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Abstract: Generating 3D animation scenes in computer graphics requires applying a 3D transformation on the vertices of 

the objects. These transformations consume most of the execution time. Hence, for high-speed graphics systems, acceleration 

of vertex transform is very much sought for because it requires many matrices operations that to be performed at a real-time, so 

the execution time is essential for such processing. In this paper, the acceleration of 3D object transformation is achieved using 

parallel techniques such as Multicore Core Central Processing Unit (MC CPU) or Graphic Processing Unit (GPU) or even 

both. Multiple geometric transformations are concatenated together at a time in any order with interactive manner. The 

performance results are presented for a number of 3D objects with paralleled implementations of the affine transform on the 

NVIDIA GPU series. The maximum execution time was about 0.508 seconds to transform 100 million vertices. Other results 

also showed the significant speedup compared to (CPU and MC CPU) computations for the same object complexity. 
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1. Introduction 

In computer graphics, the most popular method for 

displaying a 3D object is the polygon mesh model which 

consists of polygons represented by a list of points or 

vertices. In many applications, there is a need for altering the 

scene objects or parts of them, especially in computer 

animations. As the number of objects in the animation scene 

increases, the number of vertices used to define these objects 

will increase, so the speed is needed to manipulate these 

vertices. 

Geometric transformations are the ways of manipulating 

the vertices while preserving the spatial relationships 

among them. Changes in orientation, shape object, and size 

are accomplished with these transformations that are 

applied on each and every vertex of the object to obtain a 

transformed one [1-2], these transformations are called 

affine transformation (AT) which may consist of many 

operations such as translation, rotation, shearing, scaling 

and others. The AT plays an important role, not only in 

computer graphic application, but also in various high 

speed applications such as medical imaging and machine 

vision applications as in [6-7]. 

The transformation operations are highly computationally 

intensive as it involves matrix multiplication of trigonometric 

functions that is applied for each vertex individually. So, the 

speed of these transformations is the challenge of producing 

realistic vision of animation scenes [3]. This realistic requires 

fast execution of addition, multiplication, and trigonometric 

which attracted and still do many research work and different 

architectures as presented by the following reviews: 

Several attempts to accelerate such transformations have 

been proposed, most of them have implemented on FPGA [3-

7], Biswal etc. proposed a parallel algorithm which calculates 

AT of two voxel locations using a single transform operation 

[5]. Then they modified this algorithm in [7] to be able to 

calculate AT of four voxel locations by performing a single 

transformation, but this algorithm assumed symmetry about 

four pixel locations for the transformed object. In [6] [9] and 

[10], 2D transformations for images have been implemented, 

on other hand, most researchers have put more emphasis on 

affine rotation only [9] and [10]. 

Nowadays, a lot of work is being done to implement 

parallel technique into existing algorithms to enhance their 

performance, matrix multiplication is a computational 

problem that have been accelerated using (GPU) as in [12-

13] or even multicore [14]. 

In this work an adaptive 3D graphic transformations is 

designed and accelerated using parallel techniques GPU and 

multicore, where all vertices are transformed using the AT 

matrix simultaneously by assigning each group of vertices to 
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each thread and multiplying them as single instruction 

multiple data SIMD. 

The rest of this paper is organized as follows: section 2 

discusses the theoretical and mathematical explanation of 3D 

transformations. Section 3 summarizes CPU and GPU 

architectures. Implementation and analysis of the designed 

3D transformation are described in Section 4. Section 5 

describes the experimental results measured at real time for 

many objects, and finally Section 6 states conclusions of this 

paper. 

2. Geometric 3D Transformation 

3D transformations are the ways of moving the vertices 

that describe one or more 3D objects to new locations or 

orientations, these processes involve translation, scaling, 

shearing and rotation. They are applied to each individual 

vertex and repeated to all object vertices to achieve the 

required operation. In computer graphics the matrix notation 

is the suitable way to describe each of these operations, and a 

vector describes each vertex. Scaling, shearing and rotation 

transforms are linear transforms that can be represented by 

3x3 matrix, but translation transform is nonlinear. Combining 

linear transforms and translations can be done using an affine 

transforms (AT), which are the ones most often used in 

graphics, but in 3D, AT cannot be implemented using 3×3 

matrices, so 4x4 matrix is used. On the other hand the 

homogeneous coordinates in the transformations are needed 

to promote the 3D coordinate by adding a fourth component 

of unity to the vectors that represent positions to be as 4x1. 

As a result of that, the input vertices are described as v=(x, y, 

z, 1) and the transformed vertices as (x`, y`, z`, 1) [1-2]. 

2.1. Translation Matrix 

Translation displaces vertices to new positions defined by 

a displacement vector t= [Tx Ty Tz] the algebraic and matrix 

representation for 3D translation (T) are shown in (1). 
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By this transform, the input vector (x, y, z) is left 

unaffected by a multiplication by T, because a direction 

vector can’t be translated. In contrast, both points and vectors 

are affected by the rest of affine transforms [2]. 

2.2. Scaling 

Scales expands or contracts a 3D object with components 

(x, y, z) by the factors Sx, Sy and Sz along the x-, y- and z- 

direction respectively. The larger the Si, i є {x, y, z}, the larger 

the scaled entity gets in that direction. Setting any of the 

components of s to one naturaly avoid the changes in scaling 

in that direction. The equation of scaling is described in 

equation (2) 
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The scaling operation is called uniform if Sx=Sy=Sz and 

non-uniform otherwise [1-2]. 

2.3. Rotation Matrix 

To rotate an object in a 3D space, an axis of rotation need 

to be specified in addition to the angle of rotation. This can 

have any spatial orientation in a 3D space. The 

transformation matrices for rotation about the X, Y and Z-

axes, respectively are in (4), (5) and (6) equations. 
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All rotation matrices have determinant of one and are 

orthogonal. 

The order of rotation should be considered into account in 

3D space where the order of rotation affects the final position 

of the rotated object because matrix multiplication is not a 

commutative operation. Rotation about the x-axis by an angle 

θ followed by rotation about the y-axis by an angle φ does 

not give the same result as the one obtained if the order of the 

rotations is reversed [1-2]. So based on this property there are 

six possibilities of choosing the rotation axes, in other words 

there are six sequences of product of individual rotations 

about three axes), this type of formalism is called Tait–Bryan 

angles [2]. 

2.4. Combining Transformations 

In addition to apply the individual transformation on 

objects, sequence of these transformations can be combined 

to form many functions that are required in computer 

graphics. This is done by multiplying or concatenating any 

sequence of the previous matrices to achieve the desired 

result, by this strategy it is preferable to define any arbitrary 

transformation directly with a single new matrix, and then, 

this new matrix is applied to the animation objects. This 
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approach fits well for implementing graphics systems, since 

it dramatically reduces computational complexity and 

execution time [2]. 

3. Implementation Platforms 

The CPU and GPU are chosen in this paper as platforms 

for implementing many 3D transformations for sequential 

and parallel execution, a brief introduction of each platform 

is overstated. 

3.1. Central Processing Unit (CPU) 

CPU architecture has only one processing unit in the chip 

(See figure 1), for performing arithmetic or logic operations. 

At any time only one operation can be performed [15]. 

 

Figure 1. CPU hardware architecture. 

3.2. CPU with Multicore Processor 

A multicore processor is a system that comprises of two or 

more independent cores (or CPUs). The cores are generally 

integrated onto one integrated circuit die (known as a chip 

multiprocessor), or they are integrated onto multiple dies on a 

single chip package [15] as in figure 2. 

 

Figure 2. Multicore hardware architecture. 

3.3. Graphic Processing Unit (GPU) 

GPU is viewed as a compute device operating as a 

coprocessor to the main processor (CPU host). A GPU is 

implemented as an aggregation of multiple processors so it is 

called multiprocessors, which consists of a number of Single 

Instruction Multiple Data (SIMD) ALUs integrated as a 

network on a chip (See figure 3). According to the SIMD 

every processor within GPU must execute the same 

instruction at the same time, only data can be varying [15]. 

Refer to figure 3, the orange color indicates the cache 

memories, the blue color indicates the control units and the 

green color indicates the ALUs. 

 

Figure 3. GPU hardware architecture. 

 

Figure 4. The GP107 graphics processor architecture. 



126 Sura Nawfal Alrawy and Fakhrulddin Hamid Ali:  GPU Acceleration of 3D Object Transformations  

 

In this paper GeForce GTX 1050 is used for parallel 

implementation, this GPU is based on Pascal architecture 

GP107 chip as shown in figure 4, where there are six SMs 

each with 128 shader units, NVIDIA has disabled some 

shading units on GTX 1050 to reach the product's target 

shader count. It features 640 shading units, 40 texture 

mapping units and 32 ROPs. NVIDIA has placed 4 GB 

GDDR5 VRAM on this card, which is connected using a 

128-bit memory interface [16]. 

4. Implementation and Testing 

In this work LabVIEW environment is used for 

implementing and testing the transformations, the software 

version is professional 2017; two PCs are used in this work 

the first is notebook with 16GB RAM, Intel® Core™ i7 

7700HQ @2.8 GHz processor with one NVIDIA GeForce 

1050 GTX of compute capability 6.1, containing 5 streaming 

multiprocessor each of them contains 128 units as mentioned 

before, the maximum memory data rate (112 GB/s). 

Applications are designed in CUDA version 9.0 and using 

Visual Studio 2015, Nvidia Graphics driver version 

22.21.13.8554 is used for CUDA compatibility. The second 

PC used with Intel® Core™ i5 3210m, 2.8 GHz processor 

with one NVIDIA GeForce 610 GT of compute capability 

2.1, containing 1 streaming multiprocessor of 48 cores, 

memory data rate (14GB/s). Applications are designed in 

CUDA version 5.0 and using Visual Studio 2010. 

4.1. Import 3D Model 

Firstly the 3D model is imported into the LabVIEW as a 

mathematical model forming by vertices, edges and surfaces, 

the vertices of these models are extracted to apply the 

transformations on it, then the transformed vertices are stored 

backed in to the model to redisplay the transformed object. 

The block diagram.vi of this operation is shown in Figure 5. 

 

Figure 5. Block diagram of importing 3D model. 

Modeling any animated object requires to define thousands 

even millions of vertices for high resolution. Two 3D test 

models are used with different resolutions; these models are 

bunny and dragon which are standard computer graphics 

created at Stanford university [17]. In general any 3D object 

can be stored in different formats as (.obj, .stl, .ply…etc), the 

(stl) format is chosen in this work since LabVIEW support 

this format, so the standard models are firstly converted to 

(stl) format. 

4.2. Transformation Matrix 

The transformation matrices are built and combined 

together in an accumulating manner to generate one new 

matrix, and then this accumulating matrix is used for per 

vertex transformation of the object to reduce the execution 

time. In this paper the combination form is desired to achieve 

all possible sequences of transformations, where in contrast 

to 2D graphics, the order of some transformations is 

considerable issue in 3D graphics, for example translating a 

3D object then rotating it, does not equivalent to rotating then 

translating the same object. Also in the rotation transform, 

the order of rotation affects the final position of the object 

since there are three axis of rotation, in other word a rotation 

matrix has three degrees of freedom that represents a 3D 

rotation in every imaginable way. So, there are six possible 

orders: x-y-z, x-z-y, y-x-z, y-z-x, z-x-y, z-y-x. All these 

sequences are considered in designing the transformation 

unit. Figure 6 displays the execution front panel of the 

designed vi, as shown, the user can change the parameters of 

transformation unit in interactive manner at real time, where 

the event case structure is used for these parameters to take 

the effect of each change and redisplay the output. 
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Figure 6. The front panel of the transformation unit. 

4.3. Sequential and Multicore Execution 

For comparison purpose, the 3D transformations are 

applied on the test objects without using parallel techniques 

where the vertices are processed sequentially one vertex after 

another, then the multicore toolkit is used in LabVIEW for 

matrix computation instead of traditional tools to speed up 

the operations as shown in figure 7 where the number of 

CPUs can be chosen from this GUI. 

The high resolution second.vi is used to measure the 

execution time, for all computations in this paper the run 

time is recorded after several trials because the run time 

slightly differs after first execution as shown in figure 7, a 

snapshot of the front panel displays the run times for the first 

three object resolutions as a waveform graph. 

 
Figure 7. The execution of object transformation on multi-core. 

4.4. Computations on GPU 

To evaluate the performance of 3D transformations on 

GPU, The implementation was realized in NVIDIA CUDA 

architecture, because of hardware availability and experience 

with this technology. Using GPU, large number of vertices 

can be executed in parallel on hundreds of cores. 

In LabVIEW GPU computing, the code calls the GPU via 

CUDA toolkit interface, this interface is made up of two 

LabVIEW libraries lvcuda.lvlib and lvcublas.lvlib. The last 

library contains optimized implementation of BLAS library 

which has vector-vector, vector-matrix, and matrix-matrix 

operations. The matrix–matrix operation is used in this work 

to compute new vertices after transformation. For 
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implementing on GPU, first the device and library are 

initialized, when a kernel is created, memory need to be 

allocated for both transformation and vertices matrices, then 

the transformed vertices are obtained after multiplication 

computation with xGEMM, this operation is able not only 

multiply matrices but to transpose first, second or both 

matrices. The upload and download data is also used for 

memory copy between host and device, finally, the created 

space of memory must be freed or deallocated to allocate the 

matrices, this is done to overcome any associated problems 

of memory leak or crash as the system runs out of memory, 

and to ensure dealing with data of large vertices. 

Using GPU, many vertices are processed in parallel rather 

than one vertex after another, since each vertex is four floats 

in 3D graphics, four threads would be required to compute 

each vertex. 
 

5. Experimental Results and Analysis 

5.1. Sequential and Multicore 

Implementation 

To compare the parallel execution of 3D transformations 

with serial execution, the first test just did the vertex 

transformations using the CPU, single threaded and multi-

threaded are implemented on core i7. A real 3D model with 

different resolutions is transformed and redisplayed. In this test 

the double precision format is used for vertices of these models. 

The execution time results are tabulated in table 1 for one core 

and multi-core and the speedup is calculated as a ratio of 

sequential execution time on one core to parallel execution 

time on four cores. From the result shown one can note that 

there is little improvement in speedup, also for small number 

of vertices less than 2844 the speedup became less than one 

due to the communication overhead for small data or vertices. 

Table 1. Execution times for single and multi-core CPU. 

 # of vertices 
execution time (m sec.) 

4 cores speed up 
1 core 2 cores 4 cores 

Bunny 

2844 6.66257 5.26332 4.37644 1.52 

11553 26.5726 18.7992 14.1694 1.87 

48903 115.702 80.4398 72.0017 1.60 

208353 422.738 329.57 290.546 1.45 

432138 873.083 655.802 577.052 1.51 

dragon 

33306 84.4872 60.1939 48.1273 1.75 

143382 307.809 227.932 196.553 1.56 

299934 613.565 462.963 429.725 1.42 

607560 1227.63 923.047 812.955 1.51 

2614242 4984.46 4157.82 2928.59 1.70 

 

5.2. Parallel Implementation on GPUs 

The parallel test is implemented on two types of GPUs, 

table 2 shows the execution times comparison on the first PC 

having GeForce 610m and core i5 CPU, the run times is 

measured for kernel execution in millisecond for the same 

previous set of objects in each sequential and parallel 

implementation. As shown from these results the 3D 

transformation is speeded up on GPU by a factor up to 58x. 

The missing values denotes using ‘-‘ symbol means that 

these results was not computed due to their enormous 

running time. 

Table 2. Execution times and speedup on GPU GeForce 610. 

DBL # of vertices 
execution time (m sec.) 

Speed up 
Sequential CPU (core i5) GPU GeForce 610 

Bunny 

2844 6.550 0.6822 9.60 

11553 32.6531 1.9239 29.95 

48903 120.698 2.8905 41.57 

208353 498.503 8.95217 55.68 

432138 1035.94 18.075 57.31 

Dragon 

33306 84.135 2.1596 38.95 

143382 315.272 6.18281 50.99 

299934 702.657 12.5508 55.98 

607560 1410.55 24.2415 58.18 

2614242 --- ---  

 

The second parallel test is implemented on another PC 

with GPU having more cores GeForce 1050 and core i7 

CPU, The more cores there are, means the more threads and 

then more vertices that can be served at the same time. Table 

3 shows the execution times of the sequential and parallel 

CUDA implementation of 3D transformation and the speed-

up obtained from these results. As can be seen in this table 

the GPU is up to 622x faster than CPU. 
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Table 3. Execution times and speedup on GPU GeForce gtx 1050. 

 # of vertices 
Exe time (m sec.) 

Speed up 
Sequential core i7 GPU GeForce gtx 1050 

Bunny 

2844 6.66257 0.260741 25.55 

11553 26.5726 0.256729 103.50 

48903 115.702 0.636718 181.72 

208353 422.738 1.18045 358.11 

432138 873.083 2.02138 431.92 

Dragon 

33306 84.4872 0.555396 152.12 

143382 307.809 0.965289 318.87 

299934 613.565 1.61185 380.66 

607560 1227.63 2.62127 468.33 

2614242 4984.46 8.00748 622.47 

 

5.3. Single vs Double Precision 

Double precision floating-point performance is important 

for specific applications in order to obtain the desired 

accuracy of the results. All the previous results are obtained 

for double precision 64-bit point values of the vertices (x, y, 

z, w). So, another test are recorded when changing the 

representation of vertices data to single precision 32-bit, the 

speed of transformations increased as expected and the 

displayed output not affected more since the resolution 

depends on the number of vertices representing the objects. 

As can be seen in table 4 the speed of transformation is 

increased in comparing with double precision. Figure 8 

shows the comparison graphs between single (SGL) and 

double (DBL) precision. 

Finally table 5 and table 6 displays the comparison 

between this work and other previous works. In table 5, the 

results in [10] are for image transformations based on visual 

studio platform using GeForce 635, and [4] implemented the 

transformations on FPGA vertex 5 chip. While table 6 

compares our results with [10] when using the same GPU 

type GeForce 610 and the same vertices numbers. 

All these results show the effectiveness of our 

implementation for accelerating 3D objects transformations 

faster than other previous works. 

Table 4. Execution times and speedup on GPU GeForce gtx 1050 for SGL precision. 

 # of vertices 
Execution time (m sec.) 

Speedup 
Sequential core i7 GPU GeForce gtx 1050 

bunny 

2844 6.50065 0.278975 23.30 

11553 23.5835 0.289914 81.35 

48903 114.877 0.308513 372.35 

208353 416.79 0.642918 648.27 

432138 850.642 0.934291 910.46 

dragon 

33306 74.2076 0.293561 252.78 

143382 251.97 0.569983 442.06 

299934 600.19 0.750131 800.11 

607560 1177.8 1.06958 1101.18 

2614242 4851.2 3.30247 1468.96 

 
Figure 8. Speedup comparison for single and double precision vertices. 
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Table 5. Comparison execution times in milliseconds with previous works. 

# of vertices 2D transformations [10] GeForce 635 3D transformations [4] Vertex 5 Implemented 3D transformations GeForce 1050 

100000 0.862 1.3870 0.42447 

1000000 8.588 13.872 1.59252 

10000000 85.99 - 12.3627 

Table 6. Comparison execution times in milliseconds with [10] on the GeForce 610 

# of vertices 2D transformations [10] Matlab Implemented 3D transformations LabVIEW 

1536 5.1 0.416 

24576 5.6 2.038 

49152 5.8 2.981 

 

6. Conclusions and Performance 

Evaluation 

One of the main concerns of real-time graphics is the 

speed of execution, so faster processing of affine transform is 

extremely needed. The execution time of a graphic system is 

a function of the complexity of a polygonal object which can 

be measured by the number of vertices used to represent it. In 

this paper the acceleration of 3D transformation has been 

achieved using parallel technique for producing the new 

vertices in addition to concatenate many sequences of 

transformation in one adaptive matrix, so the total transform 

execution time has been reduced. This general 3D vertex 

transform has been designed using LabVIEW environment 

for any sequence of transformations at a time. From the 

results that have been discussed before, the execution time 

increased as the complexity of object increase. In many cores 

CPU there was little improvement, where the maximum 

speedup obtained was about 1.87, indicating that the 

bottleneck was not the CPU cores but some part of the 

memory and cache system. On the other hand, in GPU 

implementation, GPU has many parallel executive units with 

wide bandwidth and large caches size that enabling faster 

execution of the vertex transform. 

The first type GPU has been used to compare the 

performance of this design with previous work in [10], the 

results of CUDA LabVIEW shows that the transformations 

consumed less time comparing to the previous work for the 

same test data, although the vertex transform in [10] was for 

2D models, and for the same GPU and data set, our 

LabVIEW design was faster than that of Matlab 2D 

transform as shown in table 6. Further improvement has been 

obtained in table 3 using the second GPU type which has 

more compute units and wide memory bandwidth. 

Before displaying the comparison results between float 

and double, expected values of performance increase can be 

determined for single precision. For bandwidth limited 

applications the performance should increase by a factor of 

two, since the kernel has to read twice more data for the 

double precision version than for the single precision version 

(8 bytes instead of 4 bytes). The measured values in table 4 

confirm the theoretical predictions, which have been based 

on the bandwidth limitation of this implementation, such as 

for the bunny object with 432138 vertices the average 

transform time for single precision was 0.934291 

milliseconds and for double about 2.02138 milliseconds, so 

the average measured execution time increase is of 2.16 and 

hence very close to the predicted value of 2. Accordingly, it 

can be concluded that the implementation of this unit on 

GPU is bandwidth bound rather than compute bound. 

However, the resolution of a model depends on the number 

of vertices formed that model rather than the precision of 

data vertices itself which represent the address values of the 

displayed pixels. So with single precision data, the maximum 

execution time has been consumed to transformed 100 

million vertices was about 0.508 sec. 

Comparing table 2 and 3 the execution times in the 2
nd

 

GPU decreased by a factor of around 8x since the memory 

bandwidth for GeForce 1050 is 112 GB/s but for GeForce 

610 is 14 GB/sec. 

Finally the comparison results in tables 5 and 6 show that 

the performance of our 3D transformation outperformed 

previous works in [10] and [4] where (Matlab and visual 

studio) and FPGA has been used respectively. 
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