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Abstract: The present article comprises a numerical analysis of free convection heat transfer inside a porous trapezoidal 

container influenced by MHD when bottom wall is subject to uniform temperature profile, left wall is provided with linear 

heating, right wall is taken either cold or linearly heated and upper wall is perfectly insulated. Momentum and energy 

equations describing the flow problem are modeled and exposed first to Penalty method to remove pressure term from 

momentum equations and afterwards reduced equations are solved by incorporating the Galerkin weighted residual method. 

Computed solutions are presented through curves for streamlines, isotherms and local heat transfer rate for various values of 

involved parameters including Prandtl number Pr (0.026 ≤ Pr ≤ 1000), Hartman number Ha (50 ≤ Ha ≤ 1000) and Darcy 

number Da (10
-5

 ≤ Da ≤ 10
-3

) where, Rayleigh number Ra is fixed at 106, considering three different cases of cavity, in which 

inclination of side walls of enclosure is taken to be 0, 30 and 45 degrees. This inquisition showed that the strength of 

streamline circulations escalates when Darcy and Prandtl numbers are amplified where, symmetric isotherms and streamlines 

are observed in case of non-uniform heating for tilt angles 30 and 45 degrees where due to conduction dominance smooth and 

monotonic isotherms are seen for small Darcy number but increasing Darcy number results in distorted isotherm contours 

indicating dominance of convection regime. 
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1. Introduction 

Heat transfer in cavity flow has successfully grabbed 

attention of investigators in recent years as it has numerous 

applications in engineering and different chemical processes. 

Food items are undergone through natural convection during 

their shelf life especially in domestic refrigerator where they 

spend most of their shelf life. Natural convection and airflow 

in a refrigerator occurs due to the variation in air density 

which is dependent upon temperature gradient. Furthermore, 

natural convection is also involved in applications such as 

electronic equipment cooling, fire research and solar thermal 

conversion etc. Heat transfer is involved in heating and 

cooling of batch tanks, Heat Exchangers, Condensers, Boilers 

& Calandrias, Evaporators etc. Whereas, lid-driven cavity 

flows help to analyse flow properties in complex close region 

with recirculation, e.g. coating rolls, contracting flow and 

flows on slit are of soul importance in various applications 

like coater for short-dwell and flexible blades. 

Recently extensive research has been carried out on free 

convection heat transmission within containers of different 

geometries. In particular porous trapezoidal cavity has grabbed 

the interest of many investigators due to its vast engineering 

applications. Basak et al. [1] investigated phenomena of 

convective heat flow inside a trapezoidal container by 

computing results against different inclination angles of 

inclined boundaries when horizontal lower wall is heated 

uniformly and non-uniformly. He obtained results for several 

values of Darcy number ranging 10�� to 10��. Varol et al. [2] 

expressed computational solutions for free convection through 

porous cavity of rectangular shape, considering effects of 

sinusoidal heat at bottom wall. He applied finite difference 

scheme to get numerical solutions and showed computations 
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for different ranges of aspect ratio AR (0.25 ≤ �� ≤ 1.0) and 

amplitude 
 of sinusoidal wave at bottom (0.25 ≤ 
 ≤ 1.0). 

Bejan and Poulikakos [3] discussed energy flow through free 

convection through porous medium within a vertical layer 

considering non Darcian regime. Basak et al. [4] examined 

heat flow through porous media contained in a square 

container and calculated numerical results when bottom 

boundary is provided heat uniformly and uniformly where 

upper wall is insulted and vertical boundaries are cold. 

Streamlines and isotherms are expressed for various Rayleigh, 

Prandtl and Darcy numbers. Chen et al. [5] considered Darcy-

Brinkman-Forchheimer extended model in order to investigate 

numerical simulations for convective heat flow through wavy 

container considering isothermal vertical boundaries, where 

horizontal boundaries are insulated. He computed solutions for 

different values of parameters including wave ratio 
 (0 ≤ 
 ≤

1.8 ) aspect ratio A ( 1 ≤ � ≤ 5 ) and Darcy number Da 

( 10�� ≤ �� ≤ 10�� ). Simulations for heat transfer with 

different inclination angles through a trapezoidal cavity when 

linear heating is provided to inclined walls and uniform 

heating is provided to bottom wall is carried out by Basak et al. 

[6]. An investigation on heat flow in porous trapezoidal cavity 

under the effects of various walls heating was also done by 

Basak et al. [7]. He used penalty approach to compute 

numerical solutions and presented numerical simulations for 

different tilt angles (� = 0�, 30�, 45�) and verity of values for 

different parameters. Anandalakshmi and Basak [8] presented 

an investigation on heat flow visualization for free convective 

heat flow in rhombic enclosure where bottom boundary of 

cavity is subject to constant and variable heating profile. 

Khashan et al. [9] numerically investigated energy 

transmission within porous enclosure using non-Darcian and 

thermal non-equilibrium model when bottom wall is 

isothermal. They applied FVM to compute numerical results 

for governing Navier Stoke’s equations and plotted curves for 

various values of involved parameters e.g. Rayleigh number 

�� = 1 − 400 , Darcy number �� = 10�� − 10�� , thermal 

conductivity ratio of fluid and solid � = 0.1 − 1.0  and 

modified Biot number � = 1 − 100 . Poulikakos and Bejan 

[10] carried out a study of energy flow inside vertical porous 

layer using Darcy–Forchheimer model. 

Merrikh and Mohamad [11] discussed Non-Darian effect 

on buoyancy flow through a cavity containing two vertical 

layers of porous medium. They focused on legitimacy of 

Darcy model for several combinations of Permeability ratio, 

Rayleigh and Darcy numbers. Unsteady natural convection 

within porous cavity by means of two energy model is 

studied by Al-Amiri [12] and numerical simulations were 

presented for numerous values of Grashof number �� =

10� − 10�  and Darcy number�� = 10�� − 10�� . Lauriat 

and Prasad [13] considered Darcy-Brinkman-Forchheimer 

model and analyzed heat flow through vertical porous 

enclosure. Forced convective energy flow inside a channel 

having 16 porous baffles is discussed by Miranda and Anand 

[14]. Kim et al. [15] discussed phenomena of buoyant 

convection with heat generating porous media with the help 

of extended Brinkman-Darcy model within a square 

container. Basak et al. [16] presented energy flow by free 

convection numerically through porous trapezoidal container 

heated constantly and variably from lower boundary and 

plotted graphs for wide ranges of parameters involving 

Rayleigh, Prandtl and Darcy numbers. Computations for 

convective energy flow inside a porous enclosure of 

trapezoidal shape with different tilt angles (� = 0�, 30� , 45�) 

and uniformly/non-uniformly heated lower boundary against 

Rayleigh number Ra ranging (10� ≤ �� ≤ 10� ) are also 

presented by Basak et al. [17]. Basak et al. [18] has also 

investigated numerical simulations based on heatline concept 

heat flow in a trapezoidal enclosure tilted at different angles 

( � = 0�, 30� , 45� ) when bottom boundary of cavity is 

provided uniform or nonuniform heat where insulated top 

boundary and cold side boundries are considered. 

Hossain and Alim [19] studied trapezoidal cavity with 

MHD effects and non-uniformly heated lower boundary. 

Basak et al. [20] investigated thermal boundary condition’s 

effects heat transfer through a square enclosure considering 

various heating profiles. He used penalty method to compute 

numerical results for different ranges of Rayleigh and Prandtl 

numbers. Moallemi and Jang [21] carried out numerical 

study for influence of Prandtl number on mix-convective 

energy flow through a lid-driven square enclosure 

considering heated bottom wall. Numerical analysis of free 

convection energy flow inside a square container provided 

heat non-uniformly is done by Roy and Basak [22] against 

numerous values of Rayleigh and Prandtl numbers. Basak et 

al. [23] conveyed an investigation on mixed convective 

energy transfer analysis within square cavity when lower 

horizontal boundary is subject to constant and variable heat 

for verity of Grashof number Gr (10� ≤ �� ≤ 10�). 

In addition to above mentioned studies there are several 

experimental investigations exploring the features of heat and 

fluid flow inside the cavities of various geometrical shapes 

for the engineering and industrial importance of heat transfer 

in cavity flows. Lee [24] experimentally and computationally 

investigated convective energy flow through a trapezoidal 

container containing incompressible fluid having side walls 

inclination of 45 degree. He performed the experiment to 

study influence of Rayleigh number, positioning and aspect 

ratio on flow structure using smoke to visualize the flow 

regime. Lee [25] also conveyed a study on numerical 

experiments with convection in trapezoidal cavity to analyse 

the influence of Prandtl & Rayleigh numbers, different wall 

angles and various orientation angles on the energy flow. 

Iyican et al. [26] showed an experimental analysis of natural 

convection inside a trapezoidal enclosure against various 

values of Rayleigh number and varying tilt angles. Eyden et 

al. [27] conveyed experimental results to analyse double 

diffusive free convection through trapezoidal container filled 

with fusion of a couple of gases to mimic idealised situation 

in underground coal gasification. Hu et al. [28] 

experimentally and computationally examined energy flow 

through a square container having aluminium-water 

nanofluid and showed considerable agreement between 

experimental and numerical results. Similarly there are many 

[29-33] experimental studies investigating the energy flow in 

containers of different geometries under different conditions 

for having numerous engineering and industrial applications 
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including so-called moderately concentrating solar collector, 

a transonic cascade and turbo-machinery etc. 

Motivated from above reviewed literature porous 

trapezoidal cavity is investigated in this manuscript for natural 

convection in presence of MHD, which has not been 

investigated yet as per author’s best knowledge. Here we have 

considered uniform heating along bottom wall, linear heating 

along left wall, perfectly insulated upper wall and for right 

wall we have considered two cases, (i) cold, (ii) linear heated. 

Results are described in the form of contours against several 

values of Prandtl number Pr (0.026 ≤  � ≤ 1000), Rayleigh 

number Ra (10� ≤ �� ≤ 10�), Darcy number Da (10�� ≤

�� ≤ 10��) and Hartman number Ha (50 ≤ !� ≤ 1000). 

2. Mathematical Model 

An electrically conducting laminar flow of incompressible 

viscous fluid through a trapezoidal enclosure containing 

isotropic porous medium has been considered in this 

investigation as shown in Figure 1. Local thermal equilibrium 

has been considered between solid matrix and voids inside the 

porous region. All physical parameters are assumed constant 

excluding density which is function of temperature. Variation 

in density causes a body force term in momentum equation 

after applying Boussinesq approximation [34]. Furthermore, 

constant magnetic field B with uniform magnitude B0 is 

considered along x-axis which gives rise to the Lorentz force 

f = j × B. The mathematical form of Ohm’s Law is j = σ(E +

u × B) where u is velocity and E is electric field. Since quasi-

static approximation is assumed in our study therefore induced 

magnetic field is negligible and the field is completely given 

by the imposed field B. in this case ∇ × E = 0  and charge 

conservation equation ∇. j = 0 may be exploited to eliminate 

current density j from Ohm’s Law. In contrast to the full MHD 

equation the system only contains one electromagnetic 

variable. Finally the Lorentz force is reduced to f = (u × B) ×

B  which depends linearly on velocity and qudratically on 

strength of magnetic field as expressed in Eq. (3) [see Ref. 35]. 

Here induced magnetic field is neglected being small enough 

in comparison of B0 (low-Rm approximation [36]). We neglect 

joule effects and viscous dissipation while all walls of 

enclosure are considered electrically insulated with no Hall 

effects. Incorporating above mentioned assumptions following 

are mass, momentum and energy balance equations governing 

flow problem. 

0,
u v

x y

∂ ∂+ =
∂ ∂                                (1) 

2 2

2 2

1
,

u u p u u
u v u

x y x Kx y

υυ
ρ

 ∂ ∂ ∂ ∂ ∂+ = − + + −  ∂ ∂ ∂ ∂ ∂ 
           (2) 

( )
22 2

2 2

1
,o

c

Bv v p v v
u v v g T T v

x y y Kx y

συυ β
ρ ρ

 ∂ ∂ ∂ ∂ ∂+ = − + + − + − −  ∂ ∂ ∂ ∂ ∂ 
                                           (3) 

and 

2 2

2 2
.

T T T T
u v

x y x y
α
 ∂ ∂ ∂ ∂+ = +  ∂ ∂ ∂ ∂ 

                                                                         (4) 

subject to boundary conditions 

( ,0) ( ,0) 0, ( ,0) ,

( , )
( , ) 0, ( , ) 0, 0,
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y
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u v T y at x y y L

φ φ
φ φ φ

= = =
∂= = =

∂
= = = − + = ≤ ≤
= = = − − = ≤ ≤

                                     (5) 

Where x, y represents rectangular coordinates, u, v shows components of velocity filed in horizontal and vertical direction, P is 

pressure, υ  is kinematic viscosity and ρ  is density. We define following dimensionless variables to non-dimensionalize the above 

Eqns. 

( )

( )

2

2

3

2

3 2 2
2

2

, , , , ,

,Pr , ,

Pr
, ,

h cc

h c

h c o

p

x y uL vL pL
X Y U V P

L L

g L T TT T
Gr Da

T T K

g L T T B L k
Ra Ha

C

α α ρα
βν υθ

α ν
β σ α

µ ρν

= = = = =

−−
= = = =

−

−
= = =

                                                   (6) 

substituting (6) in (1)-(4) we get 
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U V
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U V V RaPr Ha PrV
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2 2

2 2
U V

X Y X Y

θ θ θ θ∂ ∂ ∂ ∂+ = +
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                                                                    (10) 

Under the following boundary conditions 

( ,0) ( ,0) 0, ( ,0) 1.

( ,1)
( ,1) 0 ( ,1), 0.

0 , 1   Xsin cos 0 and 0 1

0, 1  or 0  Xsin cos cos  and 0 1

U X V X X

X
U X V X

Y

U V Y at Y Y

U V Y at Y Y

θ
θ

θ φ φ
θ φ φ φ

= = =
∂= = =

∂
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                             (11) 

Here U, V corresponds to dimensionless components of velocity, θ  is dimensionless temperature, Pr, Ra, Gr, Ha and Da are 

Prandtl, Rayleigh, Grashof, Hartman and Darcy numbers respectively. 

 

Figure 1. Trapezoidal cavity flow with various heated walls. 

Energy flow rate is determined the form of local Nusselt 

numbers Nu, defined as 

Nu
n

θ∂= −
∂

                                  (12) 

3. Method of Solution 

Penalty method is incorporated to deal with pressure term 

appearing in momentum equation with the help of continuity 

equation [37]-[39]. Afterwards the simplified equations are 

solved through Galerkin weighted residual scheme. 

Following incompressibility condition is defined by 

introducing penalty parameter γ . 

U V
P

X Y
γ ∂ ∂ = − + ∂ ∂ 

                         (13) 

To satisfy continuity equation we have to take large value 

for  γ , generally γ =10
7
 returns consistent results. Using Eq. 

(13), momentum equations become 

2 2

2 2

Pr
Pr

U U U V U U
U V U

x y X X Y Dax y
γ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + = + + + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
                                           (14) 



 American Journal of Civil and Environmental Engineering 2018; 3(2): 19-36 23 

 

and 

2 2
2

2 2

Pr
Pr

V V U V V V
U V V RaPr Ha PrV

x y Y X Y Dax y
γ θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + = + + + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
                             (15) 

We estimate the velocity components and temperature profile through 6-nodal triangular elements with bi-quadratic basis 

functions { }
1

N

k k
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N N N
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following residual expressions of above equations are reduced by incorporating Galerkin scheme of finite element method for 

internal domain Ω  
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Solution of nonlinear residual equations (17)-(19) are 

iteratively obtained with the help of Newton Raphson 

method. The flow is determined through stream function 

defined using velocity components as follows 

,   and   U V
Y X

ψ ψ∂ ∂= = −
∂ ∂

                    (20) 

Following single equation may be obtained from above 

2 2

2 2

U V

Y XX Y

ψ ψ∂ ∂ ∂ ∂+ = −
∂ ∂∂ ∂

                      (21) 

stream functions are also approximated by same basis 

functions { }
1

N

k k
φ =  as 

( )
1

,

N

k k

k

X Yψ ψ φ
=

≈∑                             (22) 

and after applying Galerkin weighted residual technique 

residual equation for stream function take the following form 

and it is further solved with no-slip boundary conditions 

along all the boundaries 
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Figure 2. Streamlines and isotherms for Pr =7.2, Ra =
6

10 and Da =
5

10 .
−

 

4. Validation 

With objective to ensure accuracy of the code, developed 

to solve governing flow problem, we tested it against results 

of Basak et al. [1] for heat transfer through free convective 

heat transfer in porous trapezoidal enclosure as a limiting 

case for uniform heated bottom wall with Pr =7.2, Ra =
6

10  

and Da =
5

10
−

. Computations of our code are in good 

agreement with those of Basak et al. [1] as shown in Figure 

2. In Figure 2 the results of Basak et al. [1] are shown in left 

column and results obtained by present investigation are 

shown in right column for comparison. 

5. Results and Discussions 

This section contains computational results for free convective 

heat flow through a porous trapezoidal enclosure under MHD 

effects. Our discussion is divided into two cases (i) cold and (ii) 

linearly heated right wall, where bottom wall is taken at uniform 

heating profile and upper boundary is considered insulated. 

Additionally heat flow rate in form of local Nusselt number are 

also presented and discussed in this section. Furthermore the 

solutions are shown for a wide ranges of pertinent flow 

parameters including Prandtl number Pr (0.26 
  � 
 10�), Da 

(10�� 
 �� 
 10��) and Hartman Number Ha (50 
 !� 


10�) where Rayleigh number is fixed at �� � 10�. 

5.1. Cold Wall Case 

In this case bottom wall is subject to a uniform heating, top 

wall is perfectly insulated, left wall is heated linearly and 

right wall is taken at zero temperature due to which there 

appears jump type discontinuity at the lower right corner as 

two walls meeting at that corner are at different temperatures. 

Computational singularity at this corner needs special 

treatment. One way to deal with this singularity is suggested 

by Ganzarolli and Milanez [40]. According to them corner 

node may be taken at average of bottom and side wall 

temperatures and adjacent nodes are kept on corresponding 

wall temperature to avoids singularity. 
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Figure 3. Stream lines and Isotherms for cold right wall with �� = 10�,  � � 0.026, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30� (c) � � 45�. 

 

Figure 4. Streamlines and Isotherms for cold right wall with �� � 10�,  � � 0.026, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30� (c) � � 45�. 
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Figures 3 and 4 illustrate contour plots for streamlines and 

isotherms with �� = 10�, �� � 10�� � 10��  and  !� � 50 . 

In Figure 3, isotherms appear to be smooth and monotonic 

showing conduction dominant regime. Whereas, for - . 0.3 
when  � � 0 , for - . 0.6  when  � � 30�  and for - . 0.7 

when  � � 45� , isotherms are broken-up to side walls. 

Simultaneously, weak anti-clockwise secondary circulation of 

stream lines is observed near upper left side of the cavity, in 

addition to primary clockwise circulation appearing in right 

portion of cavity. Where Maximum height of stream function 

(
max

ψ ) is noted to be 0.5, 0.55 and 0.6 for � � 0�, 30� and 

45� respectively. Figure 4 indicates that with increase in Darcy 

number Da, convection heat transfer becomes dominant and 

consequently, non-monotonic, non-symmetric and distorted 

isotherms are observed in this case. Furthermore, isotherms are 

accumulated to right wall while in lower half of the cavity, 

isotherms are pushed a little towards the left wall. On the other 

hand, stream lines appear as two oval rolls of anti-clockwise 

(upper left) and clockwise (lower right) circulations. Here, 

upper left secondary circulation also gets stronger with 

increase in Darcy number but clockwise primary circulation 

remains of more intensity as compared to secondary 

circulation, and is directed towards the right lower corner due 

to the singularity appearing at that corner. Where, maximum 

height of stream function in this case is noted to be 11.5, 11.8, 

and 12.5 for � � 0�, 30� and 45� respectively. 

 

Figure 5. Stream lines and Isotherms for cold right wall with �� � 10�,  � � 0.7, �� � 10�� and !� � 1000 where (a) � � 0� (b) � � 30� (c) � � 45�. 

Figures 5-8 contains plots for �� � 10�,  � � 0.7 �

1000, �� � 10�� � 10�� and !� � 50 . It is observed that 

increase in Prandtl number, increases strength of both 

clockwise and anti-clockwise circulations and maximum 

heights of stream functions are noted to be 0.5, 0.55 and 0.6 

for � � 0�, 30�  �01 45� respectively (Figure 5). It is further 

noted that, anti-clockwise circulations move downward along 

left wall with increase in tilt angle �  (see Figure 5). When 

Darcy number is raised to 10�� , roll of anti-clockwise 

circulation is pinched into clockwise circulation appearing 

bottom right side and maximum height of streamlines is 

boosted to 11.5, 11.8, and 12.5 for � � 0�, 30� �01 45� 

respectively as shown in Figure 6. Whereas, isotherms become 

monotonic for - 2 0.3 when � � 0�  (see Figure 5 a), while, 

for � � 30�and � � 45� curves are pushed upward along left 

wall when - 2 0.6  (Figure 5 b, c). Whereas when Darcy 

number is amplified, isotherms are broken non-symmetrically 

and clustered to inclined walls of enclosure for - 
 0.6 when 

� � 0� , for - 
 0.7  when � � 30� , and - 
 0.8  when 

� � 45� respectively as shown in Figure 6. Similar effects on 

isotherms and streamlines are observed when Prandtl number 

is mounted to 1000 while maximum heights of stream function 

are 0.5, 0.65 and 0.75 for � � 0�, 30� �01 45�  when 

�� � 10��  and 12.75, 14, 15.5 for � � 0�, 30� �01 45� 

when �� � 10�� as exhibited in Figures 7 and 8. 
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Figure 6. Streamlines and Isotherms for cold right wall with �� = 10�,  � � 0.7, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30� (c) � � 45�. 

5.2. Linearly Heated Wall 

In this case both side walls are subjected to linearly 

varying heat profile and bottom wall is considered at uniform 

temperature while top wall is insulated. Considering this type 

of heating profile at right wall has an advantage, that it 

removes singularity from the bottom right corner. 

In Figures 9, 10 contours plots are presented for stream 

function and isotherms against �� � 10�,  � � 0.026, �� �

10�� � 10�� and !� � 50. It is delineated that, fluid goes 

up from the middle portion of uniformly heated bottom wall 

and comes down near linearly heated side walls forming two 

rolls of symmetric circulations about the vertical line passing 

from centre of enclosure. Here less intensive flow is seen for 

low Darcy number (�� � 10��) and centres of circulations 

move downwards to bottom wall with increase in tilt angle 

� , while maximum heights of streamline circulations are 

noted to be 0.085, 0.18 and 0.2 for � � 0� , 30� �01 45� 

respectively. 

 

Figure 7. Streamlines and Isotherms for cold right wall with �� � 10�,  � � 10�, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30� (c) � � 45�. 
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On the other hand, in this case isotherms are also found 

symmetric about vertical line passing through centre of 

bottom and contours of isotherms are symmetrically broken 

up to side walls when - ≤ 0.3 for � � 0�  (square cavity), 

when - 
 0.6  for � � 30�  and when - 
 0.7  for � �

45�respectively as demonstrated in Figure 9. 

When Darcy number is increased to 10�� , three non-

symmetric circulation cells of stream lines are observed 

along primary diagonal for � � 0� (square cavity), one small 

roll of circulation appears near lower right corner then 

another comparatively large circulation roll appears near 

upper left corner and a big circulation roll of clockwise 

circulations appears between other two circulation rolls (see 

Figure 10 a). Whereas, when tilt angle � is increased to 30� 

and 45�, circulations becomes symmetric about vertical axis 

passing through centre of bottom wall as seen in Figure 10 

(b, c) and maximum height of circulation becomes 6.5 and 8 

respectively. 

 

Figure 8. Streamlines and Isotherms for cold right wall with �� � 10�,  � � 10�, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30� (c) � � 45�. 

 

Figure 9. Streamlines and Isotherms for linearly heated right wall with �� � 10�,  � � 0.026, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30� (c) 

� � 45�. 
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On the other hand isotherms are noted to be distorted and 

non-symmetric for � = 0�  due to the convection dominant 

regime, where for - 
 0.5  isotherms are broken up non-

symmetrically to side walls as presented in Figure 10 (a). 

Afterwards, when tilt angle �  is increased, isotherms also 

become symmetric and isotherms are broken up symmetrically 

to side walls for - 
 0.7 and - 
 0.8  when � � 30�  and 

� � 45�respectively as seen in Figure 10 (b, c). 

Figure 11, 12 illustrate isotherms and streamlines contour 

plots for �� � 10�,  � � 0.7, �� � 10�� � 10��  and 

!� � 50. It is depicted in figures that, for sufficiently small 

Darcy number (�� � 10��) there are no prominent effects 

with increase in Prandtl while the magnitude of stream 

function becomes 0.085 for � � 0�  (Figure 11 a), 0.18 for 

� � 30� (Figure 11 b) and 0.2 for � � 45� (Figure 11 c). 

 

Figure 10. Streamlines and Isotherms for linearly heated right wall with �� � 10�,  � � 0.026, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30�(c) 

� � 45�. 

 

Figure 11. Streamlines and Isotherms for linearly heated right wall with �� � 10�,  � � 0.7, �� � 10�� and !� � 10� where (a) � � 0� (b) � � 30�(c) 

� � 45�. 
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Figure 12. Streamlines and Isotherms for linearly heated right wall with �� = 10�,  � � 0.7, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30�(c) 

� � 45�. 

Whereas prominent effects of amplified Prandtl number 

may be seen when Darcy number is augmented to 10�� as 

shown in Figure 12. With this escalation in Darcy number a 

pair of secondary circulations is observed near bottom wall 

for the inclinations of � � 0� and  � � 30� . The primary 

circulation cells are pushed upward by the secondary 

circulation cells because of strong convection near bottom 

wall as depicted in Figure 12 (a, b). 

It is further observed that augmentation in tilt angle � 

weakens secondary circulation and it disappears for � � 45� 

consequently streamlines are reduced into two rolls of 

circulations symmetric about vertical axis passing through 

centre of bottom line while maximum heights (
max

ψ ) of 

streamlines becomes 4.7 for � � 0� , 6.5 for � � 30�and 8 

for � � 45� respectively. 

Furthermore, isotherms against small Darcy number 

( �� � 10�� ) are smooth and symmetric about vertical 

central line where, isotherm contours are symmetrically 

broken to side walls for - 
 0.3, - 
 0.6 and - 
 0.7 when 

� � 0� , 30�  and 45� respectively as shown in Figure 11. 

Whereas, when Darcy number is amplified to 10��, distorted 

isotherms are observed for - 
 0.5 when � � 0� (see Figure 

12 a) while, curves are mounted to opposite side walls near 

the lower region cavity and mounted upwards near centre of 

bottom wall as observed in Figure 12. 

Figure 13, 14 shows the results for �� � 10�,  � �

10�, �� � 10�� � 10��  and !� � 50 . It has been noticed 

that, when Prandtl number is magnified to 1000 and Darcy 

number is kept as small as 10��, the temperature and stream 

curves are pushed towards inclined walls where, stream 

contours appears as two rolls of clockwise and anti-clockwise 

circulations which are symmetric about vertical line passing 

through centre of bottom wall. The magnitude of stream 

function is 0.18 for � � 0� , 0.3 for � � 30�  and 0.28 for 

� � 45�  respectively. Moreover, isotherms are found 

symmetric and monotonic showing dominance of conduction 

regime while all isotherm contours are seen broken in case of 

� � 45� , whereas isotherms are noted to be broken when 

- 
 0.5  for � � 0�  and when - 
 0.8  for � � 30�  as 

expressed in Figure 13. 

Increasing Darcy number to 10��  results into secondary 

circulation near lower left and right corners when � � 0� . 

This secondary circulation is weaker than that appeared for 

 � � 0.7 in Figure 12 and it disappears in the cases when 

� � 30� and � � 45�  resulting in two symmetric rolls of 

clockwise and anti-clockwise circulation. Maximum height 

of stream function is noted to be 7, 8, and 9 for � � 0�, � �

30�  and � � 45�  respectively. On the other hand, non-

monotonic distorted isotherm contours are observed in this 

case while, curves are symmetrically broken and clustered to 

side walls when - 
 0.7  for � � 0�  and when - 
 0.8  for 

� � 30�and � � 45� as shown in Figure 14. 
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Figure 13. Stream lines and Isotherms for linearly heated right wall with �� = 10�,  � � 10�, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30�(c) 

� � 45�. 

Figure 15 contains plot of heat transfer rate in terms of 

local Nusselt number along uniformly heated bottom wall for 

the case of cold right wall. Curves are obtained for different 

values of Darcy number �� and Prandtl number  �  where, 

Rayleigh number �� and Hartman number !� are fixed to be 

10�and 50 respectively. 

It is observed that, 345 is 1 at left edge of bottom wall for 

all inclinations when � � 10�� � 10�� , this owes the fact 

that both walls intersection at bottom left corner node are at 

same temperature which is 1. Where, heat transfer rate is 

maximum at right edge of bottom wall due to the singularity 

appearing at this corner. It is also seen that, heat transfer rate 

accretes with distance and this increase becomes more rapid 

when we amplify the value of Darcy number �� from 10��
 

to 10�� . It is further observed that, when  �  is increased 

from 0.026  to  1000 , heat transfer rate is depreciated for 

�� � 10�� and 10�� but for �� � 10��, 345 escalates with 

distance up to 0.6 and then it is abates onward, while rate of 

depreciation is reduced with increase in tilt angle. 

 

Figure 14. Streamlines and Isotherms for linearly heated right wall with �� � 10�,  � � 10�, �� � 10�� and !� � 50 where (a) � � 0� (b) � � 30�(c) 

� � 45�. 
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Figure 15. Local Nusselt number for bottom wall with cold right wall 

considering  � = 0.026  (solid lines) and  � � 1000  (dotted lines) with 

�� � 10� where (a) � � 0� (b) � � 30�(c) � � 45�. 

Figure 16 shows local Nusselt number along linearly 

heated left wall for the case of cold right wall and it is 

observed that, for �� � 10��  and 10�� , heat transfer rate 

along left wall lNu  is almost parallel to x-axis for all tilt 

angles φ  up to 0.8 and then increases up to upper left corner 

for � � 0� while, for � � 30� and � � 45� Nusselt number 

346  increases up to 1.1 and 1.2 respectively and then 

decreases again afterwards (Figure 16 a, b, c). Where, for 

�� � 10�� and  � � 0.026, 346 appears as sinusoidal wave 

due to varying temperature gradient while, for  � �  1000, 

higher heat transfer rate is observed along left wall. 

Figure 17 shows local Nusselt number for cold right wall 

and it is noticed that for �� � 10�� and 10��, local Nusselt 

number along right wall 347  abates sharply from 0  to 0.1 

and augments afterwards at a very slow rate. Where for 

�� � 10��  with  � � 0.026 , 347  first declines from 0  to 

0.1 in similar fashion but increases afterwards on a faster rate 

and when  � is amplified to 1000 heat transfer rate remains 

same for �� � 10�� corresponding to all tilt angles and for 

�� � 10��  transfer rate decays for � � 30� and 45� 

comparatively but for � � 0�  it first decreases and then 

increases after 0.65 . Whereas, for �� � 10�� , 347 

diminishes up to 0.65 and then acceretes onwards for all tilt 

angles. 

 

Figure 16. Local Nusselt numbers for left wall with cold right wall 

considering  � � 0.026  (solid lines) and  � � 1000  (dotted lines) with 

�� � 10� where (a) � � 0� (b) � � 30�(c) � � 45�. 

Figures 18 and 19 correspond to case of linearly heated 

right wall. Figure 18 shows local Nusselt number for 

uniformly heated bottom wall. It is seen that for �� �

10��and 10��, local Nusselt number along bottom wall 345 

decreases from 0 to 0.5 for both  � � 0.026 and  � � 1000 

when tilt angle is � � 30�and 45� and rises after 0.5 up to 1 

while, low heat transfer rate is observed for higher Prandtl 
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Number  � = 1000. Whereas for � � 0� ,
 
Nusselt number 

behave in a similar way as for other tilt angles when  � �

1000 but for  � � 0.026 curve of Nusselt number is almost 

parallel to x-axis corresponding to �� � 10��  while, for 

�� � 10�� , 345  decays after increasing slightly and then 

again augments making a wave pattern. Furthermore, for 

�� � 10��, 345 first escalates from both corners (i.e. 0 and 

0.1), afterwards it depreciates toward centre and a minima 

occurs at centre of x-axis while, two local maximums are 

seen in left and right half respectively. This pattern 

corresponds to the fact that the singularity from right bottom 

corner has been removed in this case and both walls are 

heated in same fashion. Similar behavior is observed for 

 � �  1000 for all tilt angles. 

 

Figure 17. Local Nusselt number for cold right wall considering  � �

0.026 (solid lines) and  � � 1000 (dotted lines) with �� � 10� where (a) 

� � 0� (b) � � 30�(c) � � 45�. 

 

Figure 18. Local Nusselt number for bottom wall with linearly heated right 

wall considering  � � 0.026  (solid lines) and  � � 1000  (dotted lines) 

with �� � 10� where (a) � � 0� (b) � � 30�(c) � � 45�. 

As both side walls are exposed to a similar heating profile 

therefore same curve for Nusselt number is obtained. Figure 

19 shows local Nusselt number for linearly heated side walls. 

Curves are obtained for various values of Darcy number 

�� � 10�� � 10�� and Prandtl number  � � 0.026 � 1000 

where Rayleigh number ��  and Hartman number !�  are 

kept fixed to be 10�and 50 respectively. It is observed that 

for �� � 10��  and 10�� , local Nusselt number 348  along 

the side wall is almost parallel to x-axis up to 0.8 for all tilt 

angles �  and then increases afterwards sharply for � � 0� 

but for � � 30�and 45�, 348 amplifies slowly up to 1.1 and 

1.2 respectively and then diminishes again afterwards as seen 

in Figure 19 (a, b, c). Whereas, for �� � 10��  and  � �

0.026 , 348  first decays from 0  to 0.55  then augments 

onwards for � � 0� but for � � 30�and 45�, it decreases a 

little, then escalates for majority of region and near the end it 
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depreciates again. While, for  � = 1000 higher heat transfer 

rate is observed for all tilt angles and Darcy numbers. 

 

Figure 19. Local Nusselt number for side walls when right wall is under 

linear heating considering  � � 0.026 (solid lines) and  � � 1000 (dotted 

lines) with �� � 10� where (a) � � 0� (b) � � 30�(c) � � 45�. 

6. Conclusion 

The numerical results of temperature distributions and 

the streamlines in a trapezoidal cavity with uniformly 

heated bottom wall in presence of MHD are analysed using 

Finite Element Method (FEM) for linearly heated or cold 

right wall. Equations governing flow problem are first 

simplified using penalty method to eliminate pressure term 

and then Gelarkin weighted residual technique is employed 

to reduce the governing eqution to a system of algebraic 

equations. The reduced algebraic equations are nonlinear 

requiring iterative technique to solve, hence Newtons 

Raphson method is applied to compute solution for wide 

range of physical parameters including Darcy number and 

Prandtl number. 

In the case of cold right wall, It is observed that, for small 

Darcy number ( �� � 10�� ) isotherms are smooth, 

monotonic but non-symmetric for all Prandtl numbers 

showing conduction dominant regime and in addition to 

primary clockwise circulation cell, a small secondary anti-

clockwise circulation cell also appears in cavity. Increasing 

Prandtl number amplifies strength of secondary circulation 

while, augmentation in Darcy number ( �� � 10�� ) also 

escalates the strength of both primary and secondary 

circulation where isotherms gets distorted with this 

magnification in Darcy number. On the other hand, two 

symmetric rolls of stream lines circulations and symmetric 

isotherms are observed for the case of linearly heated right 

wall. In this case also, smooth and monotonic isotherms are 

obtained for small Darcy number (�� � 10��) which gets 

distorted when Darcy number is mounted ( �� � 10�� ) 

however, two rolls of secondary circulations are observed 

near bottom corners of cavity in addition to two primary roll 

where, these secondary circulations gets weaken with 

increase in tilt angle and vanishes completely for � � 45�. 

Whereas, increasing Prandtl and Darcy number increases 

strength of circulation. It is further observed that, heat 

transfer rate along bottom wall 345  is maximum at right 

bottom corner for the case of cold right wall because of the 

singularity appearing at that edge. While along left wall, 

Nusselt number Nul is espied parallel to x-axis up to 0.8 for 

all inclination angles when  �� � 10��  and 10��  while for 

�� � 10�� , curves for 346  appears like sinusoidal wave 

corresponding to case of cold right wall. It is also ascertained 

that in case of cold right wall, local Nusselt number along 

right wall 347  abates sharply from 0  to 0.1  and accretes 

afterwards at a very slow rate for �� � 10�� and 10�� . 

Where for �� � 10��  with  � � 0.026 , 347  first 

diminishes from 0 to 0.1 and then escalates afterwards on a 

faster rate. When right wall is heated linearly, heat transfer 

rate 345 along bottom wall is found constant for  � � 0.026 

corresponding to �� � 10��  while, for �� � 10�� , 345 

declines after augmenting slightly and then again amplifies 

making a wave pattern. Furthermore, in the case of linearly 

heated right wall, local Nusselt number along the side wall 

348 is almost parallel to x-axis up to 0.8 for all tilt angles � 

and then it rises afterwards sharply for � � 0�  but for 

� � 30�  and 45� , 348  increases slowly up to 1.1  and 1.2 

respectively and then decreases again afterwards when 

�� � 10��  and 10�� . Whereas, for �� � 10��  and  � �

0.026 , 348  first decreases from 0  to 0.55  then increases 

onwards for � � 0�  but for � � 45�  and � � 30�  it 

diminishes a little, then increase for majority of region and 

near the end decreases again. 
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