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Abstract: Physical processes influencing water temperature in a river are highly complex and uncertain, which makes it 

difficult to capture them in some form of deterministic model. Accurate forecasting of water temperature in a river is 

important, as it has implications on the quality of water and the lives that depend on it. Here we develop a model of forecasting 

which allows estimation and forecasting of water temperature at short and middle term, It intends to forecast the water 

temperature of days (t+i, i=1,2…), t is the current time. Due the strong dependence between water temperature at the current 

time and those for the past, the projected model builds easily itself, by investigating, for each stage of forecasting, the function 

relating input and output relationships. For this, a multi-step-ahead forecasting model based on the neural networks with the 

Bayesian regularization technique, is formulated for establishing linkages between water temperature and influencing 

variables. The results show that the elaborated model is robust and reliable and gives good results. It allows us to forecast the 

water temperature with high success. To test the ability of the model for the prediction, the observed data of the average daily 

water temperature during a period of five years (1998-2002) is considered for analysis. The first three years serve for the 

training and the remaining for the test. The model produced a standard coefficient R about 98, while the standard deviation s 

does not exceeds 0.6°C. We noticed there are a few cases presenting an error between 1 and 1.5°C (On average three cases for 

all steps of forecasting). 
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1. Introduction 

The forecast problem in hydrological sciences 

The forecast is defined as the estimation of the future 

conditions of the phenomena for the given period, from the 

past and current observations. The general objective is to 

supply the best estimations of what can happen from a given 

point to a future precise date. For example, if t indicates the 

beginning time of the process, the calculation of the forecast 

of a process defined beforehand by the function f consists in 

readjusting this last one to take into account steps of forecast. 

These steps can be units of measure of time (Hour, day….). 

Due to the strong correlation between the explanatory 

variable of two consecutive steps, the projected model builds 

itself easily in the following way: 
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Where vari represents the explanatory variable at the 

current time t, and ŷ represents estimated response of the 

hydrological process, which is the water temperature in this 

study. 

Thus for every stage, we formulate a function fi, by adding 

to every stage the previous dependent variable in the 

explanatory variables. We thus build simply many sets of 

data as steps of forecasts. 

Generally, the characteristic elements of the forecast are 

presented as follow: 

1. Variable to be planned and the explanatory variables, 

2. Horizon of forecast (i = 1, 2,… k), 

3. Methods of calculation or estimation (that is the nature 

of the function f), 

4. Objective of the forecast (alert of floods, Rain-fall-

runoff modelling, planning of the operation of 

reservoirs, the projects of irrigation, water quality…), 

5. Type of wished results (numerical, graphic values, or 

distribution of probability). 

The consideration of all these elements constitutes the 

problem of the forecast in the environment [1-6]. Two types 

of approaches can be used in the forecast: the determinist 

approach and the empirical approach (or stochastic). The 

determinist approach is based on the physical simulation of 

the system. The determinist model supposes that an exact 

calculation of the parameters is possible. But often, this 

hypothesis is not realistic, because the natural phenomena are 

very unpredictable. The determinist models are ultimately 

limited by the large number of parameters to be measured 

and by the limits of the current knowledge of the complex 

natural systems. On the other hand, the stochastic approach 

allows ignoring the limits of the physical knowledge of the 

system. Contrary to the determinist models, they work as 

"black boxes", that is without any consideration of the 

internal structure of the system. Nevertheless, there are 

techniques which allow limiting the defects of this problem. 

Among them, neural network technique [7] is known to be 

very effective in representing the relationships, which could 

exist between variables in complex systems. For this, it has 

been largely employed to hydrology application [8]. Its 

applications concern: the classification of the hydrological 

data [9], flow forecasting of rivers and alert of floods [10-

11], the quality of the water [12-13], forecasting of water 

consumption in urban domain [14], the estimation of the 

precipitation-runoff [15], forecasting the natural 

contributions in the reservoirs for irrigation or hydroelectric 

production [16], and forecasting the water temperature in a 

river [17]. 

The focus of the present work is to define a model that 

allows forecasting water temperature in a small stream, based 

on the neural networks with the Bayesian regularization 

technique [18-19]. 

 

2. Neural Networks Analysis and 

Bayesian Regularization Technique 

for Analysis 

Regression method based on neural network [7] is widely 

used for its ability to model complex non-linear relationships 

without any prior assumptions about the nature of the 

relationships, and this represents its greatest advantage. The 

solution of a problem is not explicitly encoded in the 

network, but is learned by supplying examples of previously 

solved problems to the network. After the network has 

learned to solve the example problems, it is said to be 

trained. New data from the same knowledge domain then can 

be input to the trained neural network which then outputs a 

solution. 

From a practical point of view, an artificial neural network 

is simply a computer program that transforms an m-variable 

input into an n-variable output. Artificial neural networks 

(ANNs) appear to be very promising in obtaining models that 

convert structural features into different properties of 

process. The computational neural network used in this study 

was a three-layer (input-hidden-output), fully connected, 

feed-forward network [21]. The input layer contains one node 

for each variable. The output layer has one node generating 

the scaled estimated value of the water temperature. 

Although there are neither theoretical nor empirical rules to 

determine the number of hidden layers or the number of 

neurons in this layer, one layer seems to be sufficient in most 

applications of ANNs. Networks with biases, a sigmoid layer, 

and a linear output layer are capable of approximating any 

function with a finite number of discontinuities [7]. To do 

this, input vectors and the corresponding target vectors are 

used to train a network until it can approximate a function 

relating between them in a training phase. 

2.1. Training Phase  

The training phase was realized by using the standard 

back-propagation method [22]. It is a generalizion of the 

Widrow-Hoff learning rule [23] for multiple-layer networks 

and nonlinear differentiable transfer functions. Standard 

back-propagation is a gradient descent algorithm, in which 

the network weights are moved along the negative of the 

gradient of the performance function J (equation (2)). The 

term back-propagation refers to the manner in which the 

gradient (equation (3) & equation (4)) is computed for 

nonlinear multilayer networks. 
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The function J 

y: observed target, g(x,w)= calculated target 
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The Gradient of the function J 
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The partial gradient related to neuron i 

The same approach is applied to hidden neurons; the 

parameters are modified by following the learning rule based 

on the back-propagation method (equation (5)) 

( ) ( 1) ( ( 1))iw i w i J w iµ= − − ∇ −                (5) 

µi and i represent respectively the pass and iteration 

training. 

The weights of connections between the neurons were 

initially assigned random values uniformly. During training, 

the weights and biases of the network are iteratively adjusted 

to minimize the network performance function J. The 

training was followed by examining the RMS error (RMS 

stands for root mean square, that is the square root of the 

average residual) for the total set. Training was stopped when 

there was no further improvement in the test set RMS error. 

We also computed both the correlation coefficient and the 

standard deviation between the observed and predicted 

values (equation (6)): 
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Both y and n represents water temperature and the size of 

data. 

The algorithm explained previously represents the simplest 

implementation of back-propagation learning. In several 

cases, this algorithm has been widely criticized for slow 

convergence, inefficiency, and lack robustness, as the 

network could get stuck in a shallow local minimum. To 

avoid the problem of the convergence and to reduce the 

training time, we can use algorithms based on steepest 

descent gradient with momentum [7]. Momentum allows a 

network to respond not only to the local gradient, but also to 

recent trends in the error surface. Acting like a lowpass filter, 

momentum allows the network to ignore small features in the 

error surface. The momentum is added to back-propagation 

learning by making weight changes equal to the sum of a 

fraction of the last weight change and the new change 

suggested by the back-propagation rule. The performance of 

the algorithm is very sensitive to the proper setting of the 

learning rate. The optimal learning rate changes during the 

training process, as the algorithm moves across the 

performance surface. We use a steepest descent algorithm by 

allowing the learning rate to change during the process with 

momentum training. There are also other algorithms based on 

the conjugate gradient; a search is performed along conjugate 

directions, which produces generally faster convergence than 

steepest descent directions. Among them, the Levenberg-

Marquardt algorithm [24] was designed to approach second-

order training speed. 

2.2. Advantages of the Bayesian 

Regularisation Technique 

Methods, including back-propagation neural nets, still 

present some problems, and principal among these are 

overtraining, overfitting, and selection of the best model from 

a number of models obtained in the validation process. 

Overfitting results from the use of too many adjustable 

parameters in modelling the training data. It can be avoided 

by the use of a validation set. However, validation procedures 

produce a family of similar models, and it is not clear which 

of these models is preferred. The purpose is to choose a 

model capable of not only learning the data, but also capable 

of offering a good generalization for prediction. To do this, 

one of the used techniques consists of dividing the data set 

into three sets, the first one is used for the learning; the 

second for adjusting the model and avoiding the overfitting 

by making an early stopping technique of the training when 

its error increases during the test; and the third set serves for 

testing the performance of the model. The choice of the 

second set for the validation of the model presents a major 

problem to get a model with good generalization for 

prediction. To ovoid these deficiencies, we use a method 

based on the technique of Bayesian regularization. It consists 

of penalizing the high values of the weights by modifying the 

cost function J. This technique forces the parameters (for 

example, the weights) not to take high values, and 

consequently to avoid overfitting. The advantages of 

Bayesian methods are that they produce models that are 

robust and well matched to the data, and which make optimal 

predictions. At the end of training, a Bayesian-regularized 

neural network has optimal generalization qualities. There is 

no need for a validation set, since the application of the 

Bayesian statistics provides a network that has maximum 

generalization. We have used the Bayesian-regularized neural 

network package included in the MATLAB Toolbox [25]. 

The Bayesian neural networks are classical back-

propagation neural networks that incorporate the Bayesian 

regularization algorithm for finding the optimum weights; the 

basic method used in the network training is derived from the 

Levenberg-Marquardt algorithm and the MATLAB 

implementation of the algorithm uses an automatic 

adjustment of the learning rate and the Marquardt 

parameters. The Bayesian regularization takes place within 

the Levenberg-Marquardt algorithm and uses back-

propagation to minimize the linear combination of squared 

errors and weights. 
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To predict the ability of the model in forecasting, we 

divided the initial data into two sets. The first one serves for 

the training; the second is used to test the validity of the 

model. 

3. Forecasting Water Temperature 

The temperature is an essential parameter in the quality 

control of water [26-28]. Other physical, chemical or 

biological parameters would be considered, but the 

temperature is the factor of the prime importance [29-30] 

because the effects which result from it can influence the 

other factors. The water quality can be affected when its 

temperature increases, by modifying, for example, the 

dissolved quantity of oxygen; consequently, the aquatic 

living conditions of the fauna and the flora will be modified 

forever [31-32]. When the temperature increases, the quantity 

of oxygen decreases, this leads to the development of micro-

organisms capable to live in absence of oxygen with 

following consequences: 

1. malodorous putrid gases 

2. Reduction in the ability of the water purge 

It is very difficult to define a determinist model to predict 

or forecast river water temperature, because there are many 

climatic factors having an impact on it. The physical 

knowledge of each parameter and its contribution to water 

temperature appears to be no realistic. For this, we develop a 

model of forecasting, based on back-propagation neural 

network networks and Bayesian regularization technique, 

which allows estimation and forecasting of water temperature 

at short and middle term, It intends to forecast water 

temperature of days (t+i, i=1,2…). 

The data set served for this study contains only three 

climatic parameters to establish relationship with water 

temperature in a river: 

1. Air temperature 

2. Water flow 

3. Quantity of rainfall on the river. 

 

Figure 1. Map of PMRW. 

4. The Study Region 

The data set is taken from a small stream in Panola 

Mountain [33] (figure 1). It is located in the Piedmont 

physiographic province, approximately 25 km southeast of 

Atlanta, Georgia, USA. The climate in the area is classified 

as warm temperate subtropical, with an annual average 

temperature of 16°C. The long-term annual average 

precipitation in the area is 1.24 m; annual average runoff is 
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30% of precipitation, but this percentage varies widely from 

year to year as a function of both rainfall amount and timing. 

The water and air temperature, water flow and the quantity of 

rainfall on the river are taken from 1998 to 2002. The hourly 

values taken for the first three variables during the day are 

converted to daily average; the quantity of the precipitation 

was transformed into a cumulative variable of the day in 

question. The day begins at the 1 am in the morning, and 

ends at midnight. 

5. Results 

As indicated above, the forecasting of water temperature 

can be easily realized according to the equation 1, but this 

method has been found to have some limitations. This is 

essentially due to: 

The error propagates by adding to every stage the previous 

dependent variable in the explanatory variables 

The explanatory variables, such as air temperature, water 

flow and the quantity of rainfall on the river at the current 

time t, are constantly used in all the functions fi. 

A simple statistical analysis between climatic parameters 

considered above shows that air temperature is the 

explanatory parameter of the prime importance; the 

remainder factors have minor influencing water temperature 

at the current time, and at the days (t+i, i=1,..) (table 1). 

According to this, and due to the strong correlation between 

water temperature at the current time and those for the 

previous days, we firstly built model relating them by means 

the relation in the equation 7 formulated as below: 

))(),3(),2(),1(()(ˆ txtytytyfty aireaueaueaueau −−−=                                             (7) 

ŷeau and yeau corresponds respectively to both the estimated 

and observed values of water temperature at the current time; 

xair to the air temperature. 

The function f is derived from three-layer (input-hidden-

output) feed-forward networks. A sigmoid transformation of 

the parameters factors values is performed in the first layer, 

the input layer. The output layer consisted of one neurone and 

represents water temperature. For a better flexibility of the 

neural networks model, only the previous three days are 

retained. For days (i>3), there is not much difference; so we 

selected a model with least number of parameters, that is, the 

four-parameters model (yeau(t-1), yeau(t-2), yeau(t-3), xair(t)) for 

computing water temperature in the river considered in this 

study. 

Table 1. Correlation analysis of input-output relationships. 

 Flow(t) Rainfall(t) Air T(t) Water T(t-1) Water T(t-2) Water T(t-3) Water T(t) 

Water flow(t) 1.00       

Rainfall(t) 0.50 1.00      

Air T(t) -0.16 0.01 1.00     

Water T(t-1) -0.22 -0.01 0.91 1.00    

Water T(t-2) -0.22 -0.02 0.87 0.98 1.00   

Water T(t-3) -0.22 -0.03 0.85 0.95 0.98 1.00  

Water T(t) -0.21 0.01 0.94 0.96 0.95 0.93 1.00 

T represents the temperature and t the current time 

To ensure that neural networks can give reliable 

prediction, it has been proposed, based on empirical 

observations [34]; to use only network architecture with ρ 

parameter greater than 2 (ρ is the ration of the number of 

patterns in the training to the number of connections). The 

data set contains more than 1400 values of water temperature 

over a period of five years; in addition to this, the number of 

input nodes is represented by four parameters, which are the 

influencing factors to river water temperature. Based on these 

observations, an optimal architecture network can be easily 

obtained by varying the number of hidden neurons without 

limits. This was carried out iteratively. The size of the hidden 

layer was varied from 1 to 10 hidden units, and 20 networks 

were trained for each architecture. Plotting the error for the 

validation set against the number of hidden units allowed the 

optimal architecture to be determined. We started from one 

neuron in the hidden layer, the statistical indices of the 

correlation between experimental and predicted water 

temperature for the whole data set improves with the increase 

of their number; the optimal number retained of neurons in 

the hidden layer was found six. Any improvement was 

observed when this number increases over six. 

Figure 2 shows the perfect relation, derived by the neural 

networks model, between water temperature and new 

influencing factors. Statistical criteria of the model are fairly 

good. Indeed, we have a model with about 98% of the total 

variance and a standard deviation equal to 0.68°C. The plot 

in the figure 3 shows the residuals plotted for the all data 

(1998-02). The 95% confidence intervals about these 

residuals are plotted as error bars. The first observation is that 

only a few cases present an error superior than 2°C. The 

residuals are the difference between the observed and 

predicted values. The residuals are useful for detecting 

failures in the model assumptions, since they correspond to 

the errors in the model equation. By assumption, these errors 

have independent normal distributions with mean zero and a 

constant variance. 
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Figure 2. Plot of predicted against experimental temperatures. 

 

Figure 3. The error distribution. 

The relationships formulated by the equation 7 is very 

interesting, because only air temperature at the current time 

and past water temperature are needed for estimating water 

temperature at the current time. Its utility can be useful to 

build accurate forecasting model of water temperature. In 

addition to estimated water temperature given by the neural 

networks model, air temperature data, with a projection in the 

future, could be given from the Meteorological Office. 

The problem of forecast is then reduced to finding in every 

step a function f by means of the neural networks. In every 

step we have a table of data which leads to computing a 

function fi relating water temperature and new influencing 

variables. The availability of air temperature data allows us 

using those taken from the data set for the study site. For this, 

we realized estimation by iteration (stepwise estimation). The 

first function f1 calculate the water temperature at (t+1) 

(similar to the equation 7). Another table of data is then built 

by adding ŷeau(t+1) to the explanatory variables, and we 

compute ŷeau(t+2). We continue the process above until the 

estimation of water temperature for (t+k) days. The 

multitudes of estimations are realized according to the 

following relations in the equation (8): 
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                                (8) 

f, f1, f2…..f7 were derived from the neural networks analysis 

for each data set. For this, the same network consisting on 4-

6-1 architecture was employed. 

For the validity of the model, the data from 1998-2000 is 

used for the training, and the data form 2001-02 is used for 

the test. The Bayesian regularization is introduced to improve 

the generalization ability of the trained networks; it produces 

an effect similar to that obtained by the early-stopping 

technique commonly used to avoid overtraining in 

applications of neural networks [35]. 

Results of statistical indices between observed and 

estimated values of water temperature for the test data are 

reported in the table 2, and we present in the figure 4 as an 

example the plot of the perfect relation between them for the 

seventh day. 

Table 2. Statistical analysis relating to forecasting of water temperature from the current time to the seventh day. 

the day j j=0 1 2 3 4 5 6 7 

R, s 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 

s 0.36 0.38 0.47 0.51 0.53 0.55 0.55 0.58 

Both R and s represent the correlation coefficient and the standard deviation between estimated and observed water 

temperature for the data test. 

 

Figure 4. Plots of predicted against experimental temperatures for the test data (2001-02). 

The statistical parameters of the models are very good. 

Indeed we have a model superior than 96% of the total 

variance and a standard deviation inferior to 0.6°C for all 

days. For the current time and the first day, results (R, s) are 
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similar and are sharply better in comparison to the remainder 

days; the explanatory variables used in both functions f and f1 

are those taken from the data set. For the remainder of days, 

we use the calculated water temperature for the past. 

6. Conclusion 

This paper serves as a contribution to forecasting problem 

in hydrological sciences. The merits of this methodology are 

discussed through an example concerning the forecast of 

water temperature in a small stream. Artificial neural 

networks (ANNS) are employed here to investigate 

relationships between water temperature and influencing 

factors, with emphasis on Bayesian Regularization technique. 

It seems firstly from this study that air temperature at the 

current time and past water temperature are the most 

dominant influencing variables, and are efficient to estimate 

water temperature at the current time. Efficiency of the 

neural networks model investigated to represent input-output 

relationships is not demonstrated here in comparison with 

other models. However, this present study has concentrated 

on developing a computational method as to how we have 

adapted it to generate multi-step-ahead neural networks for 

forecasting water temperature. 

The size of the data set is enough of a correct 

investigation, as it overcomes the tendency of an overflexible 

network to discover nonexistent, or overly complex, data 

models. In addition to that, daily water temperature does not 

vary significantly from day to day. Bayesian regularization 

technique is only used here to obtain a neural networks 

model with high generalization ability, without needed a 

validation set during the training phase. 

An accurate forecasting of water temperature is made 

possible with high success, because daily air temperature is 

involved in every stage of the forecast. 
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