

convolutional codes. A method for distributed source coding, 

using LDPC codes to compress close to the Slepian-Wolf limit 

for correlated binary sources is proposed [67]. A conventional 

BP algorithm LDPC decoder is developed which considers the 

syndrome information. In [68] the authors proposed a method 

called the parallel vector message passing-based edge 

exchange (PMPE), for optimizing a type of graph-based 

LDPC codes, without changing the code length, code rate and 

degree distribution. The authors have been proposed the 

optimization method, which can increase the Hamming 

distance of the LDPC codes. In addition, the optimization 

method for quasi-cyclic (QC) LDPC codes called the parallel 

vector message passing oriented-to the QC-LDPC codes 

(QC-PMP) is suggested. Xuan He et al., [69] propose a new 

multi-edge metric-constrained for progressive edge-growth 

(PEG) algorithm (MM-PEGA) to improve the design for 

binary LDPC code at each variable node. The authors 

analyzed the properties of the multi-edge local girth, and 

proposed an algorithm for calculating the multi-edge local 

girth. 

Table 1. Chronology of research activities on Binary-LDPC. 

Reference Summary of work performed 

(R. Gallager, 1963) 
First discovered binary low-density parity-check (B-LDPC) codes with the bit flipping (BF) decoding and one-step 

majority-logic (MLG) decoding algorithms. 

(MacKay and Neal, 1996; 

MacKay, 1999) 

Rediscovered and studied the performance of LDPC on Gaussian channels. Studied the theoretical and practical 

properties of belief propagation algorithm, and min-sum algorithms of LDPC codes. It was shown that LDPC approached 

Shannon limit in long code length. 

(M. P. C. Fossorier, M. 

Mihaljevic, and H. Imai, 1999) 

Two simplified versions of the belief propagation algorithm for fast iterative decoding of LDPC codes on the AWGN 

channel were proposed. These two algorithms do not require any knowledge about the channel characteristics. 

(M. G. Luby, M. Mitzenmacher, 

M. A. Shokrollahi, and D. A. 

Spielman, 2001) 

An improvement in Gallager results by introducing irregular parity-check matrices was reported and a new rigorous 

analysis of hard-decision decoding of these codes was presented. Also, an efficient method for finding good irregular 

structures for such decoding algorithms was shown. 

(T. J. Richardson and R. L. 

Urbanke, 2001) 

A general method for determining the capacity of LDPC codes was presented. This method was implemented under 

message-passing decoding when used over any binary-input memory less channel with discrete or continuous output 

alphabets. 

(Y. Kou, S. Lin, and M. P. C. 

Fossorier, 2001) 

Four classes of LDPC codes constructed based on the lines and points of Euclidean and projective geometries over finite 

fields, were presented. 

(K. S. Kim, S. H. Lee, Y. H. 

Kim, and J. Y. Ahn, 2004) 

An LDPC code structure using cyclic shift matrices and an efficient LDPC code construction algorithm using the 

characteristic matrix was proposed. Simulation results showed that the construction time required for the proposed LDPC 

code was much smaller than that required for a conventional LDPC code with the same codeword length and code rate. 

(H. Zhong and T. Zhang, 2005) 
Block-LDPC design approach that joint low-density parity-check (LDPC) code-encoder-decoder was proposed for 

practical LDPC coding system. 

(N. Miladinovic and M. P. C. 

Fossorier, 2005) 

The authors presented a proposed decoding algorithm for improving the hard-decision bit-flipping decoding for LDPC 

codes. The authors have been shown that the proposed decoding algorithm slows down the decoding in the case of an 

ideal code whose bipartite graph has a tree structure. 

(M. Ardakani and F. R. 

Kschischang, 2005) 

A class of message-passing decoders for LDPC codes was presented. The authors proved that, if the channel is 

symmetric, all codewords are equally likely to be transmitted. In addition, they found a bound on the achievable rates 

with Gallager Algorithm B. 

(M. Ardakani and F. R. 

Kschischang, 2006) 

A class of iterative message-passing decoders for LDPC codes was considered which where the decoder could choose its 

decoding rule from a set of decoding algorithms at each iteration. 

(T. M. N. Ngatched, F. 

Takawira, and M. Bossert, 2009) 

An improved bit-flipping decoding algorithm for high-rate finite-geometry low-density parity-check (FG-LDPC) codes 

was proposed. The improvement in performance and decrease in decoding delay were observed by flipping multiple bits 

in each iteration. 

(H. Saeedi and A. H. 

Banihashemi, 2009) 

A Belief propagation (BP) algorithm for decoding LDPC codes over a binary input additive white Gaussian noise 

(BIAWGN) channel was designed. To achieve ultimate performance, the algorithm requires the knowledge of the SNR at 

the receiver. 

(S. K. Chilappagari and B. 

Vasic, 2009) 

The error-correction capability of column-weight-three LDPC codes was investigated when decoded used the Gallager A 

algorithm. 

(D. Oh and K. K. Parhi, 2010) 
An improvement of the normalized min-sum (MS) decoding algorithm and novel MS decoder architectures with reduced 

word length using nonuniform quantization schemes for LDPC codes were proposed. 

(L. Sassatelli and D. Declercq, 

2010) 

A new class of LDPC codes, named hybrid LDPC codes, was introduced. Asymptotic analysis of this class of codes was 

carried out for distribution optimization, as well as finite-length optimization. 
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Reference Summary of work performed 

(G. S. Yue and X. D. Wang, 

2010) 

An implementation-friendly binary message-passing decoding method for time invariant decoding for LDPC codes was 

introduced that does not require the degree information of variable nodes or degree dependent parameters. 

(B. Belean, S. Nedevschi, and 

M. Borda, 2013) 

FPGA hardware architectures approach implementation for short length LDPC decoders based in the belief propagation 

and min-sum algorithms is proposed. The proposed architecture achieves high throughput in real time application. 

(T. Xia, H.-C. Wu, S. Y. Chang, 

X. Liu, and S. C.-H. Huang, 

2014) 

A blind binary LDPC encoder identification scheme for M- quadrature amplitude modulation (M-QAM) signals 

proposed. Expectation maximization (EM) algorithm is used to estimate the unknown signal amplitude, noise variance, 

and phase offset for M-QAM signals. 

(H. Chen, L. Luo, Y. Sun, X. Li, 

H. Wan, and L. Luo, 2015) 

An iterative reliability-based modified majority-logic decoding algorithm for two classes of structured low-density 

parity-check codes is presented. 

(S. Harikumar, J. Ramesh, M. 

Srinivasan, and A. Thangaraj, 

2015) 

Protograph LDPC codes are optimized for good thresholds using a closed-form upper bound on threshold. The results 

show that a simple randomized construction optiend in small-sized protographs with threshold close to capacity upper 

bounds. 

(I. E. Bocharova, B. D. 

Kudryashov, V. Skachek, and Y. 

Yakimenka, 2016) 

The authors proposed a new method for decoding of LDPC codes over the AWGN channel using a standard 

belief-propagation (BP) decoder that followed by list erasure decoder. 

(I. E. Bocharova, B. D. 

Kudryashov, E. Rosnes, V. 

Skachek, and O. Ytrehus, 2016) 

Presented a novel method of low-complexity near-maximum likelihood (ML) decoding of quasi-cyclic (QC) LDPC 

codes over the binary erasure channel. The authors are studied by simulations a few examples of regular and irregular QC 

LOPC codes, and the performance is compared with the ensemble-average performance. 

(S. Eleruja, U.-F. Abdu-Aguye, 

M. Ambroze, M. Tomlinson, and 

M. Zak, 2017) 

Propose a scheme for distributed source coding, using LDPC codes to compress close to the Slepian-Wolf limit for 

correlated binary sources. In addtation, the authors developed a conventional BP algorithm LDPC decoder which takes 

the syndrome information into account. 

(X. Liu, F. Xiong, Z. Wang, and 

S. Liang, 2017) 

Proposed two optimization methods, the PMPE algorithm for random codes and the QC-PMP algorithm for QC-LDPC 

codes. The proposed algorithms can decrease the number of short cycles in the Tanner graphs without changing the code 

parameters such as the code length, code rate and degree distribution. 

(X. He, L. Zhou, and J. Du, 

2018) 

The authors proposed depth-first search (DFS)-like algorithm to calculate the multi-edge local girth. In addition, the set 

based method (SBM) has been proposed to replace the breadth-first search (BFS)-like method so as to accelerate the 

multi-edge metric-constrained PEG algorithm (MM-PEGA). Moreover, the MM-PEGA has been generalized for 

improving different PEG-like designs. 

 
4.2. Non-Binary LDPC Codes 

Davey and MacKay [41] are the first who investigated 

non-binary LDPC (NBLDPC) codes over the Galois field of 

order q which is known as q-ary LDPC codes. NB-LDPC 

codes are considered as the extension of the B-LDPC codes. 

Davey and MacKay extended the sum-product algorithm 

(SPA) for B-LDPC codes to decode qary LDPC codes and 

referred to this extension as the q-ary SPA (QSPA). NB-LDPC 

codes over the Galois field GF(q), was viewed as an extension 

of BLDPC codes. Davey and MacKay are the first who 

investigated NB-LDPC. The entries in the parity-check matrix 

of an NB-LDPC code belong to GF(q) (q > 2). NB-LDPC 

codes are defined in Galois field GF(q) where q is the field 

size (q > 2). Barnault and Declercq [70] presented a 

modification of Belief Propagation scheme. The modification 

scheme enabled to decode LDPC codes defined on high order 

Galois fields with a complexity that was scaled as plog2(p), p 

being the field order. The low complexity algorithm had the 

ability to decode GF(2
q
) LDPC codes up to a field order value 

of 256. Simulation result exhibited very good performance 

that ultra-sparse regular LDPC codes in GF(64) and GF(256). 

Wymeersch et al. [71] introduced a log-domain decoding 

scheme for LDPC codes over GF (q). The scheme was 

mathematically equivalent to the conventional sum-product 

decoder. The log-domain decoding had advantages in terms of 

implementation, computational complexity and numerical 

stability. Additionally, a suboptimal variant of the log-domain 

decoding algorithm was proposed, yielding a lower 

computational complexity. The log-SPA decoding scheme for 

general NB-LDPC codes based on LLRs was derived. The 

proposed log-domain version (log-SPA) and a sub-optimal 

implementation (max log-SPA) algorithms and the SPA were 

compared in terms of both simulated BER performance and 

computational complexity. As log-domain SPA and SPA are 

mathematically equivalent, they have identical BER 

performance. Maxlog SPA gives rise to a small BER 

degradation (about 0.5 dB). 

Voicila et al. [5] presented a new implementation of the 

EMS decoder for NBLDPC codes using log-density-ratio as 

messages. The new algorithm has taken into account the 

memory problem of the NB-LDPC decoders and decoding 

complexity. The implementation of the EMS decoder reduced 

the order of complexity to O(nm log2 nm), with nm << q; this 

complexity was smaller than the complexity of the BP-FFT 

decoder. The low complexity and low memory of EMS 

decoding algorithm render it as a good candidate for the 

hardware implementation of NB-LDPC decoders. The EMS 

decoding algorithm could approach the performance of the BP 

decoder and even in some cases beat the BP decoder. However, 

higher order of the field size provides better performance, but 

the cost of encoder and hardware complexity increase. The 

two low-complexity reliability algorithms based 

message-passing algorithms for decoding LDPC codes over 

non-binary finite fields is presented [72]. First one is called 

One Step Majority-logic decoding (OSMLGD) algorithm and 

the second is Iterative hard reliability based (IHRB)-MLGD 

algorithm. The authors have been shown that the decoding 

algorithms provide effective trade-off between error 

performance and decoding complexity compared to the 

non-binary sum product algorithm. 

Aruna and Anbuselvi [73] have presented the Fast Fourier 

Transform-Sum product algorithm (FFT-SPA) based 

NB-LDPC codes for various order of Galois Field with 
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different parity check matrices (PCM) structures. The 

decoding performance is analyzed for the specification of 

IEEE 802.11n standard. The authors have proposed two 

modified parity check matrices (PCM) to reduce the 

computation strength. The first one is lower diagonal based 

PCM (LDM) and the second is doubly diagonal based PCM 

(DDM). Wang et al. [74] presented a new decoding algorithm 

for the NB-LDPC decoder based on the q-ary min-sum 

algorithm (QMSA). The new algorithm modified the check 

node (CN) computations of the QMSA into two steps. By 

reorganizing the message entries and providing the most likely 

symbol, a compressed intermediate message could be easily 

obtained and stored, from which the check-to-variable 

messages could be computed with a look-up table. The authors 

proposed two simplified variants based on QMSA for practical 

designs: first one is the extended min-sum algorithm (EMSA) 

working with message truncation and sorting to reduce 

complexity and memory requirements; second one is the 

Min-Max algorithm (MMA) [75], which replaces the sum 

operations in the check node processing by max operations. 

Simulation results demonstrated that the proposed algorithm 

had negligible performance loss compared to the QMSA, over 

AWGN channel. 

Wang et al. [76] presented a hardware-efficient NB-LDPC 

decoding algorithm codes, called the simplified min-sum 

algorithm SMSA, which had reduced-complexity decoding 

algorithm. The simulation results demonstrated that the 

proposed scheme had small performance loss over the additive 

white Gaussian noise channel and independent Rayleigh 

fading channel. Furthermore, the proposed hardware scheme 

had reduced complexity; a good performance-complexity 

tradeoff could be efficiently implemented. Based on the 

analysis results, the SMSA had much lower complexity and 

lower memory usage compared to other decoding algorithms 

for NB-LDPC codes. Lin and Yan [77] proposed a simplified 

decoding algorithm to reduce computational complexities of 

variable node processing for NB-LDPC codes over large 

fields. An improved based check node processing algorithm 

for NB-LDPC codes was proposed to reduce the memory 

requirement. The reduced memory requirement was due to 

truncating the message vectors to a limited number (nm) of 

values. However, the memory requirements of these decoders 

remained high when the field size was large, since (nm) needs 

to be large enough to alleviate error performance degradation. 

In addition, a priori message compression algorithm was 

proposed to reduce memory consumption. Numerical results 

showed that the proposed decoding algorithm outperformed 

the existing algorithms. However, the NB-LDPC codes 

outperformed their binary counterparts in some cases, but 

their high decoding complexity was a significant hurdle to 

their applications [49, 77]. Bhargava and Bose [3] applied a 

Sum Product Algorithm (SPA) for decoding of NB-LDPC 

codes. They showed that SPA had better performance than 

B-LDPC code of equivalent length. Both the memory 

complexity and latency are high for the forward-backward 

(FB) approach when the check node degree is high [77]. The 

FB approach is widely used in check node processing (CNP) 

[75]. 

The authors in [78] proposed two flexible and simple 

methods for constructing non-binary (NB) quasi-cyclic (QC) 

LDPC codes. The proposed construction methods have 

several known ingredients including base array, masking, 

binary to non-binary replacement and matrix-dispersion. In 

addition, a reduced-complexity iterative decoding scheme for 

NB-CPM-QC-LDPC codes, called MGRD-scheme is 

presented. In [79] a non-binary LDPC codes for the erasure 

channel, under maximum a posteriori decoding is proposed. 

The authors presented a design method for finite-length 

q-aryLDPC codes on the q-EC under MAP decoding. L. 

Dolecek et al. [80], provided a comprehensive analysis of 

non-binary (LDPC) codes. The authors considered both 

random and constrained edge weight labeling, and refer to the 

former as the unconstrained nonbinary protograph-based 

LDPC codes (U-NBPB codes). In [81], the computational 

complexity of check node update in the extended Min-Sum 

(EMS) algorithm is reduced by set partition. The authors in 

[82], proposed a method to reduce the computational 

complexity of NB-LDPC decoding using modulation assisted 

preprocessing scheme. 

Two methods are proposed in [83] to improve the iterative 

hard-reliability based majority-logic decoding (IHRBMLGD) 

algorithm for NB-LDPC codes. The first method improves the 

error-correcting performance by modifying the initialization 

process, which is because Gray coded modulation is used in 

general. The second method is the storage reduction method 

that is proposed to reduce the memory size considerably while 

sustaining the error-correcting performance achieved by the 

modified initialization. A LDPC coded modulation approach 

addressing orthogonal modulations is proposed in [84] over 

the AWGN channel with moderate order between 8 and 32. 

The proposed design is based on a constrained EXIT-based 

optimization of a NB-LDPC ensemble degree distribution, 

where the restriction lies in the search of degree distributions 

that lead to low error floors. The authors in [85] studied the 

Gallager ensembles of binary regular LDPC codes and binary 

images of nonbinary regular LDPC code. 

Table 2. Chronology of research activities on Non-Binary LDPC. 

Reference Summary of work performed 

(M. C. Davey and D. J. MacKay, 1998) 

The empirical results of error-correction using the analogous codes over GF(q) for q > 2 with binary symmetric 

channels and binary Gaussian channels were introduced. There was significant improvement over the 

performance of the binary codes, including a rate 1/4 code with BER < 10-5 at Eb/No = 0.2 dB. 

(L. Barnault and D. Declercq, 2003) 

A modification of Belief Propagation scheme was presented. The modification scheme enabled to decode 

LDPC codes defined on high order Galois fields with a complexity that was scaled as p log2 (p), p being the 

field order. 

(H. Wymeersch, H. Steendam, and M. A log-domain decoding scheme for LDPC codes over GF (q) was introduced. The scheme is mathematically 



114 Salah Abdulghani Alabady:  Binary and Non-Binary Low Density Parity Check Codes: A Survey  

 

Moeneclaey, 2004) equivalent to the conventional sum-product decoder. The log-domain decoding has advantages in terms of 

implementation, computational complexity and numerical stability. The log-SPA decoding scheme for general 

non-binary LDPC codes based on LLRs was derived. 

(A. Voicila, D. Declereq, F. Verdier, M. 

Fossorier, and P. Urard, 2007) 

A new implementation of the EMS decoder for non-binary LDPC codes was presented using log-density-ratio 

as messages. The implementation of the EMS decoder reduced the order of complexity to O(nm log2 nm), with 

nm << q; this complexity is smaller than the complexity of the BP-FFT decoder. 

(D. Declercq and M. Fossorier, 2007) 
In this work, the problem of decoding NB-LDPC codes over finite fields GF(q) is introduced address, with a 

simplified decoder called extended min-sum (EMS). 

(L. Chun-Hao, W. Chien-Yi, L. Chun-Hao, 

and C. Tzi-Dar, 2008) 

In this work, the log-domain decoder for non-binary LDPC over GF(q) is presents. The proposed decoder can 

efficiently reduce the decoding complexity to O(qlogq). 

(C.-Y. Chen, Q. Huang, C.-c. Chao, and S. 

Lin, 2010) 

The authors have presented a new two low-complexity decoding algorithms (OSMLGD and IHRB-MLGD) for 

LDPC codes over the non-binary finite fields. 

(C.-L. Wang, Z. Li, and S. Yang, 2012) 

A new decoding algorithm for the NB-LDPC decoder based on the q-ary min-sum algorithm (QMSA) was 

presented. The new algorithm modified the check node (CN) computations of the QMSA into two steps. 

Simulation results demonstrated that the proposed algorithm had negligible performance loss compared to the 

QMSA over AWGN channel. 

(S. Aruna and M. Anbuselvi, 2013) 

Two modified parity check matrices (LDM and DDM) based on the PCM are proposed to reduce the 

computation strength of NB-LDPC. FFT-SPA algorithm based NB-LDPC codes for various order of GF is 

presented. 

(J. Wang, X. Liu, K. Chi, and X. Zhao, 

2013) 

A hardware-efficient NB-LDPC decoding algorithm codes, called the simplified min-sum algorithm SMSA 

was presented, which reduced-complexity decoding algorithm. The simulation results demonstrated that the 

proposed scheme had small performance loss over the additive white Gaussian noise channel and independent 

Rayleigh fading channel. 

(J. Lin and Z. Yan, 2013) 

A simplified decoding algorithm to reduce computational complexities of variable node processing for 

NB-LDPC codes over large fields was proposed. An improved based check node-processing algorithm for 

NB-LDPC codes was proposed to reduce the memory requirement. The reduction in memory was achieved by 

truncating the message vectors to a limited number nm of values. 

(L. Dolecek, D. Divsalar, Y. Sun, and B. 

Amiri,, 2014) 

A class of structured non-binary LDPC codes built out of protographs, called NBPB codes. The authors 

considered both constrained and unconstrained edge weight selections. 

(J. Li, K. Liu, S. Lin, and K. 

Abdel-Ghaffar, 2015) 

Two simple and flexible methods for constructing NB-QC-LDPC codes with CPM structure are proposed from 

a matrix-theoretic point of view. The proposed methods are very effective for constructing codes of short to 

long block lengths and low to high rates. 

(G. Garrammone, E. Paolini, B. Matuz, and 

G. Liva, 2015) 

Propsosed a NB-LDPC codes for the erasure channel, under maximum a posteriori decoding. The authors 

presented a design method for finite-length q-aryLDPC codes on the q-EC under MAP decoding and provided 

Monte Carlo simulation results for several short non-binary LDPC codes. 

(L. Song, Q. Huang, and Z. Wang, 2016) 

The complexity of decoding NB-LDPC codes is reduced by set partition. The input vectors in the check node 

are partitioned into several sets such that different elements in the virtual matrix enjoy various computational 

strategies. 

(T. Wu, H.-C. Yang, and J. Yan, 2016) 
Proposed a modulation assisted preprocessing scheme to reduce the computational complexity of NB-LDPC 

decoding. 

(S. Yeo and I.-C. Park, 2017) 

Improve the iterative hard-reliability based majority-logic decoding (IHRBMLGD) algorithm for NB-LDPC 

codes using two methods. The first one improves the error-correcting performance. The second one is proposed 

to reduce the memory size considerably. 

(G. Liva, B. Matuz, E. Paolini, and M. F. 

Flanagan, 2017) 

Proposed a NB-LDPC coded modulation approach addressing orthogonal modulations over the AWGN 

channel with moderate order. 

 

5. Conclusion 

Error correcting code is a necessity in any network 

communication system, and it is the commonly used in modern 

telecommunications technique in order to increase the 

reliability of a data transfer. There are many types of 

error-correcting codes. One of the leading families of 

error-correcting codes is known as Low-Density Parity-Check 

(LDPC) codes. In this paper, a detailed of the major concepts in 

error correction coding was presented. Chronology of research 

activities on Binary LDPC Non-Binary LDPC is provided. 
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