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Abstract 
An ANN is a system based on the operation of biological neural networks. ANNs have 

been used in many different applications such as control, electronics, and 

communications. In this paper, the accurate models based on ANN and RBF in order to 

predict the permeability and compressive strength in the roller compacted concrete (RCC) 

pavement specimens with the different contents of the added rice husk ash (RHA) as a 

supplementary material are presented. The obtained results from the proposed RBF and 

ANN models are compared with each other and with the experimental data, which show 

a good agreement between the predicted values and the experimental data. The proposed 

ANN model is more accurate and reliable than the proposed RBF model. According to 

the results of this study, the optimal content for increasing of the compressive strength 

and reducing of permeability was obtained by substituting 9% and 11% of the cement by 

RHAin gyration number 70, respectively. However, adding a little more than 11% RHA 

reduced the compressive strength. 

1. Introduction 

Roller compacted concrete (RCC) is a zero-slump concrete consisting of dense-graded 

aggregate and sand, cementations materials, and water. Because it contains a relatively 

small amount of water, it cannot be placed by the same methods used for the 

conventional concrete. RCC is drier, and looks and feels like damp gravel. It does not 

require any forms, dowels, reinforcing steel & finishing. Also, the method of compaction 

is different than the conventional compacted concrete and it is compacted by vibratory or 

pneumatic-tired rollers [1]. If well designed, the RCC will develop high compressive 

strength and good durability, i.e. ±60 MPa at 7 days. Moreover, this type of concrete is 

less sensitive to cracking in relation to the drying shrinkage. Because of its rapid setting, 

RCC is especially used in road and dam construction. The RCC is quite economic (low 

cost production and rapid installation) and on the contrary to bituminous binder, it 

develops high compressive strengths, suitable for the covering roadways [2]. According 

to the literatures, RCC was firstly used in a timber manufacture plant site in Vancouver 

during the initials of 1970. The performance of RCC in this site which was under heavy  
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loading traffic and severe abrasive effects was reported to be 

successful. Since then, RCC pavements have been 

extensively used in the industrial pavement areas in Canada. 

In Europe, RCC was initially used in low traffic roads of 

Spain. Also since 1984 many parking lots and heavy duty 

military camps were paved by RCC in Texas State of 

America. After the oil crisis during the 1970 decade, due to 

the higher construction costs, many conventional asphalt 

pavements were widely replaced by RCC pavements. In 

comparison to the flexible pavement, a reduced construction 

cost of 30% has been reported in the literatures [3]. When 

compared to conventional pavement and other types of 

concretes, RCC typically has a higher volume of aggregate 

and lower binder and water contents, and hence, reduced 

paste volume. For a given binder content, RCC will typically 

offer higher strength than the corresponding conventionally 

compacted pavement concrete [4]. In the last decade, the use 

of supplementary cementing materials has become an 

integral part of high strength and high performance concrete 

mix design. These can be natural materials, by-products or 

industrial wastes, or the ones requiring less energy and time 

to produce [5]. One of the most promising materials is rice 

husk ash (RHA) [6]. Rice husk is produced in millions of 

tons per year as a waste material in agricultural and industrial 

processes. It can contribute about 20% of its weight to RHA 

after incineration. RHA is a highly pozzolanic material [7]. 

Good pozzolanic activity in RHA results from high specific 

surface area (100-200 m
2
/g), small particle size (<10 µm), 

low carbon content (<6-8% by weight), and most importantly, 

high amorphous SiO2 content (80-90% by weight), among 

other factors [8]. There are some studies concerning the 

effect of the RHA on the mechanical properties of the roller 

compacted concrete pavements (RCCP). During a laboratory 

study, natural RHA has been utilized in order to partially 

substitute the mineral aggregate in diverse proportions within 

the RCC dosage. It was concluded that the addition of 5% 

RHA to the RCC improves the compressive strength, flexural 

strength, and modulus of elasticity values. The addition of 5% 

RHA in the RCC also decreases the cement consumption 

necessary to reach the desired flexural strength and the 

quantity of necessary mineral aggregates in RCC dosage [9]. 

In a similar study, the effects of RHA on the mechanical 

properties of RCC designed with the original and reclaimed 

asphalt pavement (RAP) materials have been investigated. 

The RCC mixes have been produced by the partial 

substitution of cement with RHA at varying amounts of 3% 

and 5%. It has been concluded that the addition of 3% RHA 

reduces the porosity especially after 120 days curing and 

improves the fatigue resistance. However, the addition of 

RHA to 5% resulted in the higher porosities and the lower 

fatigue lives [3]. During an another laboratory research, the 

effects of addition of RHA in the partial substitution of the 

mineral aggregate and its influence on the compressive 

strength, flexural strength and the modulus of elasticity have 

been investigated. The results revealed that the optimal value 

for these properties is obtained by substituting 5% of the 

aggregate by RHA [10]. In this study, the use of artificial 

neural network (ANN) and radial basis function (RBF) in 

predicting the permeability and compressive strength in the 

roller compacted concrete pavement specimens with the 

different contents of added rice husk ash (RHA) as a 

supplementary Material is investigated. Mixtures of RCC are 

dosed, containing 0, 5%, 15%, 30%, 45% and 50% RHA, 

replacing the cement. 

2. Experimental Program 

2.1. Materials 

An ASTM type I cement of Esfahan cement factory is used. 

The RHA (used in this work is made in 2 stages: first by 

burning the husk in free air condition in a special furnace for 

about 2 hours and then by burning the husk in the electric arc 

furnace with the capability of discharging the CO2 content of 

RHA (Figure 1). The burning temperature is within the range 

of 530°C to 650°C. 

 

Figure 1. Furnace used in this research:(a) Carbonation stage (free air condition), (b) Dicarbonation stage (electric arc furnace). 
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The ash was then ground using a ball mill (Figure 2) for 30 

minutes and in a disk mill (Figure 3) for 15 minutes. XRD 

and XRF analysis was performed to determine the level of 

the silicon dioxide and the silica phases of the produced RHA 

powder. According to the chemical characteristics by XRF 

analysis, the RHA has a high level of silicon dioxide, 

approximately 86%. Also, XRD analysis results showed that 

the silica is in the amourph phases. This silica is suitable for 

the pozzolanic reaction with cement. 

 

Figure 2. Ball mill. 

 

Figure 3. Disk mill. 

The fine aggregates include of combination of the natural 

and crushed sand and the coarse aggregates are the crushed 

stones with the maximum nominal size of ¾in (19mm). The 

fine aggregates include of 13% lime filler, 78% crushed sand 

and 9% natural sand. The comparison of combined gradation 

of aggregates with ACI 325.10R gradation specifications are 

given in Figure 4. The water is drinkable water. 

 

Figure 4. Comparison of combined gradation with ACI gradation specifications. 

2.2. Mix Combinations and Samples 

Preparation 

The mix proportion of the materials is done based on the 

soil compaction procedure (standard ASTM D1557). Table 1 

presents the composition of the produced and tested 

concretes. The samples are compacted and prepared with 

Servopac Gyratory compactor machine in the cylinder molds 

with 150 mm diameter and 200 mm height. The samples are 

kept in the water basin for 24 hours and then, they are tested 

for the compressive strength and the permeability in 7 and 28 

days. 

Table 1. Concrete mixture proportions in this research. 

Mix number OptimalW/(C+RHA) ratio Water Lit/m3 
Cementitious materials 

RHA Kg/m3 Cement Kg/m3 RHA /Cement (%) 

Rcc-P0 0.48 131.52 0 274 0 

Rcc-P5 0.5 137 13.7 260 5 

Rcc-P15 0.53 145.22 41.1 233 15 

Rcc-P30 0.6 164.4 82.2 192 30 

Rcc-P45 0.646 177 123.3 151 45 

Rcc-P50 0.648 177.55 137 137 50 
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Table 1. Continued. 

Mix number 
Total of cementitious 

material (Kg/m3) 

Cement weight by the total dry 

materials (%) 

Aggregates 
(Gravel/Sand) ratio 

SandKg/m3 Gravel Kg/m3 

Rcc-P0 

274 13 1155.42 935.55 45.55 

Rcc-P5 

Rcc-P15 

Rcc-P30 

Rcc-P45 

Rcc-P50 

 

3. Computational Intelligence 

3.1. Artificial Neural Network 

An ANN [11, 12] is a system based on the operation of 

biological neural networks. ANNs have been used in many 

different applications such as control, electronics, and 

communications. Multi-layer perceptron (MLP) networks [13] 

are the most widely used neural networks that consist of a 

great number of processing elements called neurons. Neurons 

are the basic processing elements of neural networks. The 

synapses of the biological neurons are modeled as weights in 

the networks. These weights are adjusted based on an error-

minimization technique called back-propagation rule. Thus, 

ANN is a typical non-mechanistic model for modeling 

complex information and is known to have two intrinsic 

advantages. The first is its flexible capacity in apprehending 

the data used for training. Being intrinsically nonlinear, a 

trained ANN can grasp certain subtle patterns that tend to be 

overlooked by common statistical methods. The second 

advantage is its high predictive accuracy, i.e., the predictive 

capability for ‘‘new’’ data (untrained data). ANNs are the 

mathematical models, consisting of simple processing 

elements named neuron running in parallel which are 

interconnected by weighted and can be generated as one or 

multiple layers. Figure 5 shows the structure of a neuron 

where t21 U....,,U,U  are the inputs, t,12,11,1 W....,,W,W  

are the connection weights, b is the bias term and f is the 

transfer function. The output of the neuron is given by: 

( ) 







∑ +=
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1
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Figure 5. The structure of a neuron. 

The ANN structure used in this study is shown in Figure 6. 

This is called MLP. The MLP networks have minimum three 

layers one input layer, one or more hidden layer and one 

output layer. Each layer has a number of processing units 

(neurons) and each unit is fully connected to all of the units 

in the preceding layer. In Figure 6, n21 X....,,X,X  are the 

inputs, m21 Y....,,Y,Y  are the outputs, n is the number of 

inputs, m is the number of outputs, i is the number of neurons 

in the first hidden layer and j is the number of neurons in the 

second hidden layer. 

 

Figure 6. MLP neural network. 
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3.2. Redial Basis Function 

A RBF [14, 15] network is an ANN that uses RBFs as the 

activation functions. RBFs can fit erratic data. They are used 

in function approximation, time series prediction, and control 

due to their good approximation capabilities, faster learning 

algorithms and simpler network structures. The RBF has a 

feed forward structure and typically has three layers: an input 

layer, a hidden layer with a non-linear RBF activation 

function and a linear output layer as shown in Figure 7. The 

input layer is made up of the source nodes that connect the 

network to its environment. The hidden layer consists of a set 

basis function unit that carry out a nonlinear transformation 

from the input space to the hidden space. The transformation 

from the input to the hidden layer is nonlinear and from the 

hidden layer to the output layer is linear. The output from j
th

 

neuron of the hidden layer is given by: 

k  1,2,..,=j
2 
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where K is a strictly positive radially symmetric function 

(kernel) with a unique maximum at its center ( jµ ), which 

drops off rapidly to zero away from the center. The number 

of neurons in the hidden layer is k, and jσ  is the width of the 

receptive field in the input space from unit j. This indirectly 

indicates that jz  has a desired value only when the distance 

jx µ−  is smaller than jσ . The output of the mth neuron in 

the output layer is given by: 

 M1,2,..,=m)()(
1

∑=
=

k

j
jjmm xzwxy        (3) 

where jmw is the weighting factor. 

 

Figure 7. RBF structure. 

4. Modeling Approach 

In this paper, the accurate models based on the MLP 

neural network and RBF in order to predict the permeability 

and compressive strength are presented. The proposed 

models are shown in Figure 8. In this figure, the input 

parameters are the mix number and the gyration number and 

the output parameters are the permeability and the 

compressive strength. The data set required for training the 

ANN and RBF models is obtained using the experimental 

data. The experimental data are divided into two sets: 

training (about 70%) and testing (about 30%). MATLAB 

7.0.4 software was used for training the proposed models. 

 

Figure 8. The proposed computational intelligence models. 

The training process algorithm to obtain the ANN models 

is shown in Figure 9. The parameters are set i.e., a (the 

maximum acceptable MRE%), ε (error) and d (the number of 

repetition in each process) to determine the number of epochs, 

acceptable error, and the end of the process conditions. 

Where the mean relative error percentage (MRE %) is 

calculated by: 

∑
−

×=
=

N

i i

ii

ExpX

edXExpX

N
MRE

1 )(

)(Pr)(1
100%              (4) 

Where N is the number of data and ‘X (Exp)’ and ‘X 

(Pred)’ stand for the experimental and predicted (ANN or 

RBF) values, respectively. Next u is set as a counter for the 

number of neurons in the first hidden layer, v and j are also 

set as the counters for the number of neurons for other hidden 

layers, and l is a frequency counter in each state. Many 

parameters can be calculated by the network, but the MRE%, 

which is the ending condition of the process, is calculated. As 

shown in Figure 9 if MRE%≤ a, then the value of a is set to 

MRE%, and the network results are saved. Then the number 
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of neurons is increased by one. When the minimum value of 

MRE% is obtained, the condition for the optimized ANN 

structure of the network is achieved. 

 

Figure 9. The ANN training process algorithm. 

5. Results and Discussion 

To obtain the best ANN and RBF models, various configurations have been constructed and tested as shown in Table 2. 
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Table 2. Comparison between the different computational intelligence structures. 

Network Structure Epoch Outputs 
MRE% 

Train Test 

ANN (MLP) 

2002/3/2 
250 

Permeability 2 2.85 

 
Compressive strength 0.742 0.778 

2002/4/2 
100 

Permeability 1.42 4.23 

 
Compressive strength 0.56 3.413 

2002/5/2 150 Permeability 0.583 0.741 

  
Compressive strength 0.26 0.342 

2-3-3-2 
300 

Permeability 0.657 0.85 

 
Compressive strength 0.345 0.71 

2-4-2-2 
450 

Permeability 0.35 2.501 

 
Compressive strength 1.85 2.278 

2-3-2-3-2 
200 

Permeability 0.884 1.64 

 
Compressive strength 0.379 0.47 

RBF 2-50-2 

 

Permeability 0.62 2.57 

  
Compressive strength 0.101 4.657 

 

It is seen that the proposed ANN (MLP) model with 2-5-2 

structure (i.e., two neurons in the input layer, 5 neurons in the 

hidden layer and two neurons in the output layer) has the 

least MRE%. Therefore, the ANN model with this structure 

has been selected for our purpose. Table 3 shows the 

specification of this ANN architecture. Also, in order to 

examine the performance of the RBF and ANN models, the 

obtained results are compared with the known results. 

Figures 10 and 11 show the obtained results for the proposed 

ANN and RBF models. 

 

Table 3. Specification of the best proposed ANN model. 

Neural network MLP 

Number of hidden layer 1 

Number of neurons in the input layer 2 

Number of neurons in the hidden layer 5 

Number of neurons in the output layer 2 

Learning rate 0.5 

Number of epochs 150 

Adaption learning function Trainlm 

Activation function Tansig 

 

 

Figure 10. Comparison of the experimental and predicted results for the training data using the proposed ANN and RBF models. 
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Figure 11. Comparison of the experimental and predicted results for the testing data using the proposed ANN and RBF models. 

From Table 2 and Figures 10 and 11, it is clear that the 

predicted permeability and compressive strength by the 

proposed models is close to the experimental results, which 

shows the applicability of ANN and RBF networks as the 

accurate and reliable tools for the prediction of the 

permeability and the compressive strength. Figures 12 and 13 

show the obtained permeability and compressive strength 

using the best proposed ANN model, respectively. From 

these figures the maximum compressive strength is obtained 

39.32 MPa, in (Mix number, Gyration number) = (9, 70). 

Also, the minimum permeability is obtained 0.61*10
-11

 

Cm/Sec, in (Mix number, Gyration number) = (11, 70). 

 

Figure 12. The obtained permeability using the best proposed ANN model. 
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Figure 13. The obtained compressive strength using the best proposed ANN model. 

Finally, the proposed ANN model can present a 

mathematical relationship for the permeability and 

compressive strength as shown in Table 4, where PER, STR, 

MIX and GYR are stand for the permeability, compressive 

strength, mix number and gyration number, respectively. 

Also, Tansig function for variable x is given by: 

1
1

2
)(

2
−

+
= − x

e
xTansig                (5) 

Table 4. The obtained equations for the permeability and compressive 

strength using the best proposed ANN model. 

W13=-0.13 W27=0.128 W68=-0.027 

W14=-0.09 B3=-12.22 W78=0.039 

W15=0.11 B4=4.51 W39=-0.076 

W16=-0.46 B5=-1.83 W49=-0.6 

W17=0.085 B6=-5.55 W59=0.31 

W23=0.003 B7=-12.97 W69=0.451 

W24=-0.026 W38=0.058 W79=-0.180 

W25=0.116 W48=0.356 B8=3.15 

W26=0.228 W58=-0.057 B9=1.07 

Y1=Tansig (MIX *W13+GYR *W23+B3) 

Y2=Tansig (MIX*W14+ GYR *W24+B4) 

Y3=Tansig (MIX*W15+ GYR *W25+B5) 

Y4=Tansig (MIX*W16+ GYR *W26+B6) 

Y5=Tansig (MIX*W17+ GYR *W27+B7) 

PER= Y1*W38+Y2*W48+Y3*W58+Y4*W68+Y5*W78+B8 

STR= Y1*W39+Y2*W49+Y3*W59+Y4*W69+Y5*W79+B9 

6. Conclusions 

In this paper, the ANN and RBF are used to present a new 

model with the minimum error to predict the compressive 

strength and permeability of RCCP mixes containing RHA as 

cement replacement. The effect of adding RHA to the roller 

compacted concrete pavement specimens is modeled and 

predicted by ANN and RBF. The comparison shows that not 

only the results of both ANN and RBF models are in good 

agreement with the experimental data, but also the ANN 

model is more accurate than the RBF models. This means 

that the proposed models are reliable and flexible 

mathematical structures due to their high accuracy and 

therefore, they can be used to simulate the experiments 

precisely. According to the results of the laboratory tests and 

modeling using ANN and RBF, the optimal content for 

increasing of the compressive strength and reducing of the 

permeability, was obtained by substituting 9% and 11% of 

the cement by RHAin gyration number 70, respectively 

(maximum compressive strength was 39.32 MPa). However, 

adding a little more than 11% RHA reduced the compressive 

strength. 
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