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Abstract 
This article discusses the construction of a model based on fuzzy inference rules using Z-

evaluation, aimed at obtaining conclusions with the use of vague, inaccurate or 

incomplete initial information. A common approach of computing Z-numbers based on 

the principle of Zadeh expansion is offered. It outlines the basic arithmetic operations on 

discrete Z-numbers. We consider three types of fuzzy models for assessing the status of 

poorly formalized process, the output of which is a linear and non-linear dependence, as 

well as in the form of fuzzy terms. The computational experiments are done and the 

results are analyzed. 

1. Introduction 

In 2011, Professor of the University California (Berkeley) Lotfi Zadeh, the founder of 

the theory of fuzzy sets, fuzzy logic and computing with words, proposed the concept of 

Z-number to describe the inaccuracies (proximity) of information used in everyday life. 

Such information is not entirely accurate; in most cases, people associate varying 

degrees of confidence when expressing views, describing situations and etc.., depending 

on their experience, intuition and awareness 

The general approach for computing of Z-numbers is proposed in [1] based on the 

principle of Zadeh expansion. This approach is computationally very complex, it 

includes several variational problems. To overcome this difficulty, several simplifications 

are suggested. In general, the work [1] is the beginning, which opens the door to many 

potential applications of computing Z-numbers and claims several related important 

issues. In [2] the authors propose an approach for transforming Z-numbers in fuzzy 

number [3] on the basis of fuzzy expectation of a fuzzy set. Under the proposed 

approach, with the second component Bɶ  defuzzification operation is performed to clear 

the values of alpha, which is then multiplied by Aɶ . However, it should be noted that the 

conversion of Z-numbers in the classic fuzzy numbers [4, 5] results in a loss of the 

original information. In [6], the Z-numbers are applied to the multi-criteria decision-

making problems, given in [2]. In this problem, the weighting criteria and the criteria for 

assessment of alternatives are given in the form of Z-numbers. However, in general, 

evaluating alternatives are considered as crisp numbers. Papers [7, 8] are devoted to new 

ideas, approaches and applications of Z-numbers in a variety of important areas. It is 

proposed to consider the Z-evaluation ( , , )X A Bɶ ɶ  in terms of the distribution capabilities 

of probability distributions underlying the corresponding Z-number ( , )Z A B= ɶ ɶ . The 

proposed approach considers only typical distribution. The author also provides an 

alternative formulation of Z-data in terms of Dempster-Shafer theory [9], which  
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comprises a plurality of fuzzy type-2 [10]. The paper [11] is 

devoted to the issues of calculation of continuous Z-numbers 

and some important practical problems in the field of control 

and decision-making. This research is based on the use of the 

normal density functions for the simulation of random 

variables. Among the important issues raised in the paper 

[11] we can show IF-THEN calculation rules described by Z-

numbers. 

The paper [12] is devoted to solve the problems in the face 

of uncertainty, when the relevant information is described by 

Z-numbers. The authors formulate decision making problem 

when the probabilities of the states of objects and the results 

of the alternatives are described by Z-numbers. A decision 

analysis on the basis of the approach is proposed in [2]. The 

main disadvantage of the proposed study is a loss of 

information as a result of the conversion of Z-numbers into 

fuzzy numbers. 

We can conclude that there is no general and 

computationally efficient approach to computing of Z-

numbers. The development of a universal approach for the 

easy use for a wide range of practical tasks, such as 

monitoring, analysis, decision-making and optimization [13, 

14] is one of the problems of current interest. In turn, this 

requires the definition of arithmetic on Z-numbers. 

2. Formulation of the Problem 

We can say that the theory of Z-numbers is not sufficiently 

investigated yet (most famous publications relates to the 

period of 2012-2015.), but scientists have already contributed 

to the development of the theory of Z-numbers and suggested 

some approaches to dealing with them, which will be 

considered in this paper. Nevertheless, the use of Z-numbers 

in the fuzzy system output still remains as an unsolved 

problem because they are used in the representation of 

components of different nature. 

The purpose of this article is to study the methods of using 

Z-numbers in fuzzy inference systems and the development 

of programs based on the results of this study. To achieve this 

goal the following objectives have been identified: 

1. Study of existing approaches to operations with Z-

numbers. 

2. Development of using algorithm of the transformed Z-

numbers in the fuzzy output systems. 

3. Study of the possibilities of using Z-numbers in the 

output system without pre-modification (conversion). 

4. Development of a program that implements the 

proposed method. 

5. Carrying out the experiments and analysis of the results. 

In this paper, we propose an approach based on the use of 

the transformed Z-numbers (the transition to the normal 

fuzzy numbers) in the fuzzy system output. The paper also 

analyzes the arithmetic operations on Z-numbers, which have 

been formalized at the time of writing operation, the 

prospects for their use in fuzzy inference systems and 

formulated the problems that arise in this case. 

3. Discrete Z-number 

The discrete Z-number is the ordered pair ( , )Z A B= ɶ ɶ , 

where Aɶ  the discrete fuzzy number plays the role of fuzzy 

constraints on the values that the random variable X can 

accept [1, 3]: 

X is Aɶ  

and Bɶ  is discrete fuzzy number with a membership function

1 1:{ ,..., } [0,1],{ ,..., } [0,1]n nB
b b b bµ → ⊂ɶ , playing the role of 

a fuzzy constraints on measures of probability Aɶ : 

( )P A is Bɶ ɶ  

The notion of a discrete Z +-number is closely linked with 

the concept of a discrete Z-number. Given the a discrete Z- 

number of Z + is the number Z + of a pair consisting of the of 

fuzzy number Aɶ  and of the random number R [12]: 

( , )Z A R+ = ɶ , 

where Aɶ  plays the same role as in discrete Z- numbers 

( , )Z A B= ɶ ɶ  and R plays a role the probability distribution p, 

such that 

1

( ) ( ) ( ), ( ) sup ( )

n

i iA

i

P A x p x P A p Bµ
=

= ∈∑ ɶ
ɶ ɶ ɶ . 

Let the 1 1 1( , )Z A B= ɶ ɶ  and 2 2 2( , )Z A B= ɶ ɶ  continuous Z-

number that describes the values of X1 and X2 indefinite of 

real variables. Suppose that it is needed for the calculation 

12 1 2 , { , , , /}Z Z Z= ∗ ∗∈ + − ⋅ . Computation with continuous Z-

numbers begins with the computation of the corresponding 

continuous Z+-numbers 1 1 1( , )Z A R+ = ɶ  and 2 2 2( , )Z A R+ = ɶ , 

where in R1 and R2 of the probability distribution. Thus, the 

first need to calculate [13, 16]. 

12 1 2 1 2 1 2( , )Z Z Z A A R R+ + += ∗ = ∗ ∗ɶ ɶ  

For simplicity, consider the case where * is the sum and 

assume that X1 and X2 are independent. As operands 1 2A A∗ɶ ɶ  

and 1 2R R∗  presented in the different types of the 

limitations, the values * also distinguished [16]. 1 2A A+ɶ ɶ  

defined as 

1 2 1 2
1 1( ) sup(min{ ( ), ( )})

A A A A
x x x xµ µ µ+ = −ɶ ɶ ɶ ɶ  

In turn, 1 2R R∗  is probability density 

1 2 1 21 1( ) ( ) ( )R R R R
R

p x p x p x x dx+ = −∫ . 

Hence, 
1 212 12( , )R RZ A p

+
+= , where 12 1 2A A A= +ɶ ɶ ɶ . 
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Now we realize that the "true" probability distribution 
1Rp  

and 
2Rp  are not known. In opposite that, 

1Rp  and 
2Rp  are in 

the following constraints fuzzy 

11

22

1 1 1 1

2 2 2 2

( ) ( ) ,

( ) ( )

RA
R

RA
R

x p x dx is B

x p x dx is B

µ

µ

∫

∫

ɶ

ɶ

ɶ

ɶ
 

which are represented in terms of membership functions as 

( )
( )

11 1

22 2

1 1 1

2 2 2

( ) ( ) ,

( ) ( ) .

RB A
R

RB A
R

x p x dx

x p x dx

µ µ

µ µ

∫

∫

ɶ ɶ

ɶ ɶ

 

Thus, information 
1 2

( )R Rp x+  also be presented fuzzy 

constraint. Problem construction of this fuzzy restriction is 

formulated 

( ) ( ){ }1 2 1 21 21 21 2

1 2

1 1 1 2 2 2
,

( ) sup min ( ) ( ) , ( ) ( ) ,
R R

R R

p R R R RB BA A
R Rp p

p x p x dx x p x dxµ µ µ µ µ
+ +

 =  
 ∫ ∫ɶ ɶ ɶ ɶ                      (1) 

on condition 

1 2 1 21 1( ) ( ) ( )R R R R
R

p x p x p x x dx+ = −∫                                                                (2) 

1 1 1( ) 1R
R

p x dx =∫                                                                                   (3) 

2 2 2( ) 1R
R

p x dx =∫                                                                                   (4) 

1

1

1

1 1 1

1 1 1

1 1

( )
( )

( )

A
R

R
R

A
R

x x dx
x p x dx

x dx

µ

µ
= ∫∫
∫

ɶ

ɶ

 (compatibility condition for)                                           (5) 

2

2

2

2 2 2

2 2 2

2 2

( )
( )

( )

A
R

R
R

A
R

x x dx
x p x dx

x dx

µ

µ
= ∫∫
∫

ɶ

ɶ

 (compatibility condition for)                                         (6) 

As you can see, (1) - (6) it is a very complex nonlinear 

variational problem. More specifically, the problem of 

constructing membership functions for a variety of package 

and operands problems of probability density, which are 

discussed in a general sense. This problem may be simplified 

if the assumption can impose sufficient to use some typical 

forms of distribution such as a Gaussian type distribution. 

However, even in this case, the problem is very complex and 

of analytical and computational points of view. 

As it see, (1) - (6) it is a very complex nonlinear variational 

problem. More specifically, the problem of constructing 

membership functions for a variety of package 
1 2

( )R Rp x+  and 

operands problems of probability 
1 1( )Rp x  and 

2 2( )Rp x  

density, which are discussed in a general sense. This problem 

may be simplified if the assumption can impose sufficient to 

use some typical forms of distribution such as a Gaussian type 

distribution. However, even in this case, the problem is very 

complex and of analytical and computational points of view. 

After the construction 
1 2R Rpµ

+ , we have to go to the final 

stage of of calculating the required Z-number 

12 12 12( , )Z A B= ɶ ɶ , ie the definition 12Bɶ . This problem is 

formulated as follows: 

1 212 1 2
12( ) sup( ( ))

R Rp R RB
b pµ µ

+ +=ɶ  

on condition 

1 2 12
12 ( ) ( )R R A

R
b p x x dxµ+= ∫ ɶ  

As seen, newly dealing with a nonlinear variational 

problem. In order to overcome the complexity of operations 

with continuous Z-numbers, we offer an alternative approach. 

This approach consists in considering the discrete Z-numbers 

as discrete analogues of continuous Z-numbers [1, 13]. 

4. The Theoretical Part 

An ordered triple, which is interpreted as an operator 

(approval) “U is (A, B)” is called Z-evaluation. If A is not a 

member of only one point, the U is an uncertain variable. 

In reality, Z-evaluation can be considered as a limitation 

on the U, which is defined - by the expression: 

Prob (U is A) is B. 

This means that we do not know the true probability 

density for U, but there is a limitation in the form of a fuzzy 

subset Р of the space P of all probability densities for U. This 
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limitation is fuzzy probability of B. Let p be a density 

function on U. The probability density Prob ( )p U is A  

(probability that U is A) is determined on the basis of 

determining the probability of a fuzzy subset of the proposed 

by Zadeh [6] as 

Prob ( ) ( ) ( ) .p A uU is A u p u duµ
+∞

−∞

= ∫  

Then, the degree to which p satisfies Z-evaluation 

Prob ( )p U is A  is B is 

( ) (Prob ( ))

( ( ) ( ) ).

p B p

B A U

p U is A

u p u du

µ µ

µ µ
+∞

−∞

= =

= ∫
 

We take a following parametric distribution is taken in a 

form of р: 

1. Normal distribution, the density function of which is 

2

2

1 ( )
( ) ( , , ) exp .

2 2
U

u m
p u normpdf u m σ

σ π σ
 −= = −  
 

 

In this situation, for any m, σ  we have 

2

, , 1 2 3 42

1 ( )
Prob ( ) ( ) ( ) exp ( ( ,[ , , , ])*

2 2

* ( , , ), inf, inf

+∞ +∞

−∞ −∞

 −= = =  
 

− +

∫ ∫m A m A

u m
U is A u p du u du quad trapmf u a a a a

normpdf u m

σ σµ µ
σ π σ

σ

 

Then the space Р of probability distributions is the class of 

all normal distributions, each uniquely defined by its 

parameter m, σ . 

2. Uniform distribution, the density function of which is 

0 a ,

( ) ( , , ) 1/ ( ) a ,

0 a .

U

t х a

p u ravpdf u a b b a t a x b

t x b

≤
= = − < ≤
 >

 

In this situation, for any m, σ  we have 

, , 1 2 3 4Pr ( ) ( ) ( )(1/ ( )) ( ( ,[ , , , ])* ( , , ), inf, inf)

b b

a b A a b A

a a

ob U is A u p du u b a du quad trapmf u a a a a ravpdf u a bµ µ= = − = − +∫ ∫  

Then the space Р of probability distributions is the class of 

uniform distributions, each uniquely defined by its parameter 

a and b. 

Consequently, operations on Z-number given in [15] will 

be sufficiently simplified. 

5. Discussion of Experimental 

Results 

Let us give a fuzzy sample of experimental data ( , )r rX y , 

1,r M= ; here 1 2( , ,..., )r r r rnX x x x= - n-dimensional input 

vector and ( )1 2, ,...,r My y y y=  - output vector 

corresponding to it. 

In general, it is required to build a model based on fuzzy 

inference rules using Z-estimation uncertainty: 

, , 1 2

1 1

( , ( , ,..., )
kk n

i i jp i jp j n

p i

x a b y f x x x

= =

 
 = → =
 
 
∪ ∩ . 

This approach of using Z-numbers in the fuzzy output 

system gives the opportunity to take into account the 

uncertainty more effectively of when working with 

approximate, inaccurate information. We can confidently say 

that this algorithm can be developed with great success to 

find wide application in the solutions of both engineering and 

economic problems of various kinds. 

Let us illustrate the work of the system in an example. 

We consider three types of fuzzy models for assessing the 

status of poorly formalized process, the output of which is a 

linear and non-linear dependence. 

1. Fuzzy model, the output of which is a linear 

dependence: 

If 1 11 11 2 12 12 1 1( ( , ) ( , ) ... ( , ))i i i i i i i i i
n n nx a b x a b x a b= ∨ = ∨ ∨ = ∧  

............................... 

1 211 11 12 12 1 1( ( , ) ( , ) ... ( , ))i i i i i ik k k k k ki i i
n n nx a b x a b x a b∧ = ∨ = ∨ ∨ = , 

then 

1 1

1 1

1

1 1
1

1 1

0 1

1

1 1

( ) ( )

( ) ( )

( ) ( )

... ,

( ) ( )

q q
ij ij ij ij

n nq q
j jij ij

nq q
ij ijj j

n

j j

i i i inq q
ij ij

n

j j

a a a a

b b

a a

y c c c

b b

µ µ

µ µ
µ µ

µ µ

= =

= =

= =

= =

= + +

∑ ∑
∑ ∑

∑ ∑

∑ ∑

 1, .i m=  



 American Journal of Mathematical and Computational Sciences 2016; 1(2): 67-73 71 

 

 

2. Fuzzy model, the output of which is represented in the 

form of fuzzy terms: 

If 1
1x =(L, M) and 1

2x =(L, M) and 1
3x = (L, M)) or 1

4x =(L, M) 

and 1
1x =(L, M) and 1

2x =(L, M) and 1
3x =(L, M) and 1

4x =(L, 

M) then 1r =(H, M). 

If 2
1x =(L, M) and 2

2x =(L, M) and 2
3x =(L, M) and 2

4x =(M, 

M) or 2
1x =(L, M) and 2

2x =(L, M) and 2
3x =(L, M) and 2

4x

=(H, M) or 2
1x =(L, M) and 2

2x =(L, M) and 2
3x =(M, M) and 

2
4x =(L, M) then 2r =(HM, M). 

If 3
1x =(L, M) and 3

2x =(L, M) and 3
3x =(L, M) and 3

4x =(HM, 

M) or 3
1x =(L, M) and 3

2x =(L, M) and 3
3x =(HM, M) and 3

4x

=(M, HM) or 3
1x =(L, M) and 3

2x =(L, M) and 3
3x =(M, HM) 

and 3
4x =(H, HM) then 3r =(M, HM). 

If 4
1x =(L, HM) and 4

2x =(H, HM) and 4
3x =(M, HM) and 4

4x

=(M, HM) or 4
1x =(L, HM) and 4

2x =(M, HM) and 4
3x =(M, 

HM) and 4
4x =(H, HM) then 4r =(LM, M). 

If 5
1x =(M, HM) and 5

2x =(H, HM) and 5
3x =(M, HM) and 5

4x

=(H, HM) or 5
1x =(H, HM) and 5

2x =(H, HM) and 5
3x =(M, 

HM) and 5
4x =(H, HM) or 5

1x =(H, HM) and 5
2x =(H, HM) 

and 5
3x =(H, HM) and 5

4x =(H, HM) then 5r =(L, M). 

Here L-low, M-medium, LM- low medium, HM- higher 

medium, H-high. 

3. Fuzzy model, the output of which is represented as a 

non-linear dependence: 

If 1 11 11 2 12 12 1 1( ( , ) ( , ) ... ( , ))i i i i i i i i i
n n nx a b x a b x a b= ∨ = ∨ ∨ = ∧  

............................... 

1 211 11 12 12 1 1( ( , ) ( , ) ... ( , ))i i i i i ik k k k k ki i i
n n nx a b x a b x a b∧ = ∨ = ∨ ∨ = , 

then 

1 1 2 2

1 1

1 2

1 1
1 2

1 1

0 1 2

1 2

1 1

1 1

1

1

1

1

1

1

( ) ( )

( ) ( )

( ) ( )

...

( ) ( )

( ) ( )

( ) ( )

( )

( )

q q
ij ij ij ij

q q
j jij ij

q q
ij ijj j

j j

i i i iq q
ij ij

j j

q
ijij ij

n nq
j ijij

n q
ijj
n

j

in inq
ij
n

j

a a a a

b b

a a

y c c c

b b

a a a a

b b

a

c c

b

µ µ

µ µ
µ µ

µ µ

µ µ

µ µ
µ

µ

= =

= =

= =

= =

=

=

=
+

=

= + + +

+ +

∑ ∑
∑ ∑

∑ ∑

∑ ∑

∑
∑

∑

∑

2

1

1
1

1

1

1

2

2 2

1 1

2

1
2

1 1

2 2

2

1

( )

( )

( ) ( )

( ) ( )

( ) ( )

...

( )

q
ij

q
j

q
ijj

j

q
ij

j

q q
ij ij ij ij

n nq
j jij ij

nq q
ij ijj

n

j j

in i nq
ij

j

a

b

a a a a

b b

a a

c c

b

µ

µ

µ µ

µ µ
µ µ

µ

=

=

=

=

= =

=

= =
+

=

 
 
 
 
 
 
  +
 
 
 
 
 
 
  

 
 
 
 
 
 
 + + +
 
 
 
 
 
 
  

∑
∑

∑

∑

∑ ∑
∑

∑

∑

2

1

1

,

( )

1, .

q

j

q
ij
n

j

b

i m

µ

=

=

 
 
 
 
 
 
 
 
 
 
 
 
 
  

=

∑
∑

∑
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Software has been developed. In this embodiment, we used 

fuzzy inference algorithm, based on the conversion of Z-

numbers in fuzzy numbers. 

According to the results of the study, we have obtained a 

forecast of shortage in crop risk assessment, based on the 

construction of approximating models using training and 

testing of the risk of data (Figure 1). Charts of these 

relationships are shown in Figure 2. 

In the proposed model, each input variable has its own 

membership functions of fuzzy terms (low, low medium, 

medium, higher medium, high), which are used in the 

equations. 

 

Fig. 1. Schedule risk assessment for training and testing data. 

 

Fig. 2. The surface of the "input - output" for risk assessment. 
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As a direction for further work we can underline the 

development of the algorithm use of arithmetic discrete Z-

numbers in systems of fuzzy output with a view to full 

implementation of Z-information display mechanisms that 

will bring the smallest loss of information contained in the Z-

numbers. 

6. Conclusion 

The result of this work is the developed approach to the 

use of Z-numbers in the system of fuzzy output by converting 

Z-numbers in the classical fuzzy numbers and the 

development of an approach to decision-making, which 

summarizes the current expected utility approach in the case 

of Z-information. This approach, in contrast to other studies 

on decision-making within the Z-information based on a 

direct calculation of the Z numbers without converting them 

into fuzzy numbers. A direct calculation of the Z-numbers 

excludes loss of information related to the conversion. The 

approach used to solve poorly-formalized process state 

estimation problems. The results have showed the validity of 

the proposed approach. 
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