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Abstract 
The analytical decision of a problem on distribution of perturbations of the mass flow of 

the gas, presented in the form of Fourier series, on a linear site of a gas pipeline under 

the influence of forces of a friction, gravitation and inertia is received. Thus quasi-one-

dimensional equations linearized by I. A. Charny also are presented in the form of the 

uniform equation concerning pressure and the mass flow. The qualitative analysis of the 

decision is passed and the separate result of computing experiment under the decision is 

presented. 

1. Introduction 

The work of pneumatic and hydraulic devices on transfer of momentum and energy, 

the shots made from a weapon in an automatic mode, the work of a jackhammer and 

many other processes occur in a cyclic mode. In [1] the results of the comparison method 

of simulation modeling and statistical linearization for the analysis of the statistical 

properties of the stochastic model of quasi-stationary non-isothermal mode of 

transporting of natural gas on the linear part of gas pipeline. Method statistical 

linearization can be used to improve the processing speed, method of simulation 

modeling provides high precision. 

Workload of the main gas pipelines at statistical processing shows daily, weekly and 

annual repeatability [2]. Mathematical modeling of such processes taking into account 

the basic factors of forces usually leads to the type of telegraph equation which supposes 

the solution in linear statement. Below, the system of the equations of gas-dynamic state 

of an inclined elementary section of a gas pipeline with application of averaging method 

by Charny I. A. is led to such equation concerning static pressure and the mass flow of 

gas and solved under conditions when cyclic changes of the mass flow on time are 

processed on the boundary. A method of solution of a problem offered in this work is 

useful for cases of other boundary conditions corresponding to the listed above and other 

periodic processes. 

2. Statement of Problem 

The problem without initial conditions is stated as follows.  

On entrance and exit of the section, which has length of l , periodic changes of the  
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mass flow of gas are given in the form of Fourier series  

( ) ( )0
1

0, sin cos
m m m m

m

M t t tς ξ ω ς ω
=

= + +∑ ,        (1) 

( ) ( )0
1

, sin cos
m m m m

m

M l t t tν µ ω ν ω
=

= + +∑ .         (2) 

Hereinafter 2 /
m

mω π= Π  – m-th frequency of 

perturbations; Π – the period of perturbations.  

Boundary conditions (1) and (2) can be presented as 

constant, variable, piecewise constant, piecewise variable 

values of function or results of experimental data processing 

[3, 4].  

The system of quasi-one-dimensional equations, linearized 

by Charny I. A., corresponds to isothermal process of 

transportation of gas with the account of all factors of forces 

and looks like [5-8] 
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          (3) 

Values of temperature Т, coefficient of 

supercompressibility Z, gas constant R, characteristic flow 

speed 
*
w  in computational area, diameter of gas pipeline D, 

the areas of cross-section of a gas pipeline 2 / 4f Dπ=  and 

speed of distribution of small perturbations of pressure c we 

consider as constant parameters. Acceleration of gravitational 

force g and an average inclination of a gas pipeline from 

horizon ( )/sin dH x dxα=  are accepted constants ( ( )H x –

leveling height of an axis of the pipeline on cross-section x ). 

At k=0 the local component of force of inertia of gas is 

excluded from consideration, and at k=1 – it is considered. 

The parameters of gas – pressure р, density ρ , the mass 

flow M and average mass speed w on cross-section of gas 

pipeline are functions of time t and longitudinal coordinate х.  

It is required to find stationary and periodic parts of the 

solution of the problem.  

3. Solution of the Problem 

For the solution of the problem we eliminate ,p ρ  and w  

from the system (3) and make the equation relative to mass 

flow of gas (the similar equation is made also relative to 

pressure) 

2 2
2

*2 2

M M M M
k c a

t xt x
λ

∂ ∂ ∂ ∂
+ = +

∂ ∂∂ ∂
.               (4) 

Here the member with coefficients *
2*

w

D

λ
λ =  represents the 

force of friction; and the member with coefficients 

2sing
a c

ZRT

α
=  the force of gravitation.  

The implementation of the boundary conditions, as 

equations and conditions are linear, is done in the form of a 

reduction and superposition of solutions.  

The stationary part of the mass flow ( )0
M x  of the whole 

solution is defined from the second equation of the system 

(3), in the form 0 0
dM

dx
=  for stationary statement, in the 

implementation of the conditions:  

0 0 0 0
(0) , ( )M M lς ν= = . 

The equation has a solution only when the condition 

0 0
ς ν=  is satisfied. Accordingly, the static part of the mass 

flow becomes 

0 0 0
( ) .M x ς ν= =  

On the other hand, from the first equation of the system (3) 

at stationary statement, taking into account the value of mass 

flow, we have  

0

0 0
( )

sin * 0x
ZRT

dp g
p M

dx f

λα+ + =  

or 

0

0 02

*
c

dp a p
dx f

λ
ν+ =− . 

The presence of the first derivative from the unknown in 

this boundary condition means that we need supplementary 

condition for the determination of the stationary part of the 

solutions of the task relative to pressure. We consider, that 

0 00
(0)p p=  is known and search the solution of the equation 

in the form of 

2/

0 1 2
( ) ax cp x c c e−= + . 

Substitution of the solution into the equation leads us to 

the value of summand 

2

*

1 0

c
c

a f

λ
ν=− . 

The implementation of the boundary condition leads us to 

the value of coefficient 

2

*

2 00 1 00 0

c
c p c p

a f

λ
ν= − = + . 

For a horizontal gas pipeline (at sin 0α = ) the stationary 
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part of pressure in the solution, it is necessary to accept it in 

the form of 

( ) * 0

0 00
x xp p

f
λν

= − , 

which follows from the solution resulted above the equation 

at limiting transition of 0a → . 

To obtain the non-stationary summands of composed 

solutions for pressure and mass flow we entered new 

unknown functions ( ),
m
x tϑ  and ( ),

m
u x t  corresponding to 

the fixed frequencies of 
m
ω  at m=1, 2, 3... In this connection 

the solution of the problem for pressure takes the form 

( ) ( ) ( )0
1

, ,x

m
m

p x t p x e x tβ ϑ
=

= + ∑ , 

and for the mass flow of gas –  

( ) ( )0
1

, ,x

m
m

M x t e u x tβν
=

= + ∑ . 

At such replacement the equation for separately taken 

frequency 
m
ω , for example, concerning the components of 

mass flow, takes a form of 

2
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. 

Both sides of the equation are simplified by xeβ . At the 

same time, we remove the members from the first derivative 

sought in the space coordinate of х. So we accept the relation 

( )2/ 2a cβ = − . Then the equation takes a form of a 

telegraph equation [9]: 

2 2 2
2

*2 2 24

m m m

m

u u u a
k c u

tt x c
λ

∂ ∂ ∂
+ = −

∂∂ ∂
. 

For separately taken frequency 
m
ω  boundary conditions 

are transformed and take form of:  

( )
( )
0, sin cos ,
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m m m m m
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The solution ( ),
m
u x t  is searched with introduction of 

auxiliary functions in the form of  

( ) ( ), m
i t

m m
u x t e X x

ω−∗ = . 

As cos sinm
i t

m m
e t i t

ω
ω ω

−
= −  is true, the real part of 

the solution ( ),
m
u x t∗

 corresponds to the boundary condition 

cos ,
m
tω  and an imaginary part sin

m
tω−  which have unit 

amplitude. To find the required solution by using auxiliary 

functions, it is necessary to multiply the real and imaginary 

parts of functions ( ),
m
u x t∗

 by corresponding coefficients of 

boundary conditions and sum them up [9]. 

By inserting ( ),
m
u x t∗

 into the telegraph equation, we 

receive the ordinary differential equation of the second order 

with complex coefficient 

( ) ( )2 0,
m m m

X x X xγ′′ + =  

where 

2 2

2
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sin

2
m m
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. 

In the exponential form the coefficient of the given 

equation has a form of 

2 2 m
i
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ϕ

γ θ= , 
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The value of 
m
ϕ  depends on the sign of cos

m
ϕ :  

2

2sin

2

m

m

m

arctg

g
c k

ZRT

λ ω
ϕ

α
ω

∗=
  − +   

 when cos 0
m
ϕ >  

2

2sin

2

m

m

m

arctg

g
c k

ZRT

λ ω
ϕ π

α
ω

∗= −
  − +   

 when cos 0
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Since 
/2 cos sin ,

2 2
m

i m me iϕ ϕ ϕ
= +  by denoting 

1 cos
cos ,

22
m m

m
c

ϕ ϕ+
= =  

1 cos
sin

22
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s
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= = , 

we have 
m m m m m

c i sγ θ θ= + . 

Signs of arithmetic roots of values ,
m m
c s  are found from 

the condition 0
m
ϕ π< < , which is true for acceptable 

values of cos
m
ϕ  and sin 0

m
ϕ > . 
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Based on the value of 
m
γ  solutions of ( )m

X x  are selected 

in a form of: 

( ) sin cos
m m m m m

X x A x B xγ γ= + . 

Separately we construct the solutions for unit amplitude: 

– input perturbation ( )m
X x  with conditions: 

( ) ( )0 1, 0;
m m

X X l= =  

– exit perturbation ( )m
X xɶ with conditions: 

( ) ( )0 0, 1.
m m

X X l= =ɶ ɶ  

The implementation of input perturbation 
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 = + =
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leads us to find the values of required coefficients 

, 1
m m m
A ctg l Bγ= − = . 

Therefore the solution is to be 
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which represent real and imaginary parts of ( )
m

X x . 

By repeating the procedure for exit perturbation with unit 

amplitude 
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we are convinced, that in this case 
1

, 0
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= =  

and ( )
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m

m

m

x
X x

l

γ

γ
=ɶ . Then by replacing the argument x  

to l x−  in the expressions ( ) ( ) ( ), ,
m Xm Xm

X x R x I x , we 

have following relations for exit perturbations  
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where 
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We insert the received values of ( )m
X x  into the solution 

for 
m
ω  
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, cos sin
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From here we have  

( ) ( ) ( ), cos sinx

cm Xm m Xm m
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for boundary perturbation of cos
m
tω  with unit amplitude 

( ) ( ) ( ), sin cosx

sm Xm m Xm m
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and for – sin
m
tω . 

Having provided the unknowns ( ) ( ), , , ,
cm sm
u x t u x t∗ ∗  

( ) ( ),
Xm Xm
R x I x  with the corresponding overlines and 

having multiplied them by corresponding coefficients, we 

have solutions taking into account input and exit 

perturbations.  

Reverse transition to the mass flow gives us:  
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The solution can be written in an easy form for 

implementation as follows 
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Let us proceed to the determination of multiplier ( ),
m
x tυ  

in a separate component of the solution relative to pressure of 

gas ( ) ( ), ,x

m m
p x t e x tβ υ= . As noted above, the equation for 

it takes the form of  
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We compose the boundary conditions for this equation, 

therefore turn to the first equation of the system (3) and write 

down it for 
m
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2

m m

m m

a k

fc

p M
p M

fx t

λ
∗

∂ ∂
+ =− −

∂ ∂
. 

By substituting ( ) ( ), ,x
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the equation we have  
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Similar operations are done for x l=  and we get 
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Again we introduce auxiliary functions  
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for input ( )( )m
Y x  and exit ( )( )m

Y xɶ  perturbations with 

individual amplitude. By using them we obtain the 

components of ( ),
m
x tυ  as it is done in case ( ),

m
u x t .  

The factor ( )m
Y x  in part of input perturbation ( ),

m
x tυ ∗  

with unit amplitude is defined according to boundary 
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( ) ( ) ( ) ( )0 0 1, 0;
m m m m
Y Y Y l Y lβ β′ ′− = − =  

and the multiplier ( )m
Y xɶ  in part of exit perturbation 

( ),
m
x tυ∗ɶ  with unit amplitude  

( ) ( ) ( ) ( )0 0 0, 1.
m m m m
Y Y Y l Y lβ β′ ′− = − =ɶ ɶ ɶ ɶ  

Let ( ) sin cos .
m m m m m
Y x A x B xγ γ= +  

Then we have the following for input perturbation with 

unit amplitude  

( ) ( )

( ) ( )

0 0 cos 0 sin 0 sin 0

cos 0 1,

cos sin

sin cos 0.

m m m m m m m

m

m m m m m m m m
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From here it follows 
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Parts of the solution ( )Ym
R x  and ( )Ym

I x  are 

distinguished, by multiplying numerator and factor of 

fractional function to conjugation of the doubled 

denominator ( )2 22 sin
m m

lγ β γ+ .  
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c s c xsh s l x c l x sh s x

s c

θ β θ θ θ θ θ

θ β θ θ θ θ θ

θ β β θ θ θ θ

θ β θ

=

 = + − − − − +  

 + − + − + − +  
   + − + − − + − +     

+ ( ) ( ) }2 cos 2 ,
m m m m m m m m
c xch s l x c l x ch s xθ θ θ − − −  

 

where 

( ) ( )
2

2 2 2 2 4 2 24 2 cos2 .
m m m m m m m m m m m
Z c s s c ch s l c lθ β θ θ θ

    = − + + −      
 

Thus, we have obtained the solution for individual input amplitude of the mass flow as a part of pressure 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, cos sin

cos sin sin cos .

m
i t

m m m m Xm Xm

Xm m Xm m Xm m Xm m

x t e Y x t i t R x iI x

R x t I x t i R x t I x t

ω
υ ω ω

ω ω ω ω

−∗  = = − + =  
   = + + − +      

 

We form the portions of input perturbation of the mass flow in the pressure, corresponding to frequency 
m
ω : 

( ) ( ) ( ) ( ) ( ), sin cos .
m m Ym m Ym m m Ym m Ym m
x t R x I x t I x R x tυ ξ ς ω ξ ς ω   ′ ′ ′ ′= + + − +        

Similarly we find the portions of exit perturbation ( )* ,
m
x tυɶ  with unit amplitude. 

Assume that for exit perturbation the sought function is 

( ) sin cos .
m m m m m
Y x A x B xγ γ= +ɶ  

The boundary conditions for a part of exit perturbation with unit amplitude are  

( ) ( )
( ) ( )
0 0 0,

1.
m m

m m

Y Y

Y l Y l

β

β

 ′ − =
 ′ − =

ɶ ɶ

ɶ ɶ
 

Realizing these boundary conditions we obtain the solution  

( )
( )

( ) ( )
2 2

sin cos
.

sin

m m m

m Ym Ym

m m

x x
Y x R x iI x

l

β γ γ γ

γ β γ

− −
= = +

+
ɶ ɶ ɶ

 

here 
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( ) ( ){
( ) ( ) ( ) ( )

2 2 2 2

2

1

cos cos

2

Ym m m m

m

m m m m m m m m

m m m

R x c s
Z

c l x ch s l x c l x ch s l x

s c

θ β β

θ θ θ θ

θ β

 = − + ×  

 × − − + + + − +  
+ ×

ɶ

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) }

2 2

2 2

sin sin

sin sin

cos cos ,

m m m m m m m m

m m m

m m m m m m m m

m m m

m m m m m m m m

c l x sh s l x c l x sh s l x

c

c l x ch s l x c l x ch s l x

s

c l x sh s l x c l x sh s l x

θ θ θ θ

θ β θ

θ θ θ θ

θ β θ

θ θ θ θ

 × − − + + + − +  
+ + ×

 × − + − − − + +  
+ − + ×

 × − + − − − +  

 

( ) ( ){
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2

1

sin sin

2

cos cos

Ym m m m

m

m m m m m m m m

m m m

m m m m m m m m

I x c s
Z

c l x sh s l x c l x sh s l x

s c

c l x ch s l x c l x ch s l x

θ β β

θ θ θ θ

θ β

θ θ θ θ

 = − + ×  

 × − − + + + − +  
+ ×

 × − + − + − +  

ɶ

 

( )
( ) ( ) ( ) ( )

2 2

cos cos

m m m

m m m m m m m m

c

c l x sh s l x c l x sh s l x

θ β θ

θ θ θ θ

+ + ×

 × + − + − + +  

 

( )
( ) ( ) ( ) ( ) }

2 2

sin sin .

m m m

m m m m m m m m

s

c l x ch s l x c l x ch s l x

θ β θ

θ θ θ θ

+ − + ×

 × − + − − − +  
 

The solution for unit amplitude of exit perturbation makes  

( ) ( ) ( ) ( )
( ) ( )

, cos sin

cos sin .

m
i t

m m Ym m Ym m

Ym m Ym m

x t e Y x R x t I x t

i I x t R x t

ω
υ ω ω

ω ω

−∗  = = + +  
 + −  

ɶ ɶ ɶɶ

ɶ ɶ
 

As the first bracket corresponds to cos
m
tω , and the second bracket to  sin

m
tω− , having multiplied them to corresponding 

coefficients and having summed, we have  

( ) ( ) ( ) ( ) ( ), sin cos .
m m Ym m Ym m m Ym m Ym m
x t R x I x t I x R x tυ µ ν ω µ ν ω   ′ ′ ′ ′= + + − +      

ɶ ɶ ɶ ɶɶ  

It is the portion of exit perturbations of the mass flow of gas as a part of the solution of a problem concerning pressure of 

gas. We make the total solution for pressure of gas  

( ) ( )

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

0

1

,

sin

cos .

x

m Ym m Ym m Ym m Ym m
m

m Ym m Ym m Ym m Ym m

p x t p x e

R x I x R x I x t

I x R x I x R x t

β

ξ ς µ ν ω

ξ ς µ ν ω

=

= + ×

 ′ ′ ′ ′× + + + +  

 ′ ′ ′ ′+ − + − +  

∑ ɶ ɶ

ɶ ɶ

 

Flow velocity ( ),w x t  is defined under the known formula  

( , )
( , )

( , )

M x tZRT
w x t

F p x t
= . 

So, the problem is solved and the values of 

( ) ( ), , ,p x t M x t  and ( , )w x t  are determined.  

4. Discussion of Results 

The time variable in solutions is presented by factors 

sin
m
tω  and cos

m
tω , that is typical for periodic processes 

as a whole. The received solution as a total can describe big 

and small, including jumping changes of the mass flow of 
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gas in computing area.  

The behaviour of the solution for 
m
ω  relative to 

coordinate х can be characterized, based on the values of 

coefficient  

2 2

2

2 2

sin

2
m m

m

kg
i

ZRT c c

ω λ ωα
γ ∗

  = − + +   
 

the ordinary differential equation of the second order.  

When 
2 0
m
γ <  the factors of summands have the form of 

2exp
m
xγ

 ±   
. Such result is expected at zero value of the 

real part 
2

m
γ , in particular for a horizontal gas pipeline 

without force of inertia. Actually perturbations decrease in 

exponential law at removal from the source (borders of 

section) that is connected to the account of only summands 

with factors 2exp
m
xγ

 +   
 for input perturbation and only a 

summand 2exp
m
xγ

 −   
 for exit perturbation. 

When 
2 0
m
γ >  i.e. at 0λ

∗
=  and 

2 2 24 0
m
c aω − > , the 

solution of a problem for separate frequency contains factors 

of a form sin
m
xγ  and cos

m
xγ . In this case the discrete step 

is kept in the solution at distribution of perturbations only 

from one end of a section and move along the length of a 

section, transformed only in the end of a section. The case of 

interaction of opposite perturbations in the field of various 

forces is the issue of interest.  

The case 
2 0
m
γ =  corresponds to «seemingly resonance» 

case: ( )m
X x Ax B= + . Perturbation linearly increases or 

decreases depending on the value of coefficient A. With the 

account of xeβ  (and without it) the factor is limited to a local 

maximum in the graph.  

These judgments concern separate m-th component of 

results in limited cases. The similar analysis can be done 

concerning the pair of forces which represent cases of 

complex value
2

m
γ .  

The changes of pressure and the mass flow of gas on a 

horizontal site of a gas pipeline with a length of 40l km=  

are presented as an example. On an input we have constant 

outgo of ( )0, 125 /M t kg s= , and in the end of a site gas is 

consumed as much as possible during the workday (250 kg/s 

– from 8 o'clock till 17 o'clock and 50 kg/s – the rest of time 

in a day).  

In figure-1 the dynamics of isobars during a day are 

presented. 

In fig. 2 the changes of the mass flow curves for this case 

are presented.  

In case of complex value of 
2

m
γ , the solution contains 

factor in the form of 
cos

sin
x

m m m m

ch
e c x s x

sh
β θ θ
               
            

. It 

corresponds to sinusoids with decreasing or increasing 

amplitude.  

It is necessary to note, that at considerable slopes of a site 

from horizon, probably the value of cos
m
ϕ  is negative for 

the first member or for the several first members. Such 

frequencies result to deeper penetration of perturbations with 

weak decrease in amplitude.  

 

Figure 1. The change of static pressure (in MPa) of gas along the length of 

gas pipeline during a day with the account of forces of friction and inertia of 

gas 40l km= , 0, 0225λ = , 0,992 D m= , ( )0
0 5,5 p MPa= , 

*
20 /w m s= , 380 /c m s= , 0,92Z = , 297T K= , 

( )0, 125 /M t kg s= , ( )
50 / when 0 8 and 17 24 hours,

,
250 / when 8 17 hours.

kg s t t
M l t

kg s t

 ≤ < ≤ <= 
 ≤ <

 

 

Figure 2. The change of the mass flow of gas (in kg/s) along the length of 

pipeline during a day with the account of forces of friction and inertia of gas 

Data see fig. 1. 
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Generally, the functions ( ) ( ),
Xm Xm
R x I x  for the solution 

concerning the mass flow, and functions ( ) ( ),
Ym Ym
R x I x  for 

the solution concerning static pressure serve as distinctive 

transfer functions for separately taken frequency. Each case 

of a combination of factors of forces and each variant of 

boundary conditions has own components and forms of 

transfer functions. In conjunction with the stationary 

components they make up the whole picture of a complex 

dynamic process of propagation of perturbations of mass 

flow. 

5. Conclusion 

The presented material corresponds to the Problem 2 from 

[10] where the force of resistance of a friction was 

considered only. On the basis of the method offered in this 

work we can obtain a solutions of other five problems from 

[10], and also the problems from [6] taking into account all 

factors of force and a receiver. Realization of the received 

solutions in the form of software product allows analyzing 

gas-dynamic state of gas on a site with the ignorance of 

separate factors of forces. For example, as already have noted 

above, at 0k =  the inertial component of force of inertia is 

not considered; at 
*

0λ =  the force of a friction is not 

considered; and at 0a =  the horizontal site of a gas pipeline 

(fig. see) is considered.  

Materials can be used also for the solution of problems on 

work of pneumodrives, electric chains and etc. 
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