

International Journal of Information Engineering and Applications

2018; 1(3): 123-131

http://www.aascit.org/journal/information

GPU Acceleration of 3D Object Transformations

Sura Nawfal Alrawy, Fakhrulddin Hamid Ali

Computer Engineering Department, Mosul University, Mosul, Iraq

Email address

Citation
Sura Nawfal Alrawy, Fakhrulddin Hamid Ali. GPU Acceleration of 3D Object Transformations. International Journal of Information

Engineering and Applications. Vol. 1, No. 3, 2018, pp. 123-131.

Received: March 29, 2018; Accepted: May 16, 2018; Published: June 8, 2018

Abstract: Generating 3D animation scenes in computer graphics requires applying a 3D transformation on the vertices of

the objects. These transformations consume most of the execution time. Hence, for high-speed graphics systems, acceleration

of vertex transform is very much sought for because it requires many matrices operations that to be performed at a real-time, so

the execution time is essential for such processing. In this paper, the acceleration of 3D object transformation is achieved using

parallel techniques such as Multicore Core Central Processing Unit (MC CPU) or Graphic Processing Unit (GPU) or even

both. Multiple geometric transformations are concatenated together at a time in any order with interactive manner. The

performance results are presented for a number of 3D objects with paralleled implementations of the affine transform on the

NVIDIA GPU series. The maximum execution time was about 0.508 seconds to transform 100 million vertices. Other results

also showed the significant speedup compared to (CPU and MC CPU) computations for the same object complexity.

Keywords: GPU, 3D Object, Transformation, Vertices

1. Introduction

In computer graphics, the most popular method for

displaying a 3D object is the polygon mesh model which

consists of polygons represented by a list of points or

vertices. In many applications, there is a need for altering the

scene objects or parts of them, especially in computer

animations. As the number of objects in the animation scene

increases, the number of vertices used to define these objects

will increase, so the speed is needed to manipulate these

vertices.

Geometric transformations are the ways of manipulating

the vertices while preserving the spatial relationships

among them. Changes in orientation, shape object, and size

are accomplished with these transformations that are

applied on each and every vertex of the object to obtain a

transformed one [1-2], these transformations are called

affine transformation (AT) which may consist of many

operations such as translation, rotation, shearing, scaling

and others. The AT plays an important role, not only in

computer graphic application, but also in various high

speed applications such as medical imaging and machine

vision applications as in [6-7].

The transformation operations are highly computationally

intensive as it involves matrix multiplication of trigonometric

functions that is applied for each vertex individually. So, the

speed of these transformations is the challenge of producing

realistic vision of animation scenes [3]. This realistic requires

fast execution of addition, multiplication, and trigonometric

which attracted and still do many research work and different

architectures as presented by the following reviews:

Several attempts to accelerate such transformations have

been proposed, most of them have implemented on FPGA [3-

7], Biswal etc. proposed a parallel algorithm which calculates

AT of two voxel locations using a single transform operation

[5]. Then they modified this algorithm in [7] to be able to

calculate AT of four voxel locations by performing a single

transformation, but this algorithm assumed symmetry about

four pixel locations for the transformed object. In [6] [9] and

[10], 2D transformations for images have been implemented,

on other hand, most researchers have put more emphasis on

affine rotation only [9] and [10].

Nowadays, a lot of work is being done to implement

parallel technique into existing algorithms to enhance their

performance, matrix multiplication is a computational

problem that have been accelerated using (GPU) as in [12-

13] or even multicore [14].

In this work an adaptive 3D graphic transformations is

designed and accelerated using parallel techniques GPU and

multicore, where all vertices are transformed using the AT

matrix simultaneously by assigning each group of vertices to

124 Sura Nawfal Alrawy and Fakhrulddin Hamid Ali: GPU Acceleration of 3D Object Transformations

each thread and multiplying them as single instruction

multiple data SIMD.

The rest of this paper is organized as follows: section 2

discusses the theoretical and mathematical explanation of 3D

transformations. Section 3 summarizes CPU and GPU

architectures. Implementation and analysis of the designed

3D transformation are described in Section 4. Section 5

describes the experimental results measured at real time for

many objects, and finally Section 6 states conclusions of this

paper.

2. Geometric 3D Transformation

3D transformations are the ways of moving the vertices

that describe one or more 3D objects to new locations or

orientations, these processes involve translation, scaling,

shearing and rotation. They are applied to each individual

vertex and repeated to all object vertices to achieve the

required operation. In computer graphics the matrix notation

is the suitable way to describe each of these operations, and a

vector describes each vertex. Scaling, shearing and rotation

transforms are linear transforms that can be represented by

3x3 matrix, but translation transform is nonlinear. Combining

linear transforms and translations can be done using an affine

transforms (AT), which are the ones most often used in

graphics, but in 3D, AT cannot be implemented using 3×3

matrices, so 4x4 matrix is used. On the other hand the

homogeneous coordinates in the transformations are needed

to promote the 3D coordinate by adding a fourth component

of unity to the vectors that represent positions to be as 4x1.

As a result of that, the input vertices are described as v=(x, y,

z, 1) and the transformed vertices as (x`, y`, z`, 1) [1-2].

2.1. Translation Matrix

Translation displaces vertices to new positions defined by

a displacement vector t= [Tx Ty Tz] the algebraic and matrix

representation for 3D translation (T) are shown in (1).

�
�
�
�
���

��

��

1 	

�

=

�
�
�
�
�
1 0 0 T�

0 1 0 T�

0 0 1 T�

0 0 0 1 	

�

�
�
�
�
�
�
�
�
1	

�
 (1)

By this transform, the input vector (x, y, z) is left

unaffected by a multiplication by T, because a direction

vector can’t be translated. In contrast, both points and vectors

are affected by the rest of affine transforms [2].

2.2. Scaling

Scales expands or contracts a 3D object with components

(x, y, z) by the factors Sx, Sy and Sz along the x-, y- and z-

direction respectively. The larger the Si, i є {x, y, z}, the larger

the scaled entity gets in that direction. Setting any of the

components of s to one naturaly avoid the changes in scaling

in that direction. The equation of scaling is described in

equation (2)

�
�
�
�
���

��

��

1 	

�

=

�
�
�
�
�
S� 0 0 0
0 S� 0 0
0 0 S� 0
0 0 0 1	

�

�
�
�
�
�
�
�
�
1	

�
 (2)

The scaling operation is called uniform if Sx=Sy=Sz and

non-uniform otherwise [1-2].

2.3. Rotation Matrix

To rotate an object in a 3D space, an axis of rotation need

to be specified in addition to the angle of rotation. This can

have any spatial orientation in a 3D space. The

transformation matrices for rotation about the X, Y and Z-

axes, respectively are in (4), (5) and (6) equations.

�
�
�
�
���

��

��

1 	

�

=

�
�
�
�
�
1 0 0 0
0 cos (�) −sin (�) 0
0 sin (�) cos (�) 0
0 0 0 1	

�

�
�
�
�
�
�
�
�
1	

�
 (3)

�
�
�
�
���

��

��

1 	

�

=

�
�
�
�
� cos (�) 0 sin (�) 0

0 1 0 0
−sin (�) 0 cos (�) 0

0 0 0 1	

�

�
�
�
�
�
�
�
�
1	

�
 (4)

�
�
�
�
���

��

��

1 	

�

=

�
�
�
�
�cos (�) −sin (�) 0 0
sin (�) cos (�) 0 0

0 0 1 0
0 0 0 1	

�

�
�
�
�
�
�
�
�
1	

�
 (5)

All rotation matrices have determinant of one and are

orthogonal.

The order of rotation should be considered into account in

3D space where the order of rotation affects the final position

of the rotated object because matrix multiplication is not a

commutative operation. Rotation about the x-axis by an angle

θ followed by rotation about the y-axis by an angle φ does

not give the same result as the one obtained if the order of the

rotations is reversed [1-2]. So based on this property there are

six possibilities of choosing the rotation axes, in other words

there are six sequences of product of individual rotations

about three axes), this type of formalism is called Tait–Bryan

angles [2].

2.4. Combining Transformations

In addition to apply the individual transformation on

objects, sequence of these transformations can be combined

to form many functions that are required in computer

graphics. This is done by multiplying or concatenating any

sequence of the previous matrices to achieve the desired

result, by this strategy it is preferable to define any arbitrary

transformation directly with a single new matrix, and then,

this new matrix is applied to the animation objects. This

 International Journal of Information Engineering and Applications 2018; 1(3): 123-131 125

approach fits well for implementing graphics systems, since

it dramatically reduces computational complexity and

execution time [2].

3. Implementation Platforms

The CPU and GPU are chosen in this paper as platforms

for implementing many 3D transformations for sequential

and parallel execution, a brief introduction of each platform

is overstated.

3.1. Central Processing Unit (CPU)

CPU architecture has only one processing unit in the chip

(See figure 1), for performing arithmetic or logic operations.

At any time only one operation can be performed [15].

Figure 1. CPU hardware architecture.

3.2. CPU with Multicore Processor

A multicore processor is a system that comprises of two or

more independent cores (or CPUs). The cores are generally

integrated onto one integrated circuit die (known as a chip

multiprocessor), or they are integrated onto multiple dies on a

single chip package [15] as in figure 2.

Figure 2. Multicore hardware architecture.

3.3. Graphic Processing Unit (GPU)

GPU is viewed as a compute device operating as a

coprocessor to the main processor (CPU host). A GPU is

implemented as an aggregation of multiple processors so it is

called multiprocessors, which consists of a number of Single

Instruction Multiple Data (SIMD) ALUs integrated as a

network on a chip (See figure 3). According to the SIMD

every processor within GPU must execute the same

instruction at the same time, only data can be varying [15].

Refer to figure 3, the orange color indicates the cache

memories, the blue color indicates the control units and the

green color indicates the ALUs.

Figure 3. GPU hardware architecture.

Figure 4. The GP107 graphics processor architecture.

126 Sura Nawfal Alrawy and Fakhrulddin Hamid Ali: GPU Acceleration of 3D Object Transformations

In this paper GeForce GTX 1050 is used for parallel

implementation, this GPU is based on Pascal architecture

GP107 chip as shown in figure 4, where there are six SMs

each with 128 shader units, NVIDIA has disabled some

shading units on GTX 1050 to reach the product's target

shader count. It features 640 shading units, 40 texture

mapping units and 32 ROPs. NVIDIA has placed 4 GB

GDDR5 VRAM on this card, which is connected using a

128-bit memory interface [16].

4. Implementation and Testing

In this work LabVIEW environment is used for

implementing and testing the transformations, the software

version is professional 2017; two PCs are used in this work

the first is notebook with 16GB RAM, Intel® Core™ i7

7700HQ @2.8 GHz processor with one NVIDIA GeForce

1050 GTX of compute capability 6.1, containing 5 streaming

multiprocessor each of them contains 128 units as mentioned

before, the maximum memory data rate (112 GB/s).

Applications are designed in CUDA version 9.0 and using

Visual Studio 2015, Nvidia Graphics driver version

22.21.13.8554 is used for CUDA compatibility. The second

PC used with Intel® Core™ i5 3210m, 2.8 GHz processor

with one NVIDIA GeForce 610 GT of compute capability

2.1, containing 1 streaming multiprocessor of 48 cores,

memory data rate (14GB/s). Applications are designed in

CUDA version 5.0 and using Visual Studio 2010.

4.1. Import 3D Model

Firstly the 3D model is imported into the LabVIEW as a

mathematical model forming by vertices, edges and surfaces,

the vertices of these models are extracted to apply the

transformations on it, then the transformed vertices are stored

backed in to the model to redisplay the transformed object.

The block diagram.vi of this operation is shown in Figure 5.

Figure 5. Block diagram of importing 3D model.

Modeling any animated object requires to define thousands

even millions of vertices for high resolution. Two 3D test

models are used with different resolutions; these models are

bunny and dragon which are standard computer graphics

created at Stanford university [17]. In general any 3D object

can be stored in different formats as (.obj, .stl, .ply…etc), the

(stl) format is chosen in this work since LabVIEW support

this format, so the standard models are firstly converted to

(stl) format.

4.2. Transformation Matrix

The transformation matrices are built and combined

together in an accumulating manner to generate one new

matrix, and then this accumulating matrix is used for per

vertex transformation of the object to reduce the execution

time. In this paper the combination form is desired to achieve

all possible sequences of transformations, where in contrast

to 2D graphics, the order of some transformations is

considerable issue in 3D graphics, for example translating a

3D object then rotating it, does not equivalent to rotating then

translating the same object. Also in the rotation transform,

the order of rotation affects the final position of the object

since there are three axis of rotation, in other word a rotation

matrix has three degrees of freedom that represents a 3D

rotation in every imaginable way. So, there are six possible

orders: x-y-z, x-z-y, y-x-z, y-z-x, z-x-y, z-y-x. All these

sequences are considered in designing the transformation

unit. Figure 6 displays the execution front panel of the

designed vi, as shown, the user can change the parameters of

transformation unit in interactive manner at real time, where

the event case structure is used for these parameters to take

the effect of each change and redisplay the output.

 International Journal of Information Engineering and Applications 2018; 1(3): 123-131 127

Figure 6. The front panel of the transformation unit.

4.3. Sequential and Multicore Execution

For comparison purpose, the 3D transformations are

applied on the test objects without using parallel techniques

where the vertices are processed sequentially one vertex after

another, then the multicore toolkit is used in LabVIEW for

matrix computation instead of traditional tools to speed up

the operations as shown in figure 7 where the number of

CPUs can be chosen from this GUI.

The high resolution second.vi is used to measure the

execution time, for all computations in this paper the run

time is recorded after several trials because the run time

slightly differs after first execution as shown in figure 7, a

snapshot of the front panel displays the run times for the first

three object resolutions as a waveform graph.

Figure 7. The execution of object transformation on multi-core.

4.4. Computations on GPU

To evaluate the performance of 3D transformations on

GPU, The implementation was realized in NVIDIA CUDA

architecture, because of hardware availability and experience

with this technology. Using GPU, large number of vertices

can be executed in parallel on hundreds of cores.

In LabVIEW GPU computing, the code calls the GPU via

CUDA toolkit interface, this interface is made up of two

LabVIEW libraries lvcuda.lvlib and lvcublas.lvlib. The last

library contains optimized implementation of BLAS library

which has vector-vector, vector-matrix, and matrix-matrix

operations. The matrix–matrix operation is used in this work

to compute new vertices after transformation. For

128 Sura Nawfal Alrawy and Fakhrulddin Hamid Ali: GPU Acceleration of 3D Object Transformations

implementing on GPU, first the device and library are

initialized, when a kernel is created, memory need to be

allocated for both transformation and vertices matrices, then

the transformed vertices are obtained after multiplication

computation with xGEMM, this operation is able not only

multiply matrices but to transpose first, second or both

matrices. The upload and download data is also used for

memory copy between host and device, finally, the created

space of memory must be freed or deallocated to allocate the

matrices, this is done to overcome any associated problems

of memory leak or crash as the system runs out of memory,

and to ensure dealing with data of large vertices.

Using GPU, many vertices are processed in parallel rather

than one vertex after another, since each vertex is four floats

in 3D graphics, four threads would be required to compute

each vertex.

5. Experimental Results and Analysis

5.1. Sequential and Multicore

Implementation

To compare the parallel execution of 3D transformations

with serial execution, the first test just did the vertex

transformations using the CPU, single threaded and multi-

threaded are implemented on core i7. A real 3D model with

different resolutions is transformed and redisplayed. In this test

the double precision format is used for vertices of these models.

The execution time results are tabulated in table 1 for one core

and multi-core and the speedup is calculated as a ratio of

sequential execution time on one core to parallel execution

time on four cores. From the result shown one can note that

there is little improvement in speedup, also for small number

of vertices less than 2844 the speedup became less than one

due to the communication overhead for small data or vertices.

Table 1. Execution times for single and multi-core CPU.

 # of vertices
execution time (m sec.)

4 cores speed up
1 core 2 cores 4 cores

Bunny

2844 6.66257 5.26332 4.37644 1.52

11553 26.5726 18.7992 14.1694 1.87

48903 115.702 80.4398 72.0017 1.60

208353 422.738 329.57 290.546 1.45

432138 873.083 655.802 577.052 1.51

dragon

33306 84.4872 60.1939 48.1273 1.75

143382 307.809 227.932 196.553 1.56

299934 613.565 462.963 429.725 1.42

607560 1227.63 923.047 812.955 1.51

2614242 4984.46 4157.82 2928.59 1.70

5.2. Parallel Implementation on GPUs

The parallel test is implemented on two types of GPUs,

table 2 shows the execution times comparison on the first PC

having GeForce 610m and core i5 CPU, the run times is

measured for kernel execution in millisecond for the same

previous set of objects in each sequential and parallel

implementation. As shown from these results the 3D

transformation is speeded up on GPU by a factor up to 58x.

The missing values denotes using ‘-‘ symbol means that

these results was not computed due to their enormous

running time.

Table 2. Execution times and speedup on GPU GeForce 610.

DBL # of vertices
execution time (m sec.)

Speed up
Sequential CPU (core i5) GPU GeForce 610

Bunny

2844 6.550 0.6822 9.60

11553 32.6531 1.9239 29.95

48903 120.698 2.8905 41.57

208353 498.503 8.95217 55.68

432138 1035.94 18.075 57.31

Dragon

33306 84.135 2.1596 38.95

143382 315.272 6.18281 50.99

299934 702.657 12.5508 55.98

607560 1410.55 24.2415 58.18

2614242 --- ---

The second parallel test is implemented on another PC

with GPU having more cores GeForce 1050 and core i7

CPU, The more cores there are, means the more threads and

then more vertices that can be served at the same time. Table

3 shows the execution times of the sequential and parallel

CUDA implementation of 3D transformation and the speed-

up obtained from these results. As can be seen in this table

the GPU is up to 622x faster than CPU.

 International Journal of Information Engineering and Applications 2018; 1(3): 123-131 129

Table 3. Execution times and speedup on GPU GeForce gtx 1050.

 # of vertices
Exe time (m sec.)

Speed up
Sequential core i7 GPU GeForce gtx 1050

Bunny

2844 6.66257 0.260741 25.55

11553 26.5726 0.256729 103.50

48903 115.702 0.636718 181.72

208353 422.738 1.18045 358.11

432138 873.083 2.02138 431.92

Dragon

33306 84.4872 0.555396 152.12

143382 307.809 0.965289 318.87

299934 613.565 1.61185 380.66

607560 1227.63 2.62127 468.33

2614242 4984.46 8.00748 622.47

5.3. Single vs Double Precision

Double precision floating-point performance is important

for specific applications in order to obtain the desired

accuracy of the results. All the previous results are obtained

for double precision 64-bit point values of the vertices (x, y,

z, w). So, another test are recorded when changing the

representation of vertices data to single precision 32-bit, the

speed of transformations increased as expected and the

displayed output not affected more since the resolution

depends on the number of vertices representing the objects.

As can be seen in table 4 the speed of transformation is

increased in comparing with double precision. Figure 8

shows the comparison graphs between single (SGL) and

double (DBL) precision.

Finally table 5 and table 6 displays the comparison

between this work and other previous works. In table 5, the

results in [10] are for image transformations based on visual

studio platform using GeForce 635, and [4] implemented the

transformations on FPGA vertex 5 chip. While table 6

compares our results with [10] when using the same GPU

type GeForce 610 and the same vertices numbers.

All these results show the effectiveness of our

implementation for accelerating 3D objects transformations

faster than other previous works.

Table 4. Execution times and speedup on GPU GeForce gtx 1050 for SGL precision.

 # of vertices
Execution time (m sec.)

Speedup
Sequential core i7 GPU GeForce gtx 1050

bunny

2844 6.50065 0.278975 23.30

11553 23.5835 0.289914 81.35

48903 114.877 0.308513 372.35

208353 416.79 0.642918 648.27

432138 850.642 0.934291 910.46

dragon

33306 74.2076 0.293561 252.78

143382 251.97 0.569983 442.06

299934 600.19 0.750131 800.11

607560 1177.8 1.06958 1101.18

2614242 4851.2 3.30247 1468.96

Figure 8. Speedup comparison for single and double precision vertices.

130 Sura Nawfal Alrawy and Fakhrulddin Hamid Ali: GPU Acceleration of 3D Object Transformations

Table 5. Comparison execution times in milliseconds with previous works.

of vertices 2D transformations [10] GeForce 635 3D transformations [4] Vertex 5 Implemented 3D transformations GeForce 1050

100000 0.862 1.3870 0.42447

1000000 8.588 13.872 1.59252

10000000 85.99 - 12.3627

Table 6. Comparison execution times in milliseconds with [10] on the GeForce 610

of vertices 2D transformations [10] Matlab Implemented 3D transformations LabVIEW

1536 5.1 0.416

24576 5.6 2.038

49152 5.8 2.981

6. Conclusions and Performance

Evaluation

One of the main concerns of real-time graphics is the

speed of execution, so faster processing of affine transform is

extremely needed. The execution time of a graphic system is

a function of the complexity of a polygonal object which can

be measured by the number of vertices used to represent it. In

this paper the acceleration of 3D transformation has been

achieved using parallel technique for producing the new

vertices in addition to concatenate many sequences of

transformation in one adaptive matrix, so the total transform

execution time has been reduced. This general 3D vertex

transform has been designed using LabVIEW environment

for any sequence of transformations at a time. From the

results that have been discussed before, the execution time

increased as the complexity of object increase. In many cores

CPU there was little improvement, where the maximum

speedup obtained was about 1.87, indicating that the

bottleneck was not the CPU cores but some part of the

memory and cache system. On the other hand, in GPU

implementation, GPU has many parallel executive units with

wide bandwidth and large caches size that enabling faster

execution of the vertex transform.

The first type GPU has been used to compare the

performance of this design with previous work in [10], the

results of CUDA LabVIEW shows that the transformations

consumed less time comparing to the previous work for the

same test data, although the vertex transform in [10] was for

2D models, and for the same GPU and data set, our

LabVIEW design was faster than that of Matlab 2D

transform as shown in table 6. Further improvement has been

obtained in table 3 using the second GPU type which has

more compute units and wide memory bandwidth.

Before displaying the comparison results between float

and double, expected values of performance increase can be

determined for single precision. For bandwidth limited

applications the performance should increase by a factor of

two, since the kernel has to read twice more data for the

double precision version than for the single precision version

(8 bytes instead of 4 bytes). The measured values in table 4

confirm the theoretical predictions, which have been based

on the bandwidth limitation of this implementation, such as

for the bunny object with 432138 vertices the average

transform time for single precision was 0.934291

milliseconds and for double about 2.02138 milliseconds, so

the average measured execution time increase is of 2.16 and

hence very close to the predicted value of 2. Accordingly, it

can be concluded that the implementation of this unit on

GPU is bandwidth bound rather than compute bound.

However, the resolution of a model depends on the number

of vertices formed that model rather than the precision of

data vertices itself which represent the address values of the

displayed pixels. So with single precision data, the maximum

execution time has been consumed to transformed 100

million vertices was about 0.508 sec.

Comparing table 2 and 3 the execution times in the 2
nd

GPU decreased by a factor of around 8x since the memory

bandwidth for GeForce 1050 is 112 GB/s but for GeForce

610 is 14 GB/sec.

Finally the comparison results in tables 5 and 6 show that

the performance of our 3D transformation outperformed

previous works in [10] and [4] where (Matlab and visual

studio) and FPGA has been used respectively.

References

[1] Taylor & Francis Group, CRC Press “Practical Algorithms For
3D Computer Graphics” second edition R. Stuart Ferguson, ©
2014.

[2] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman,
“Real-Time Rendering”, 1045 pages, from A. K. Peters Ltd.,
3rd edition, ISBN 987-1-56881-424-7, 2008.

[3] Fakhrulddin Hamid Ali, “Transformation Matrix for 3D
computer Graphics Based on FPGA”, Al-Rafidain
Engineering Journal, Vol. 20, No. 5, October 2012.

[4] Sahin, Ibrahim. "A 32-bit floating-point module design for 3D
graphic transformations". Scientific Research and Essays
Journal, Vol. 5, pp 3070-3081, 18 October 2010.

[5] Biswal Pradyut Kumar, Banerjee Swapna. “A parallel
approach for affine transform of 3D biomedical images”.
International conference on electronics and information
engineering (ICEIE), vol. 1. IEEE; 2010. p. 329–32.

[6] Pradyut Kumar Biswal, Pulak Mondal, Swapna Banerjee;
“Parallel architecture for accelerating affine transform in high-
speed imaging systems” Journal of Real-Time Image
Processing. Springer-Verlag 2011.

 International Journal of Information Engineering and Applications 2018; 1(3): 123-131 131

[7] Mondal P, Biswal PK, Banerjee S “FPGA based accelerated
3D affine transform for real-time image processing
applications”. Comput Electr Eng 49 (1): 69 Elsevier, 2016.

[8] Dr. Basma Mohammed Kamal Younis, Ne'am Salim
Mohammed Sheet “A Real Time Dynamic 3D Graphics
Processor Using FPGA” international Journal for Research
and Development in Engineering (IJRDE) www.ijrde.com
Vol. 2: Issue. 1, June-July 2013 pp- 1-12.

[9] Zhiyuan Liu, Xuezhang Zhao “Research and Implementation
of Image Rotation Based on CUDA” Advanced Materials
Research ISSN: 1662-8985, Vol. 216, pp 708-712 Trans Tech
Publications, Switzerland, © 2011.
www.scientific.net/AMR.216.708.

[10] Hadeel Alshakargy “Execution Speed up of Image Rotation
Matrix Using Parallel Technique”, M.Sc. thesis, Computer
Engineering University of Mosul, 2016.

[11] Bozhi Liu, Tao Sun, Li Zhou, Jia Wang and Yuanzhi Zhang
"Architecture for Vertex Transformation and Triangle Clipping
in 3D Graphics", ISSN: 1662-7482, Vols. 462-463, pp 1040-
1045 Trans Tech Publications, Switzerland, © 2014.

[12] N. Taghiyev, M. Akcay, “Parallel matrix multiplication for
various implementations,” Application of Information and

Communication Technologies (AICT), 2013 7th International
Conference on, pp. 1-5, 2013. IEEE Conference.

[13] Nicholas Malaya, Shuai Che, Joseph L. Greathouse, Ren´e
van Oostrum, and Michael J. Schulte “Accelerating Matrix
Processing with GPUs” Published in the Proceedings of the
24th IEEE Symposium on Computer Arithmetic (ARITH 24),
July, 2017.

[14] P. Michailidis, K Margaritis., “Performance Models for Matrix
Computations on Multicore Processors using OpenMP”. The
11th Intl. Conf. on Parallel and Distributed Computing,
Applications and Technologies, 2010.

[15] Nvidia corporation, “CUDA C Programming Guide” PG-
02829-001_v9.0 | September 2017,
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

[16] GeForce gtx 1050 characteristics https://www.nvidia.com/en-
us/geforce/products.html.

[17] 3D computer graphics models from
http://graphics.stanford.edu/data/3Dscanrep/.html

