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Abstract 
Design strengths of Structural Tees (WT-shapes, Tees) in axial compression are provided 

in Table 4-5 of the 14
th

 edition of AISC Manual of Steel Construction (the Manual) [1], 

with an assumption that the compression force is applied at the center of gravity (c.g.) of 

the cross section. However, in engineering practice, Tees are rarely loaded at the section’s 

c.g.; rather, they are eccentrically loaded at the ends through the gusset plates that welded 

or bolted to their flanges. Therefore, these Tees are subject to the axial compressive force 

and the bending moment induced by the eccentric end connections. Although the design 

strengths of eccentrically loaded WT-shapes are not provided in the Manual, they can be 

calculated based on AISC Specifications for Structural Steel Constructions (the 

Specifications) [2], albeit the design process is tedious and time consuming. However, if 

the Specifications are indiscriminately followed (called Approach 1 in this paper), the 

calculated strengths are too conservative. This paper discusses an alternate approach 

(Approach 2) allowed for by Commentary H2 of the Specifications, and the calculated 

strengths based on Approach 2 are larger and more reasonable than those based on 

Approach 1. Extensive Finite Element Nonlinear Analyses have been employed to 

validate the proposed approach. Finally, design tables for eccentrically loaded WT-shapes 

are provided to help engineers quickly determine the proper size of a WT-shape for their 

project. 

1. Introduction 

WT-shapes are commonly used in the bracing system to resist large axial loads and/or to 

satisfy the KL/r requirement for large unbraced lengths. When used as braces, Tees are 

often connected to a gusset plate through their flanges which create an eccentric 

connection due to an offset between the neutral axis of the Tee and the gusset plate. 

Although braces are treated as truss members in the structural analysis, the induced 

bending moment on a Tee due to the eccentric connection must be considered in the 

member design. This additional bending moment is neither considered by design tables in 

the 14
th

 edition of AISC Manual of Steel Construction [1], nor by Design Examples, 

Version 14 [3]. 

Gordon [4] presented Tables for Eccentrically Loaded WT Shapes in Compression, 

based on the 13
th

 edition of AISC Manual of Steel Construction (AISC 2005), but it is the 

author’s opinion that while the available strengths from Gordon’s tables are conservative 

(called Approach 1 in this paper), more capacity is available if a different design approach 

is used. This paper discusses an alternative approach (Approach 2) permitted by the 

Specifications [2] that yields larger and much needed capacities. 
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2. Observation 

Although the predominant load in Tee bracing and 

cross-frame members is the axial load, the effect of bending 

moments must be accounted for in the member design. Two 

components contribute to the moment in a Tee used as a brace: 

one is the moment due to the selfweight; the other is the 

moment due to an eccentric end connection. The moment due 

to selfweight can be neglected for bracing members with short 

lengths; however this moment should be considered in the 

design of long, slender bracing members. The effect of 

selfweight is not discussed in this paper. 

To demonstrate the conservativeness of Approach 1, 

consider two 10 ft. long grade 36 steel brace members: one 

uses WT6×17.5 with flange connected to a 5/8-in. thick gusset 

plate; another uses a single angle L6×6×7/16 with one leg 

connected to a 5/8-in. thick gusset plate (Figure 1). The 

available axial compressive strength of the Tee member is 

based on Design Approach 1 (see Example in later section); 

the available axial compressive strength of single angle 

member is from Table 4-12 of the Manual [1], or can be easily 

computed based on Section E5 of the Specifications [2], as 

discussed by Li [10]. The results are presented in Table 1. 

 

Figure 1. Tee & Single Angle Braces. 

Table 1. Comparison of the Available Compressive Strength of WT6x17.5& L6x6x7/16. 

Section Wt. (lb/ft) Connected element Outstanding Element φcPn (kips) Reference 

WT6x17.5 17.5 6.56x0.52 5.48x0.30 48.8 Example 

L6x6x7/16 17.3 6.00x0.44 5.56x0.44 
76.2 Sec. E5 of the Specifications 

62.4 Table 4-12 of the Manual 

 

In terms of member weight, element size and thickness, the 

single angle L6×6×7/16 is very close to WT6×17.5. Intuitively 

WT6×17.5 should have a larger axial capacity than the single 

angle L6×6×7/16 since it is a singly symmetric section and the 

bending is in the plane of symmetry. However, the axial capacity 

of the Tee based on Design Approach 1 is only about 64% of that 

of the single angle; therefore, the available strengths of 

eccentrically loaded Tees deserve a closer examination. 

To further illustrate the significance of the low capacities 

based on Design Approach 1, both the Tee and single angle are 

investigated for a range of unbraced length from 4 ft. to 19 ft., 

and the results are shown in Figure 2. 

 
Figure 2. Axial Capacities of Tee and Single Angle. 

3. Behavior of WT Shapes 

In applications such as bracings and cross-frames, the Tee 

can be connected to a gusset plate through either the flange or 

the stem. Connection through the stem (Figure 3) is rarely used 

for the practical reasons. In order to connect a gusset plate to the 

stem, half of the flange must be coped to accept the gusset plate, 

which adds to the fabrication cost. However, a gusset attached 

to the stem minimizes the eccentricity from the neutral axis of 

the Tee; Tees connected in this manner can be designed as 

concentrically loaded members if the selfweight induced 

moment is negligible in design, and Table 4-7 of the Manual [1] 

can be used to obtain its available axial compressive capacities. 

 

Figure 3. End Connection Types of WT-Members. 

Tees are singly symmetric sections about the centerline of 

the stem. A connection through the flange (Figure 3) is a 

commonly used engineering practice due to the simplicity of 

the connection; however, this type of connection creates an 

eccentricity from the neutral axis of the Tee from the applied 

load. The effect of connection eccentricity is a function of 

connection and member stiffness, if the connection is through 

a thin gusset plate, the moment due to connection eccentricity 

cannot be resisted by the thin plate at the connection; the 

moment must be resisted by the member [2] (Figure 4). This 

moment will reduce the axial capacity of the member. 
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Figure 4. Connection Moment. 

A pure bending moment in the plane of symmetry of a Tee 

produces bending stress in the tip of the stem that is much 

greater than the stress in the flange, therefore, the flexural 

strength of the Tee is controlled by the stress in the stem. 

However, for a Tee in compression that is eccentrically loaded 

from its the flange, the magnitude of the induced bending 

moment is directly proportional to the applied axial load. 

While the induced moment produces a large tensile stress in 

the tip of stem, the uniformly distributed compressive stress 

due to the applied axial load reduces the tensile stress in the 

stem and increases the compressive stress in the flange caused 

by the bending moment (Figure 5). 

 

Figure 5. Stresses in WT-Sections. 

Compared to the flexural strength of a Tee member in pure 

bending, the flexural strength of the Tee is increased due to the 

presence of axial force. Consider a zero length WT6×17.5 

member (Ag = 5.17 in
2
, Ix = 16.0 in

4
, Sx = 3.23 in

3
, d = 6.25 in, 

and y = 1.30 in.), the pure bending yield capacity My = Fy(Sx) = 

(36 ksi)(3.23 in
3
) = 116.28 kip-in. When the moment is created 

through an eccentrically loaded axial compressive force, the 

maximum compressive force and the corresponding moment 

can be found by solving equations (1) and (2); and the results 

are Pr = 108.77 kips, e = 1.694 in, and My = Pre = 184.25 kip-in, 

which is greater than 116.28 kip-in. In other words, when 

disregarding local and lateral torsional buckling, or when they 

are not in control, the presence of axial compressive force will 

increase the flexural capacity when the stem is in tension. 

1.3 36 at teeflange, and
5.17 16

r r r r

xg

P P e P P e
y

IA
+ = + =   (1) 

36 at teestem
5.17 3.23

r r r r

g x

P P e P P e

A S
− = − = −       (2) 

4. Design Approaches 

For a Tee with gusset plate connected to its flange, or when 

the selfweight moment is too significant to be neglected, the 

available capacity of the Tee should be determined by 

considering the interaction of combined forces according to 

Chapter H of the Specifications [2]. 

Although Tees are singly symmetric sections, no single 

WT-shape satisfies the 0.1 ≤ Iyc/Iy ≤ 0.9 requirement of Section 

H1.1 of the Specifications [2]. Therefore, Section H2 should 

be used to evaluate the capacity of a Tee under combined 

forces, and Equation H2-1 can be rewritten as: 

1.0 at tee flange, and
rbyra rbx

ca cbx cby

ff f

F F F
+ + ≤     (3) 

1.0 at teestemra rbx

ca cbx

f f

F F
− ≤       (4) 

where, fra = required axial stress 

Fca = available axial stress 

frbx, frby = required flexural stress at P.O.C. 

Fcbx, Fcby = available flexural stress at P.O.C. 

fra, frbx and frby at the P.O.C. (point of consideration) can be 

easily obtained using proper section properties and applied 

forces; Fca can be calculated based on Sections E3 or E4, and 

Fcby can be calculated based on Section F6 of the 

Specifications [2]. However, the computation of Fcbx needs a 

closer examination since the flexural stresses in the flange and 

in the stem due to the bending about the x-axis involves two 

distinguished section modulus: Sx and Sxc. 

As discussed in Commentary H2 of the Specifications [2], 

there are two approaches for using Equation H2-1: 

(a) “Strictly using Equation H2-1 for the interaction of the 

critical moment about each principal axis, there is only one 

flexural stress ratio term for every critical location since the 

moment and stress ratios are the same..... The yielding 

moment should be based on the smallest section modulus 

about the axis being considered.” For a Tee connected through 

the flange that is in compression, additional compressive 

stress is introduced in flange due to the eccentricity, the 

compression in the flange will always control the design since 

the yield moment is based on the smallest section modulus 

about x-axis. Therefore, the stress ratio need only be checked 

for compression at the flange, this approach is called Design 

Approach 1 in this article. 

(b) “For certain load combinations, where the critical 

stress can transition from tension at one point on the cross 

section to compression at another, it may be advantageous to 

consider two interaction relationships depending on the 

magnitude of each component.” For a Tee connected through 

the flange that is in compression, the introduction of tensile 

stress due to eccentricity will reduce the compressive stress in 

stem, it could benefit from consideration of more than one 

interaction relationship occurs, and the yield moments could 

be based on section modulus of flange and tip of stem 

individually. Therefore, the stress ratio need be checked for 

both stem and flange, although for eccentrically load Tee, the 

moment induced by eccentricity is small, stress ratio at flange 

will most likely controls the design, this approach is called 
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Design Approach 2 in this article. 

4.1. Available Flexural Stresses Fcbx - Design 

Approach 1 

According to Section E9 of the Specifications [2], for Tees 

loaded in the plane of symmetry, the nominal flexural strength 

Mnx shall be the lowest value obtained according to the limit 

states of yielding, lateral torsional buckling, and flange local 

buckling, and the available flexural stress Fcbx can be 

calculated as follows: 

_
b nx

cbx stem
x

M
F

S

ϕ
=                 (5) 

_
b nx

cbx flange
xc

M
F

S

ϕ
=           (6) 

where, Sx, section modulus of the stem, Sx = Iy /(d-y) 

Sxc, section modulus of the flange Sxc = Iy / y 

The nominal flexural strength of the Tee, Mnx, under the 

limit state of lateral torsional buckling should be calculated 

according to Equation 9-4 of the Specifications [2]. 

The nominal flexural strength of the Tee member, Mnx, 

under the limit state of flange local buckling in flexural 

compression should be determined according to Section F9.3 

of the Specifications [2], based on the slenderness of the 

flange. The limit state of flange local buckling does not apply 

for Fy = 36 ksi, since all 273 WT-shapes that included in the 

AISC Shapes Database V14.0 have compact flanges. There 

are only 10 WT-shapes that have non-compact flanges in 

flexural compression for Fy = 50 ksi, they are listed in Table 2. 

These WT-shapes are excluded from this paper. Therefore, the 

limit state of flange local buckling is not a concern of the 

discussion. 

Table 2. WT with non-compact Flanges (Fy = 50 ksi) (λrf = 24.1 < λ < λpf = 9.15). 

Section λ = bf / 2tf Section λ = bf / 2tf Section λ = bf / 2tf 

WT3x4.5 10.1 WT4x15.5 9.19 WT7x49.5 9.34 

WT3x6 9.16 WT5x6 9.43 WT10.5x24 9.47 

WT3x7.5 11.5 WT6x32.5 9.92   

WT4x5 9.61 WT7x45 10.2   

 

The nominal flexural strength of the Tee member, Mnx, 

under the limit state of yielding can be calculated as: 

1.6nx p y x yxM M F Z M= = ≤         (7) 

where, Zx – plastic section modulus 

Myx = FySx 

After examining all 273 WT-shapes, it is concluded that the 

section modulus ratio Zx /Sx is in the range of 1.75 (WT6x13) 

to 2.23 (WT7x275), and the nominal yield strength of a Tee is 

thus controlled by 1.6FySx. Therefore the available flexural 

stress in stem, Fcbx_stem and the available flexural stress in 

flange, Fcbx_flange, are: 

_

min( ,1.6 )

(1.6 )

b y x y xb nx
cbx stem

x x

b y

F Z F SM
F

S S

F

ϕϕ

ϕ

= =

=
         (8) 

_

min( ,1.6 )

(1.6 )

b y x y xb nx
cbx flange

xc xc

b y x

xc

F Z F SM
F

S S

F S

S

ϕϕ

ϕ

= =

=

    (9) 

It is also concluded from AISC Shapes Database v14.0 that 

the ratio of elastic section modulus of the flange to the elastic 

section modulus of the stem Sxc /Sx = (d-y)/y is in the range of 

2.23 (WT7x365) to 5.43 (WT7x45), and thus 

_

(1.6 ) (1.6 )

(1.6 ) (1.6 )

( ) / 2.23 ~ 5.43

(0.29 ~ 0.72)

b y x b yb nx
cbx flange

xcxc xc

x

b y b y

b y

F S FM
F

SS S
S

F F

d y y

F

ϕ ϕϕ

ϕ ϕ

ϕ

= = =

= =
−

=

  (10) 

4.2. Available Flexural Stresses Fcbx - Design 

Approach 2 

The very low available flexural stress in the flange (Fcbx = 

φb(0.29~0.72)Fy) under the limit state of yielding as described 

in the Design Approach 1 is due to the lack of distinction 

between the compression flange yielding and tension stem 

yielding in Section F9 of the Specifications [2]. For a Tee 

loaded in the plane of symmetry under pure bending, the limit 

state of yielding is always controlled by the stress in the stem, 

so the distinction between the compression flange yielding 

and tension stem yielding is not necessary. However, as 

described earlier, for a Tee in compression that is eccentrically 

loaded from its flange, although the moment due to the 

connection eccentricity produces a large tensile stress in the 

tip of stem, the uniformly distributed compressive stress due 

to the applied axial load reduces the tensile stress in the stem. 

Therefore, the available flexural stress in the flange and in the 

stem should be investigated separately, and the distinction of 

compression flange yielding from tension stem yielding 

becomes necessary. 

Eccentrically loaded Tees can be treated as a special case of a 

singly symmetric I-shaped section with the width of tension 

flange equaling the stem thickness, bent about their major axis 
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(Figure 6). The singly symmetric I-Shaped members bent about 

their major axis are covered in Sections F4 and F5 of the 

Specifications [2] depending upon the compactness of the web. 

However as stated in Section F4, I-shaped members that are 

applicable to Section F4 may be designed conservatively using 

Section F5, therefore Section F5 will be used in this paper to aid 

the evaluation of the available critical stresses in the flange. 

 

Figure 6. Singly Symmetric I-shaped Section. 

For singly symmetric I-shaped members under pure flexure 

bent about their major axis, the nominal flexural strength, Mnx, 

shall be the lowest value obtained according to the limit states 

of compression flange yielding, lateral-torsion buckling, 

compression local buckling, and tension flange yielding. 

The available critical stress in the stem according to the 

limit state of tension stem is the same as Approach 1, 

_ (1.6 )cbx stem b yF Fϕ=             (11) 

The available critical stress in the flange according to the 

limit state of compression flange can be obtained based on 

Equation F5-1 of the Specifications [2], 

nx pg y xcM R F S=                  (12) 

where,  Rpg, the bending strength reduction factor is 

determined as follows: 

1 5.7 1.0
1, 200 300

w c
pg

w w y

a h E
R

a t F

 
 = − − ≤
 +
 

   (13) 

where,  hc, twice the distance from the centroid to the inside 

face of compression flange less the fillet. 

 aw = hctw / bf tf 

After examining all 273 WT-shapes, it is concluded that Rpg 

= 1.0 for all WT-shapes. Therefore, the available critical stress 

in the flange is defined as: 

_

b pg y xcb nx
cbx flange b y

xc xc

R F SM
F F

S S

ϕϕ ϕ= = =     (14) 

5. Design Example 

The following example (Figure 7) demonstrates the 

procedure that is used by the two approaches, the procedure 

used by Approach 2 is incorporated in the Microsoft Excel 

spreadsheet to generate the design tables. 

 
Figure 7. WT Design Example. 

KL = 120 in. Fy = 36 ksi  E = 29,000 ksi 

Ag = 5.17 in.
2 

d = 6.25 in. tw = 0.300 in. 

bf = 6.56 in. tf = 0.520 in.  y = 1.30 in. 

Ix =16.0 in.
4 

Sx = 3.23 in.
3 

rx = 1.76 in. 

Iy =12.2 in.
4 

Sy = 3.73 in.
3 

ry = 1.54 in. 

Zx = 5.71 in.
3 

Zy = 5.73 in.
3 

J = 0.369 in.
4 

H = 0.835 ro = 2.56 in. t1 = 0.625 in. 

KL/r ≤ 200 φc = 0.90 Ω = 1.67 

5.1. Check Required Radius of Gyration, rmin 

Required radius of gyration rmin = KL/200 = 1.0(120) / 200 = 

0.60 in. < min(rx, ry) = 1.54 in., ok 

5.2. Check for Slender Element 

For uniform compression in flange – Since the flanges of all 

Tees are either compact or non-compact elements, there is no 

need to check the flange for slender element. For uniform 

compression in stem (Case 8, Table B4.1a, Section B4, the 

Specifications [2]), 

r

6.25 29,000
20.8 λ 0.75 0.75 21.3

0.30 36w y

d E

t F
= = < = = =  

∴ Stem satisfies limiting width-thickness ratios for 

non-compact elements, and Sections E3 and E4 of the 

Specifications [2] should be used to compute the available 

axial compressive stresses. 

5.3. Determine the Available Axial Stress, Fca 

5.3.1. The Critical Compressive Stress, Fcr, 

Based on the Limit State of Flexural 

Buckling (Section E3 of the 

Specifications [2]) 

Flexural buckling about the x-x axis: 

1.0(120)
68.18

1.76x

KL

r
= =  

2 2

2 2

π π (29,000)
61.57 ksi

68.18
ex

x

E
F

KL

r

= = =
 
 
 

 

Since Fy / Fex = 36/61.57 = 0.585 ≤ 2.25, Equation E3-2 of 
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the Specifications [2] applies, 

36

61.570.658 0.658 (36) 28.18ksi

y

ex

F

F
crx yF F

   
   = = =
      

 

Flexural buckling about the y-y axis: 

1.0(120)
77.92

1.54y

KL

r
= =  

2 2

2

π π (29,000)
47.14ksi

77.92
ey

y

E
F

KL

r

= = =
 
 
 
 

 

36

47.140.658 0.658 36 26.15ksi

y

ey

F

F

cry yF F

   
   = = =
      

 

5.3.2. The Critical Compressive Stress, Fcr, 

Based on the Limit States of Torsional 

and Flexural-Torsional Buckling 

(Section E4 of the Specifications [2]) 

2 2
0

11,200(0.369)
121.98ksi

5.17(2.56)
crz

g

GJ
F

A r
= = =  

From Equation E4-2 of the Specifications [2], 

( )

( )

2

2

4
1 1

2

26.15 121.98 4(26.15)(121.98)(0.835)
1 1

2(0.835) 26.15 121.98

25.08ksi

cry crz cry crz

cr

cry crz

F F F F H
F

H F F

 
+   = − −    

  +  

  +  = − − 
 +   

=

 

5.3.3. The Available Axial Compressive 

Stress, Fca 

The controlling critical compressive stress, Fcr 

Fcr = min(Fcrx, Fcry, Fcr) = 25.08 ksi 

The available axial compressive stress, Fra 

Fca = φc Fcr = 0.9(25.08) = 22.57 ksi 

5.4. The available Flexural Stress, Fcbx_stem, 
Fcbx_flange 

5.4.1. The Nominal Flexural Strength, Mnx 

Based on the Limit State of Yielding for 

Stem in Tension (Section F9.1 of the 

Specifications [2]) 

Approach 1: 

min[ ,1.6 1.6 ]

min[36(5.71),1.6(36)(3.23)]

min[205.56,186.05] 186.05 kip-in.

nx y x yx y xM F Z M F S= =

=
= =

 

The available flexural stress, Fcbx_stem, Fcbx_flange 

_

0.9(186.05)
51.84 ksi

3.23

b nx
cbx stem

x

M
F

S

ϕ
= = =  

_

0.9(186.05)
13.60 ksi

12.31

b nx
cbx flange

xc

M
F

S

ϕ
= = =  

Approach 2: 

The available flexural stress, Fcbx_stem based on the limit 

state of yielding in stem that in tension, 

_ 1.6 0.9(1.6)(36) 51.84ksicbx stem b yF Fϕ= = =  

The available flexural stress, Fcbx_flange based on the limit 

state of yielding in flange that in compression 

_ 0.9(36.00) 32.40ksicbx flange b yF Fϕ= = =  

5.4.2. The Nominal Flexural Strength, Mnx 

Based on the Limit State of 

Lateral-Torsional Buckling (Section 

F9.2 of the Specifications [2]) 

Assuming stem in tension, 

6.25 12.2
2.3( ) 2.3( ) 0.69

120 0.369

y

b

Id
B

L J
= = =  

2

2

[ 1 ]

29,000(12.2)(11,200)(0.369)
[0.69 1 0.69 ]

120

1905.03 kip-in.

y

nx cr
b

EI GJ
M M B B

L

π

π

= = + +

= × + +

=

 

The available flexural stresses, Fcbx_stem and Fcbx_flange 

_

0.9(1905.03)
530.8ksi, not control; 

3.23

b nx
cbx stem

x

M
F

S

ϕ
= = =

_

0.9(1905.03)
138.2 ksi, not control

12.31

b nx
cbx stem

xc

M
F

S

ϕ
= = =  

5.4.3. The Nominal Flexural Strength, Mnx 

Based on the Limit State of Flange 

Local Buckling (Section F9.3 of the 

Specifications [2]) 

Check the compactness of flange for flexure, 

r

6.56 29,000
6.3 λ 1.0 1.0 28.4

2 2(0.52) 36

f

f y

b E

t F
= = < = = =
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p

6.56
6.3 λ 0.38

2 2(0.52)

29,000
0.38 10.8

36

f

f y

b E

t F
= = < =

= =

 

∴ Flange is compact, and the limit state of flange local 

buckling does not apply. 

5.4.4. The Controlling Available Flexural 

Stresses, Fcbx_stem and Fcbx_flange 

Approach 1: 

_ 51.84ksicbx stemF =  

_ 13.60ksicbx flangeF =  

Approach 2: 

_ 51.84ksicbx stemF =  

_ 32.40ksicbx flangeF =  

5.5. The Available Flexural Stress, Fcby 

Since there is no flexural moment about axis y-y, in this 

example, calculation of Fcby is not required (Section F6 of the 

Specifications [2]) 

5.6. The Required Flexural Moment Due to 

Axial Load and Eccentricity of 

Connection, Mrx 

1 1 1
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where,  B1 – 2nd-Order effect based on Appendix Equation 

A-8-3 of the Specifications [2], 
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where,  α = 1.0 (LRFD); 1.6 (ASD) 

Cm = 1.0 (conservative) 
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The required flexural moment due to axial load and 

eccentricity of connection, Mrx 

1(1.6125)

254.42
(1.6125 )( ) kip-in.
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5.7. Interaction of Flexure and Compression 

Actual axial stress, fa 

 ksi
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r r
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g

P P
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A
= =  

Actual flexural stress fbx, due to Mrx 
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Interaction at tip of the stem, 

_ _

_

1.0
22.57 51.84

rbx stem rbx stemra ra

ca cbx stem

f ff f

F F
− = − ≤  

Solve above equation, Pr = 944.42 kips, not control. 

Interaction at edge of the flange – Approach 1 

_ _

_

1.0
22.57 13.60

rbx flange rbx flangera ra

ca cbx flange

f ff f

F F
+ = + ≤  

Solve above equation, Pr = 48.78 kips 

Interaction at edge of the flange – Approach 2 

_ _

_

1.0
22.57 32.40

rbx flange rbx flangera ra

ca cbx flange

f ff f

F F
+ = + ≤  

Solve above equation, Pr = 70.56 kips 

5.8. Compressive Strength 

The Design Compressive Strength (LRFD), φcPn 
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Approach 1: 

φcPn = Pr = 48.78 kips 

Approach 2: 

φcPn = Pr = 70.56 kips 

The Allowable Compressive Strength (ASD), Pn /Ω 

Approach 1: 

Pn /Ω = (Pr/φc)/ Ω = (48.78/0.9) / 1.67 = 32.45 kips 

Approach 2: 

Pn /Ω = (Pr/φc)/ Ω = (70.56/0.9) / 1.67 = 46.95 kips 

6. Discussions 

6.1. Design Approaches 

As illustrated in the design example above, for an 

eccentrically loaded WT6x17.5 in compression with an 

unbraced length of 10 ft. and an eccentricity of 1.6125”, the 

axial capacity of 70.56 kips based on Approach 2 is much 

higher than the capacity of 48.78 kips based on Approach 1. 

 
Figure 8. Axial Capacity Comparison of WT-shape and Angle of the Similar 

Weight. 

This can be further observed from Figure 8 which shows 

that with unbraced lengths between 6 ft. and 24 ft., the 

capacities of WT6x17.5 determined by Approach 1 are much 

less than the capacities determined by Approach 2. The 

capacities of WT6x17.5 determined by Approach 1 are even 

less than the capacities of the single angle L6x6x7/16 for 

unbraced lengths less than 13 ft., on the other hand, the 

capacities of the WT6x17.5 determined by Approach 2 are 

larger than the capacities of the single angle L6x6x7/16, the 

larger the unbraced length, the greater the difference in 

capacities. This is further evidence that Approach 1 results in 

inefficient designs. The same conclusion was drawn by 

Galambos [7] that “the ASIC-type approach can be quite 

conservative, especially for tee-shapes”. The “AISC-type 

approach” by Galambos is identified as Approach 1 in this 

paper. 

Tito [9] performed tests on two eccentrically loaded 

WT5x11 braces with the compressive force applied through ½” 

gusset plates, the WT shapes were cut from a Gr. 50 W10x22 

and 15 ft in length. Both tests showed the stem tip reached 

tension yielding stress at 27.4 kips and the flange reached 

compression yielding after large deflections of the braces and 

sustaining the maximum load of 29.3 kips. With a resistance 

factor φc = 0.90 the axial compression strength is 26.37 kips, 

which is very close to the available strength of 27.8 kips from 

the design tables presented at the end of this paper. It should 

be noted that the tested WT shapes have an initial 5/8” camber, 

which exceeds the allowed mill straightness tolerance of 3/8” 

per Table 1-54 of the Manual [1]. 

 
Figure 9. WT-shape Interaction Curve: Axial Force vs. Moment. 

Figure 9 displays the normalized axial capacity vs. flexural 

capacity interaction diagram of the same member, where φcPn 

= φcFcrAg = (0.9)(25.08)(5.17) = 116.69 kips, and φbMnx = 

φb(1.6)FySx = (0.90)(1.6)(36)(3.23) = 167.45 kip-in. The 

interaction diagram based on Approach 1 is in linear variation 

when the second order effect is not considered, shows that the 

stress ratio in the flange controls the design for entire curve; 

on the other hand, with Approach 2, the stress ratio in the 

flange controls the design when Pr/φcPn > 0.4; the controlling 

stress ratio transitions to stem controls when Pr/φcPn < 0.4. 

The interaction curves shown in Figure 9 are very much like 

the interaction curves presented by Galambos [7]. 
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The benefit of Approach 2 can be further visualized with 

interaction diagram of axial compressive stress vs. flexural 

compressive stress in flange as shown in Figure 10. With 

Approach 1 where stress ratio in flange controls the design, 

the flexural compressive stress in flange is limited to 13.40 ksi; 

however, with Approach 2 when the stress ratio in the flange 

controls the design, the flexural compressive stress in the 

flange in the trend reaches 0.9Fy, until the controlling stress 

ratio transitions from flange controls to stem controls. 

Figure 10 is similar as Figure C-H2.2 shown in Commentary 

H2 of the Specifications [2] except that Figure C-H2.2 is for a 

WT when the stem in flexural compression is combined with 

axial tension, or an eccentrically loaded WT in tension. 

 

Figure 10. WT-shape Axial Compressive Stress vs. Flexural Compressive 

Stress in Flange. 

6.2. Available Flexural Stresses in Flanges 

As discussed in the Design Considerations, the nominal 

flexural strength Mnx shall be the lowest value obtained according 

to the limit states of yielding, lateral torsional buckling, and 

flange local buckling, and the available flexural stress in flange 

Fcbx_flange can be calculated based on Equation (5). 

Excluding ten (10) WT-shapes, flange local buckling is not 

applicable to WT-shapes. The available stresses in the flange 

based on the remaining two limit states – yielding and lateral 

torsional buckling are presented in Figure 11. It can be concluded 

that for WT6x17.5 with Grade 36 steel and unbraced lengths as 

shown, the yielding, rather than lateral torsional buckling, 

controls the available stresses in the flanges. Therefore, in order 

to design a Tee member more efficiently, it is critical to 

distinguish the section modulus for the flange and stem when 

determining the yielding strength of the Tee under combined 

axial compression and flexural compression on the flanges. 

 
Figure 11. Available Flexural Stresses in Flanges. 

7. Finite Element Analyses 

As discussed previously, Approach 2 yields a greater and 

much needed capacity of an eccentrically loaded WT-shape. 

The member’s resistances derived from design Approach 2 

were validated through nonlinear Finite Element (FE) analysis 

using LUSAS Bridge software [6], which considers buckling 

behavior, second-order effects, geometrically nonlinear (initial 

imperfection), and material nonlinearity (yielding) of the 

member. Initial imperfection can be considered the same as the 

mill straightness tolerance for camber or sweep. According to 

Table 1-54 for W-shapes or H-shapes, and Table 1-56 for 

WT-shapes of the Manual [1], that is 
�
� ������ 
��
��,���

� �, the 

results of the FE analyses are discussed below. 

7.1. Finite Element Analysis of Centrically 

Loaded Members 

AISC [1] provides axial capacities for centrically loaded 

W-shapes and WT-shapes in compression. In order to test the 

FE modeling techniques and serve as a benchmark to analyze 

eccentrically loaded WT-sections, FE analyses were first 

performed to analyze centrically loaded doubly symmetric 

I-shape W14x82 and centrically loaded singly symmetric 

WT6x17.5. Two element types were utilized in these analyses: 

three Dimensional Semiloof Cross Section Beam (BXL4) and 

quadrilateral Thick Shell (QTS8), elements used in the study 

are sufficiently refined and not to be discussed in this paper [5]. 

Figure 12 shows axial capacities of W14x82 obtained from FE 

analysis and from Table 4-1 of the Manual [1]; Figure 13 shows 

axial capacities of WT6x17.5 obtained from FE analysis and 

from Table 4-7 of the Manual [1]. Both Figure 12 and Figure 

13 indicate that finite element analysis using both beam element 
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and shell element yields very similar capacities for both 

methods for doubly symmetric I-shape and singly symmetric 

WT-shape. It can also be concluded that finite element analysis 

can very accurately predict the axial capacity of both I-shapes 

and WT-shapes with large unbraced length, and that when the 

unbraced length is small, the axial capacities obtained from 

Table 4-1 and Table 4-7 of the Manual [1] are conservative; the 

conservativeness is greater with WT-shapes than with I-shapes. 

 

Figure 12. Axial Capacities of W14x89. 

 

Figure 13. Axial Capacities of WT6x17.5. 

7.2. Finite Element Analysis of Eccentrically 

Loaded Tees 

Since finite element nonlinear analysis using either beam 

element or shell element yields similar capacities of 

centrically loaded Tees, shell element (QTS8) was used to 

investigate eccentrically loaded WT - shapes, flange elements 

are taken at mid-thickness of the flange. The following 

discussion is for: WT6x17.5 with unbraced length of 10 feet, 

Gr. 36 steel, eccentrically loaded with an eccentricity of 

1.6125”, and the initial imperfection is 0.125”. 

 
Figure 14. Axial Load at 1.6125” from NA of Tee. 

Eccentricity: To apply the axial load at 1.6125” from the 

neutral axis (NA) of WT6x17.5, solid elements (HX20) are 

incorporated to both ends of the member in the model as 

shown in Figure 14. A concentrated load is applied in the 

vertical (Z-axis) at a node of the solid element, while outside 

edges of solid elements are simply supported in both the X- 

and Y- axes. 

Buckling Modes: Figure 15 presents the first three buckling 

modes with eigenvalues of 312.11 kips, 461.64 kips, and 

1155.98 kips respectively. The first mode is usually of interest 

and the initial imperfection of 0.125” is started with the 

deformed mesh from buckling mode 1. 

 

Figure 15. Buckling Modes of Eccentrically Loaded Tee. 
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Nominal Axial Capacity, Stress Distributions and Load vs. 

Displacement Curve: The nominal axial capacity based on 

nonlinear finite analysis is Pr = 87.23 kips, therefore, the 

factored available strength  φc Pr = 0.90*87.23 = 78.51 kips, 

which is slightly larger than 70.56 kips from the calculation 

based on Approach 2. 

Stress distribution along the stem (local y-y axis) at 

mid-height of the tee member is shown in Figure 16 and 17. 

Figure 16 shows the stress distribution at the maximum load 

of Pr = 87.23 kips. The averaged nodal tensile stresses within 

40% of stem reach yield stress of 36 ksi (Fy), while the 

compressive stresses in flange are slightly lower than Fy. 

Figure 17 shows the stress distribution before and after the 

load reaches the maximum load of Pr, the maximum tensile 

stress in the stem reaches Fy when the load is at 0.80Pr, while 

the compressive stresses in the flange is only 24 ksi. With the 

increase of applied load, more area of the stem is yielded, and 

stress in flange is increased, the compressive stress in flange 

eventually reaches the Fy. 

 

Figure 16. Stress Distribution at Pr = 87.23 kips. 

 
Figure 17. Stress Distribution before and after 1.0Pr. 
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Load vs. mid-height displacement curve is shown in Figure 18. Linear variation is observed when the applied load is less than 

0.80Pr, and the stresses in the WT6x17.5 are less than Fy (also see Figure 17). The load vs. displacement curve indicates 

continual strength gain when more area of the stem reaches Fy. A 1.0-inch displacement is noted when WT6x17.5 reaches its 

ultimate strength. 

 

Figure 18. Load Factor of Pr vs. Displacement. 

7.3. Axial Capacity Comparison Between 

Approach 2 and Nonlinear Finite Element 

Analysis 

 

Figure 19. Axial Capacities of WT6x17.5. 

The results of the finite element analysis and calculated 

axial capacity of WT6x17.5 based on both approaches 

discussed in the paper are presented in Figure 19. As indicated 

previously, while the axial capacities of eccentrically loaded 

WT-shapes based on Approach 2 are consistently larger than 

those based on Approach 1, they are still less than the results 

from this finite element analysis and are therefore 

conservative. The conservativeness of the axial capacity of 

eccentrically loaded WT-shapes based on Approach 2 is in 

line with the axial capacity of centrically loaded WT-shapes 

per Table 4-7 of the Manual [1], as shown in Figure 13. 

8. Conclusions 

This paper proposed an alternate approach (Approach 2) 

allowed for by Section Comm. H2. of the Specifications [2] to 

design the eccentrically loaded WT-shapes in Compression, 

and the calculated strengths based on Approach 2 are larger 

and more reasonable than those based on Section H2 of the 

Specifications [2] (Approach 1). Extensive Finite Element 

Nonlinear analyses have been employed to validate the 

proposed approach. Design tables to facilitate implementation 

of the procedure of Approach 2 have also been developed. 

Only a few experimental tests on eccentrically loaded 

WT-shapes in compression are available. The capacities of 

two 15 ft long WT15x11 braces tested by Tito [9] agree very 

well with the calculated capacities based on the proposed 

approach; the percent difference between the experimental 

factored average capacity and the factored capacity predicted 

by Approach 2 is 94.85%. 

The results from finite element analyses and experimental 

tests clearly indicate that the proposed approach is quite 

accurate in predicting the ultimate capacity of eccentrically 

loaded WT-shapes in compression. 
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Appendix – Design Tables 

The step-by-step design of an eccentrically loaded 

WT-shape has been demonstrated in the Design Example. 

Although the procedure is straight forward, the process is 

tedious and time consuming. To help structural engineers 

quickly determine the proper size of a WT-shape, design 

tables for axial compressive strength of eccentrically loaded 

WT-shapes are prepared and attached to the paper, with the 

following considerations: 

1 Fy = 36 ksi and 50 ksi 

2 The maximum Tee is WT8x50, and the minimum Tee is 

WT5x9.5 

3 Stem of the Tees orientated horizontally 

4 Eccentricity e = t1 / 2 + y, where t1 = gusset plate 

thickness, t1 is taken the same as flange thickness, but 

rounded up to the multiple of 1/8” 
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