American Association for
Science and Technology

American Journal of Mathematical and Computational Sciences
2017; 2(6): 63-67 AASClT
http://www.aascit.org/journal/ajmes

O Quasi-HNN Groups and Length

American Journal of

Mathematical and F un ct i ons

Computational Sciences

Faisal Hussain Nesayef
Department of Mathematics, Faculty of Science, University of Kirkuk, Kirkuk, Iraq

Email address
fnesayef @ yahoo.com

Citation

Faisal Hussain Nesayef. Quasi-HNN Groups and Length Functions. American Journal of
Mathematical and Computational Sciences. Vol. 2, No. 6, 2017, pp. 63-67.

Abstract

Keywords The concept of length functions on groups was first introduced by Lyndon [1]. This was
used to give direct proofs of many other results in combinatorial group theory. Further
work was done by many others such as, Chiswell [2], [3], Hoare [4], [5], Wilkins [6], etc.
The aim of the paper is to investigate the nature of some particular elements of the
Coset Representative, Quasi-HNN groups, namely the Archimedean elements N and M which are introduced in
Normal Form, chapter two. Length functions are used to prove the connection between the elements of
Quasi HNN Extension, the Quasi-HNN group and to achieve certain objectives, such as M is a subset of N and
Reduced Word identify the conjugates of each set.

Archimedean Elements,
Associated Subgroups,
Conjugate Elements,

1. Introduction

Received: December 20, 2016 In this paper we look at a construction given by G. Higman, B. H. Neumann and H.

Accepted: April 18,2017 Neumann in 1949. This construction is called HNN extension which was generalized by

Published: November 25. 2017 Khanfar [7] and called Quasi-HNN extension. Subsequently, this was also studied by
Meier [8].

We define a length function on Quasi-HNN extensions to get some further results
concerning the structure of Quasi-HNN extensions, factor groups and some predefined
important parts of this group. However, we have to formulate a normal form theorem for
Quasi-HNN extensions and consider reduced forms of the elements of this group.

Two important sets called M and N satisfying some certain axioms of length functions
were introduced by Lyndon [1].

The last section of this paper investigates the nature and the structures of the sets M
and N in relation to the elements of Quasi-HNN group.

2. Length functions

Definition 2.1: A length function | | an a group G, is a function giving each element x
of G a real number |x|, such that for all x, y, z € G, the following axioms are satisfied
Al' |e| = 0, e is the identity elements of G.
A2 |x7H = x|
A4 d(x,y) < d(y,2) = d(x,y) = d(x,z), where d(x,y) = % (x| + |yl = lxy~1]
Lyndon [1] showed that A4 is equivalent to d(x,y) = min{ d(y, z), d(x, z)} and to

d(ylz)!d(xlz) 2 m= d(xlz) 2 m.

A1',A2 and A4 imply |x| = d(x,y) = d(y,x) = 0.
Assuming, A2 and A4 only, it is easy to show that:
i. dlx,y) = lel

ii. x| = |e|
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iii. d(x,y) < |x| —%lel, see [7].

The Axiom A3 states that d(x,y) = 0. This is deductible
from A1', A2 and A1’ which is a weaker version of the axiom
Al:|x| = 0ifand only ifx = 1 in G.

The following propositions were introduced by Lyndon
[1].

Proposition 2.1 d(xy,y) +d(x,y™1) = |y|

Proposition 2.2 d(x,y™') +d(y,z™1) < |y| implies that
lxyz| < |x| = |yl + |z|

Proposition 2.3
Impliesd(xy,z™1) = d(y,z™1)

Proposition 2.4  d(x,y) +d(x"Ly™D) = |x| = |y|
Implies |(xy~)?| < |xy~*])

Proposition 2.1 implies that, for any x,y € G,d (x,y) =
lyl =d (xy~hy™") < |y| by A3.

Since d(x,y) = d (y,x), we get d (x,y) < min{|x]|, |y|},

Axiom A5 states that: d (x,y) + d (x"1,y™1) > |x]| =
y>x=y

Definition 2.1 A non-trivial element g of a group G is
called Non-Archimedean if |g?| < |g]|

Definition 2.2 Let G be a group with length function an
element x # 1 in g is called Archimedean if [x| < |x2|.

The following Axioms and results have added by Lyndon
and others

di,y™)+d,z7") < |yl

A0x #1 = |x| < |x?|

CO0 d(x,y) is always an integer
Clx # 1,|x?| < |x| implies |x| is odd

C2Fornoxis |x?| = x|+ 1
C3if |x| is odd then |x?| > |x|

C1'if |x| is even and |x| # 0, then |x?| > |x|

NO |x?| < |x| impliesx? =1isx =x"1

N1* G is general by {x € G: |x| < 1}

Definition 2.3 The set of all non Archimedean elements is
G will be denoted by N, is N = {x € G: |x?| < |x|}
Lyndon [1] also gave the following M = {xy € G:|xy| +

lyx| < 2|x| = 2 |y|}, and showed that M € N.

The nature of the elements of M and N will be investigated
in the next section.

3. HNN Extension

We now introduce an important group constructed by
G.Higman, B.H. Neumann and H. Neumann.

Definition 3.1 Let G be a group and let I be an index set let
{A;:i €1} and {B;:i €I} be families of subgroup of G
and{@;:i € I} be a family of maps such that, each @;: 4; —
B; be an isomorphism. Then the H.N.N extension with base
Gqand stable lettes t;, i € I and associated subgroups A; and
B;, i €I is the group.

Gr=< G, ti; rel G,ti_lal-ti = Q)l-(al-), a; (S Ai >, where

(G, rel G) is a presentation of G.

To formulate a normal from theorem for H.N.N
extensions, we shall consider the following:

Any element of G* is equal to a
Goti g t'gnmn 20g = +1

product

Note: Throughout this section g; will denote an elements
of G.

Definition 3.2 A sequence g, tisllg1 t:‘gn,n >0¢ =
+1 is said to be reduced if there is no consecutive
subsequence t; g, t; with g; € A;, or t;g;t;* with g; € B; if
w is a word in GU{t;} U {t;'}. Then we can get t; —
reduction of w corresponding to the relations of G* as
follows:

1) Replace a subword of the from t;'g;t;, by 0;(g;)

whenever g; € 4;
2) Replace a subword of the from t; g;t;, by 9;(g;)
whenever g; € B;

By consolidating and making all possible t; — reduction
we get a reduced word defining the same element of G* The
products of the elements in two distinct reduced sequences
may be equal in G*. To get normal forms, once again we
consider the coset representatives as follows:

Choose for each i a set of representatives of the right
cosets of 4; in G and a set of representatives of the right
cosets of B; in G. We shall assume that 1 is the representative
of both cosets A; and B;

Definition 3.3 Given the sets of right coset representatives
of A; and B; in G, then a normal form in G* is a sequence of
the form go t;'gy . t;"gn,n 2 0¢, = +1, where

1) go is an arbitrary element of G, except that g, # 1 if

n=0

i) if e, = —1 then g, is a representative of a coset of

Air inG
i) if e, = +1 then g, is a representative of a coset of
B;, in G and

iv) There is no subsequence t¥ 1 t~¢ where € = +1

Because of the relations t; a;t; = @;(a;) of G*, we can
replace t;'a; by @;(a)t;* without changing the
corresponding element of G Similarly we can replace t;b; by
(0] l._l(bl-)ti_ 1. by working from right to left, we can show
that every element of G* is equal to a product
9o tfl Lo t:‘ gnWhere g, ti‘g1 o t:‘ gnis a normal form.

Theorem 3.1 (Normal Form Theorem)

Let G'=< G,ti;rel G,ti_laiti =(Z)L~(ai),ai£Ai,i£I >
be can H.N.N. extension then every element of G* has a

. . & &
unique representation as a product g, till ti: gn Where

& & .
9o t; - t;"gnis anormal form.

Proof See [9].

Theorem 3.2 (Higman, Neumann, Neumann)

Let G'=< G,ti;rel G,ti_laiti =(Z)L~(ai),ai£Ai,i£I >
be can H.N.N. extension, then the group G is embedded in G*
by the map; g — g.

Theorem 3.3 (Britton’s Lemma) If gg t;* ...
G* where > 1, then go, t;* ...

E. .
t;"gn =1in
& .
t; ", gnis not reduced.
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Theorems 3.2 and 3.3 are equivalent to theorem 3.4
(proofs are in [6] and [10]).

Lemma 3.1 Let G*=<G,t;rel Gt a;t; =
@;(a;),a; € A;,i € I > be can HN.N. extension. let
t;™ by be reduced
words, and suppose that u = v in G*. Then m = n and
& = 6,:,1: = 1, e, N

Proof Since u=v in G*, then
L=got; o t " gphy't™om . t7%1h5?

Since u and v are reduced, the only way the indicated
sequence can fail to be reduced is that &, = 8,,and g,hy! is
in the appropriate sub-group 4; or B; making successive t-
reductions we see that each ¢; = §; and m=n.

The normal form theorem 2.4 for H.N.N. extension allows
us to assign a well-defined length to each element of these
extensions.

Definition 3.4 Let G*=<G,t;rel Gt at; =
@;(a;),a; € A;,i € I > be can HN.N. extension, define
the length of an element gG* by:

lgl =n,if g = go tfll t:‘ gnn=0is in a reduced
form, where ¢, = +1

Theorem 3.4 Let G*=<G,t;rel Gt/ at; =
@;(a;),a; € A;,i € I > be can HN.N. extension and
letlgl =nif g = got;' « t;" gn,m=0is in a reduced
form, where &; = +1. Then | | is a length function on G*.

It is proved in [1], that d (g,h) is always an integer, i.e CO
is satisfied in H.N.N. extensions.

The following two theorems are proved in [10].

Theorem 3.15 The elements of N are the conjugates of the
elements of the base G, and are equivalent if and only if they
are conjugates by the same elements of G*.

Theorem 36 Let G*=<G,tgrel Gt a;it; =
0;(a;),a; e A;,i el > be can HN.N. extension. Then the
elements of M are the conjugates of the elements of the
associated subgroups.

U=got; .t gpand v = hy tfll

4. Quasi-H.N.N Group

We introduce a construction given by Khanfar [7] called a
quasi- H.N.N extension. We shall also consider a more
general construction and use some results from [7] to give a
normal from theorem. We will then be in a position to define
a length function on quasi-H.N.N extensions in general.

Definition 4.1 Let G be a group for an index set I, let
{A;:i € I} be a family of subgroups of G. For each i, let
a;: A; = A; be an auto orphism of order 2, such that the inner
auto orphism a? is determined by a/, for some a; & A; fixed
by a;. Then the quasi- H.N.N extension is given by:

G* =< G, |G, ti*a;t; = a;(a),t? =ajeA,i € 1 >

The group G is called the base of G*,t; are called the
stable letters and (Ai,A;.Z") are called the associated pairs of
subgroups. Khanfar [7] showed that G is embedded in G*. He
also considered a general situation given as follows:

Definition 4.2 Let G be a group containing three
collections of subgroups A;, B;, fori € [ and C;, forj € J,

for each i, let @;: A; — B; be an isomorphism. For each j, let
@;: C; > C; be an automorphism of order 2, such that the
inner automorphism a]-z is determined by C]f fixed by @;. Then
the quasi- H.N.N extension is defined by

G =< G, ti! t]|rel G,ti_laiti = (Z)i(ai), tj_IC]'t]' = a]'(C]'), t]2

=cj’,ai € AycieCiclj € ]>

If w is a word in the generators of G* given in definition 2
then w can be written as

w = goti‘?g1 t:‘gn,n >0¢ ==*1and t;, is either in
{tpi € 3,orinft;:j € J}

Throughout this paper g; will denote an element of G.

Definition 4.3 A sequence got;'gy - t;"gnn>0¢ =
+1 is said to be reduced if it contains no subword of the
forms:

1) ti'a;t;,a; € Aforsomei € I

2) t;b;it7,b; € B; forsomei € I

3) tfc]-tf,cj € Cjforj € J,ande, 6 = +1

4) ti'forj € J

5) go#1ifn=0

If wis a word Utiil Ut]-il, then we can get t;,t; -
reduction of w corresponding to the relations of G* as
follows:

1) Replace a subword of the from t;'g;t; by ©;(g;)

whenever g; € A;
2) Replace a subword of the from t;g;t;* by 0;1(g;)
whenever g; € B;

3) Replace a subword of the from t]-_lc]- t; by a]-(c]-)

whenever ¢; €
4) Replace t} by ¢;
The resulting word defines the same element of G *
The products of the elements in two distinct reduced
sequences may be equal in G*. To get normal forms, we
consider the coset representatives as follows.
For each i € I choose a set of representatives of the right
cosets of 4; in G, and a set of representatives of the right
cosets of B; in G. For each j € J choose a set of
representatives of the right cosets of C; in G. We shall assume
that 1 is the representatives of all the cosets A;, B;and C;
Definition 4.4 Given the sets of right coset representatives
of A;, B;and C; in G then a normal from in G* is a sequence
of the from got;*git;> .. t;"gn & = £1,n 2 0, where
1) go is any element of G
2) If & =+1 and t; € {t;:i € I}, then g, is a
representatives of a cosets of A; in G

3) If & =+1 and t; € {t;:i € I}, then g, is a
representatives of a cosets of B; in G

4) If & =+1 and t; € {t;:i € I}, then g, is a
representatives of a cosets of C; in G

5) There is not a subword of the from t&1t%, where

g0 ==+1

Khanfar, [7] showed that the base group G is embedded in
G* and this result was the following.

Theorem 4.5 Let G*=<G,t,tj|rel G t; a;t; =
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0 (@), 67" ¢ty = a;,(c;)

t]_Z = C]-',al- EAi,C]' € C],l € I,] E] >
embedded in G*.

Khanfar, [7] also introduced a version of Britton’s Lemma
for the quasi- H.N.N extension, and his general result was the
following.

Theorem 4.6 Let G* be the quasi-H.N.N extension of G
given in definition 3.2. Ifgoti‘gllg1 t:‘gn = 11in G* where

Then G is

n = 1, then the sequence g, tfll, e tf:, Jn 1s not reduced.

Therefore the word representing the identity element in the
general quasi-H.N.N extension G~ is the empty word. So we
have the normal from theorem, which is equivalent to
theorem 4.5 and theorem 4.6.

Theorem 4.7 LetG* be the quasi- H.N.N extension of G
given in definition 4.2. Then every clement of G* has a
unique normal from.

Lemma 4.8 Let G*=<G,t,tlrel G t;i a;t; =
¢l" (ai),tj_l C]t] = (Xj,tjz = Cj,,ai € AL',C]' € Cj,l € I,] E] >

Let g = got; g1 - t;"gn and h = hotfllg1 tl.‘j:l"hm be
reduced word, and suppose that g = hin G*. Then m =n
and g = 1£6;,i=1,..,n

Proof Similar to proof of Lemma 3.7

Now, we can assign a well-defined length to each element
of G* in the following definition

Definition 4.6 Let G*=<G,t,t|rel G t; a;t; =
0, (a), 6" ¢ty = a;,(c))

t! = ¢,a;€A,c; €Cy,i €1,j €] >,beaquasi- HN.N
extension, define | | on elements of G* by |g|=n if
g= 9 tfll tf;‘gn,n > 0,& = +1 in reduced from.

Theorem 4.8 G*=<G,t,tlrel G, t;7'a;t; =
0 (@), 67" ¢ty = a;,(cy)

2_ . . .
t; = cj’,ai €EA,c €ECLi €LjE]> is a

H.N.N extension. Define |

quasi-

| on elements of G* by

lg | =nif

ProofA1' = 1| =0

A2 |gl =g~ g € G*is obvious as g~! will be reduced
if g is reduced.

Letg,h,k € G*

Suppose d (g, h),d (h,t) =s

Let g=xt;'%7 xpty "%yt lgl=n>1 and h=
Vit e Ymtamynt, |kl = m > 1 in reduced forms.
gh™ =t art o xptix eyt ity

x;ly, =1 €G,thent,; 1t; =1 €6

Suppose gh™! = xt; %7t . Xp_sQsYimts e VIt

Letk = zit;'z;t ... z,tiz;t and let gk~ = gh™' hgk™!

-1 _— €1,,-1 -1 ¢&m-1 -1
hk™ =yt ' Y1 oo Ynoshs Zy st i Zyog o Zq

Therefore
gh™t =t xt o gAY s e Y Ykt Ky 2t
As d(g,h) and (h,k)=s , then
gh™t = xyt7 xrt o Qgyibgy1Zy sttt Zy g 20t
Therefore, |gh™| < n+u—2s, ied(g,k) = s,50| |is
a length function.
Theorem 4.9
9i (@), 57" gt = a;,(c))
t! = ¢,a; €A;,c €C;,i €1,j €] >isaquasi- HN.N
extension, define | | on elements of G* by |g|=n if
9= got;' - t;"gnn20,e==%1in reduced from. Then

G =<G,t,tjlrel G, t7 a;t; =

the elements of N are conjugates of the elements of the base
G.

Proof To Prove that if € N, then g = x ax™ !, x € G* and
a €QG.
Suppose that g € N and g = xltflxz e Xty is
reduced.ie|g|=n
The result is trivial if n=0 or 1
Now | g% | < |gl, then
9% = X151 % e Xy 6 X X1 EEXy o X1 L X, Where

lgl=n if g= g, tlil tf:gn,n >0,e=+41 in |xsasx541| < 2, ie there is no further cancellation.
reduced from. Then | |is a length function on G, by  Therefore, a ., €G. Further, if x;_jaeq,x57 is
not reduced, then g =
€ -1
9= (167 % e X1t %) (185700, e Xg_gEe5xg) (X4 651Xy o X 185X )
Therefore,

_ &1 &s as &1 &s -1
9= (xati'%y o Xeqtesxs) (0t %, e xg_1tExg )

Therefore, g is a conjugate of an element a; of G
Conversely, suppose
g = (X1t %y e XsoqteSxs)as (1525 e Xg_q 5K )_1
If x;a,x;t € G then put xja.x;! = as,, this means
as €G
If |agy,| = 0, then |a%,;] = Osoa,,; €G.
If |agy,| = 1 then a?,; = x,a,x;! where a2 € G
Suppose x a,xs ! is reduced, ie |a2,,| = 2
Thereforea;, € G, which is a contradiction. So x;a.x;? is
reduced, ie |as+1| = |as |

&1 Er—1 &1 Er—1 -1
(xlt1 Xg e Xpoq1 b0 xr)br(xlt1 X e Xpo1t. 1 xr) ,

where b € G and x, b, x; ! is reduced
If bec then lgl = zr,b? € G and
-1
lg%| = |(x1tf1x2 e x5) (16512 e X)) | <2r
So geN, b&G,x.b and bx;! are reduced implies
lgl =2r+1

Since |b?| <1, then
g% = |(xlt181x2 xs)bsz(xltflx2 xs)_1| <2r+1=
lgl

Therefore g € N

In case if b & G and either x,.b,x; ! is not reduced, then
lgl = 2r

Since g € N, then |b?| < |b]| so b? is not reduced
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Now consider g2 = (xyt; %, .. x5)b2 (x5 % ... xs)_1
and suppose x,.b2x; 1 is reduced, then b,x; ! is not reduced
or x,-b is not reduced

Therefore x,b?x; ! is not reduced ie |x.b?x | <2.
Solg?| =2r=|glieg €N

Theorem 4.10 G*=<G,t,tjlrel G, t7'a;t; =
0, (a), 6" gt = a;,(c))

t! = ¢,a; €A,¢c; €C;,i €1,j €] >isaquasi- HN.N
extension, define | | on elements of G* by |g|=n if
9= 9o tfll tf;‘gn,n > 0,e = *1 in reduced from. Then
the elements of N are equivalent if and only if they are
conjugates by the same element of G*

Proof Suppose g~h in N then |[gh™!| < |g| = |h|

Let g = Xoti g o Xp 1ty Xy and
h = Yot Yy o Yn_1t,"y, where €;= F1 be both reduced

1) The result is trivial if |g| = || = 0,1

2) Ifn>1
By theorem 2.4 g = (xot3" ... Xp_stn"xs)as(xot;? ...
where ag € G and

xS)_ls

h = (Yot;'ys o ¥5)bs(Votit o ¥s) ,bs €G
gh™t
= (xotfl’ﬁ xs—l)(ts—las) (xotl‘El xs)il(J’otlgllﬁ YS)(bglygl)

Oot5Y o Your)
Since |gh™!| < n then (xot;x; ... xs)_l(yltlsl V) =G
Yoty Vi o ¥s = (Xoti Xy o X)a

-1
Thus h = (xot;xy oo x5 ) ashsast(xotsiny o Xg)

where agbga;! = a € G. Hence g,h are conjugate of a € G.
Conversely suppose

-1
g = (xot;'x; . %) as(xot; %y ... X5)  wherea, € G
-1
and h = (yotfy; . ¥) br(yot;' .. ¥r) b, € G where
a~b
Similar argument shows that x,a,x; ! is not reduced.
Since a~b, then either a,, b, € G then a,b;! € G and

lgh™| = |(x0tf1x2 o %) (X0t 25 e xr)_1| <2r
So g~h
Theorem 4.11 G*=<G,t,tlrel G, t7 a;t; =

0, (a), 6" gt = a;,(c))

t! = ¢j,a; €A,c; €C;,i €1,j €] >isaquasi- HN.N
extension, the element of M are conjugates of the associated
pairs of subgroups (provided we exclude the case when
G*= {c, t|relc,tct™ = a(c),t? =c¢' € C)

Proof To prove that g,h € M - gh = xax™! where x € G.
Let g = Xot;'%; ... Xp, B = Yoty Y1 ... Yp be reduced.
Suppose |gh | + |hg| < 2|h| = |g|, Then |g|, || = 1.

n = 1is trivial as, suppose |y1x1 | =0, then gh=
X1 Y1 %, X1 = conjugate of (y;x;)

Similarly if |y1x1 | = 0, then hg is conjugate of x; y;

So letn > 2 and let gh = £(xot; %, .. X5)as (Vi1 - ¥u) (1)
where s < n and s is maximum

Then (1) is reduced in which case, |gh | =2n—2s+1
or Sy € G and x,,_sa,Yys,4 is reduced, in which case |gh | =
2n — 2s, where ag = Xp_g1q - L' Xy, yltfly1 e Vs

Similarly hg = yot; Yy v YnorbrXpp1tinh? oo Xy (2)

Then either (2) is reduced so |hg | =2n—-2r+1 or
b, € G and y,,_,b,x,,, is not reduced so |hg | =2n—2r,
where by = Ym_pi1til e Vi XYy e Xy

Then2n —2s+1+2n—-2r+1<2n

2n—-2r—2s+2<0=>r+s>n—-1
r>n—s+lands>n—-r+1

Then b,,_g,,; € G and since a;_; € G, then b,_g,,a,_, €
G or gh is conjugate of an element in G.

5. Conclusions

This paper has proved that the Quasi-HNN groups possess
a length function as defined in section three. It has also
proved that the elements of N are conjugates of the elements
of the base group G. The elements of N are conjugates if and
only if they are conjugated by the same elements of G

Finally, it is proved that the elements of the set M are
conjugates of the associated subgroups.
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