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Abstract 
In this paper, we use the fractional derivatives in Caputo’s sense to construct exact 

solutions for Burgers equation of fractional order. A generalized fractional complex 

transform is appropriately used to convert this equation to ordinary differential equation 

which subsequently resulted into number of exact solutions. 

1. Introduction 

The class of fractional calculus is one of the most convenient classes of fractional 

differential equation which viewed as generalized differential equations [1]. In the 

sense that, much of the theory and, hence, applications of differential equation can be 

extended smoothly to fractional differential equations with the same flavor and spirit 

of the realm of differential equation. The seeds of fractional calculus (that is, the 

theory of integrals and derivatives of any arbitrary real or complex order) were planted 

over 300 years ago. Since then, many researchers have contributed to this field. 

Recently, it has turned out those differential equations involving derivatives of non-

integer [2]. For example, the nonlinear oscillation of earthquakes can be modeled with 

fractional derivatives [3]. There has been some attempt to solve linear problems with 

multiple fractional derivatives (the so -called multi-term equations) [3, 4]. Not much 

work has been done on nonlinear problems and only a few numerical schemes have 

been proposed for solving nonlinear fractional differential equations. More recently, 

applications have included classes of nonlinear equation with multi-order fractional 

derivatives. We apply a generalized fractional complex transform [5-9] to convert 

fractional order differential equation to ordinary differential equation. Finally, we 

obtain exact solutions for it by using a novel technique [10, 11] called exp-function 

method, to obtain generalized solitary solutions and periodic solutions. Mohyud-Din 

[12-15] extended the same for nonlinear physical problems including higher-order 

BVPs; Oziz [16] tried this novel approach for Fisher’s equation; Wu et. al. [17, 18] for 

the extension of solitary, periodic and compacton-like solutions; Yusufoglu [19] for 

MBBN equations, Zhang [20] for high-dimensional nonlinear evolutions; Zhu [21, 22] 

for the Hybrid-Lattice system and discrete m KdV lattice; Kudryashov [23] for exact 

soliton solutions of the generalized evolution equation of wave dynamics; Momani 

[24] for an explicit and numerical solutions of the fractional KdV equation. Most 

scientific problems and phenomena in different fields of sciences and engineering  
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occur nonlinearly. This method has been effectively and 

accurately shown to solve a large class of nonlinear 

problems. The solution procedure of this method, with the 

aid of Maple, is of utter simplicity and this method can 

easily extended to other kinds of nonlinear evolution 

equations. In engineering and science, scientific phenomena 

give a variety of solutions that are characterized by distinct 

features. Traveling waves appear in many distinct physical 

structures in solitary wave theory [25, 26] such as solitons, 

kinks, peakons, cuspons, and compactons and many others. 

Solitons are localized traveling waves which are 

asymptotically zero at large distances. In other words, 

solitons are localized wave packets with exponential wings 

or tails. Solitons are generated from arobust balance 

between nonlinearity and dispersion. Solitons exhibit 

properties typically associated with particles. Kink waves 

[26, 27] are solitons that rise or descend from one 

asymptotic state to another, and hence another type of 

traveling waves as in the case of the Burgers hierarchy. 

Peakons, that are peaked solitary wave solutions, are 

another type of travelling waves as in the case of Camassa-

Holm equation. For peakons, the traveling wave solutions 

are smooth except for a peak at a cornerof its crest. Peakons 

are the points at which spatial derivative changes sign so 

that peakons have a finite jump in 1
st
 derivative of the 

solution. Cuspons are other forms of solitons where 

solution exhibits cusps at their crests. Unlike peakons 

where the derivatives at the peak differ only by a sign, the 

derivatives at the jump of a cuspon diverge. The 

compactons, which are solitons with compact spatial 

support such that each compacton is a soliton confined to a 

finite core or a soliton without exponential tails or wings. 

Other types of travelling waves arise in science such as 

negatons, positons and complexitons. In this research, we 

use the Exp-function method along with generalized 

fractional complex transform to obtain new solitary waves 

solutions for the [28]. 

2. Preliminaries and Notation 

In this section, we give some basic definitions and 

properties of the fractional calculus theory which will be 

used further in this work. For the finite derivative in  

we define the following fractional integral and derivatives. 

Definition 1 A real function is said to be in 

the space  If there exists a real number

such that where 

 and it is said to be in the space  if 

 

Definition 2 The Riemann-Liouville fractional integral 

operator of order of a function  is 

defined as 

 (1) 

Properties of the operator  can be found in [1]; we 

mention only the following: 

For and  

                    (2) 

The Riemann--Liouville derivative has certain 

disadvantages when trying to model real-world phenomena 

with fractional differential equations. Therefore, we shall 

introduce a modified fractional differential operator proposed 

by M. Caputo in his work on the theory of viscoelasticity [2]. 

Definition 3 For to be the smallest integer that exceeds, 

 the Caputo time fractional derivative operator of order 

 and defined as 

  (3) 

3. Chain Rule for Fractional Calculus 

and Fractional Complex Transform 

In [3-6], the authors used the following chain rule 

 to convert a fractional differential 

equation with Jumarie's modification of Riemann-Liouville 

derivative into its classical differential partner. In [8], the 

authors showed that this chain rule is invalid and show 

following relation [8]. 

 and  

To determine  we consider a special case as follows 

and and we have 

 

Thus we can calculate as 
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Other fractional indexes  can determine in 

similar way. Li and He[2-8] proposed following fractional 

complex transform for converting fractional differential 

equations into ordinary differential equations, so that all 

analytical methods for advanced calculus can be easily 

applied to fractional calculus. 

  (4) 

Where ,  and  are constants. 

4. Exp-function Method  

We consider the general nonlinear FPDE of the type 

 (5) 

Where  are the modified Riemann-

Liouville derivative of u with respect to  

respectively. 

Using a transformation 

( ) 0
1

t
kx my nz

αωη η
α

= + + + +
Γ +

                (6) 

Here 0, , , ,k m n ω η  are all constants with , 0k ω ≠  

We can rewrite equation (5) in the following nonlinear 

ODE 

( ), , , , ,ivQ u u u u u′ ′′ ′′′
…                          (7) 

Where the prime denotes derivative with respect to . 

According to Exp-function method, we assume that the wave 

solution can be expressed in the following form 

According to modified exp-function method, the solution 

will be 

( ) [ ]
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Where M is a positive integer which is known to be 

determine, na  and nb  are unknown constants. To determine 

the value of M, we balance the linear term of highest order of 

equation (7) with the highest order nonlinear term [29-32]. 

5. Solution Procedure 

Consider the Burgers equation of fractional order 

0t x xxD kuu uα β+ − =                             (9) 

Where β  is arbitrary constant. 

Using transformation 

( ) 0
1

t
kx my nz

αωη η
α

= + + + +
Γ +

                    (10) 

Here 0, , , ,k m n ω η  are all constants with , 0k ω ≠  

We can rewrite equation (9) in the following nonlinear 

ODE 

2 0u kuu k uω β′ ′ ′′+ − =                         (11) 

Integrate once time, we get 

2 2 0.
2

k
u u k uω β ′+ − =                         (12) 

Balancing the u ′  and 2u  by using homogenous principal, 

we have 

1 2M M+ =  

1M =  

Then the trail solution is 
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Substituting equation (13) in to equation (12), we have 
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Where ( )0,1,2,3,4ic i =  are constants obtained by Maple 17. 

Equating the coefficients of ( )exp nη  to be zero, we obtain 

( )0 1 2 3 40, 0, 0, 0, 0c c c c c= = = = =        (15) 

We have following solution sets satisfy the given equation, 

1
st
 Solution set: 

 

We, therefore, obtained the following generalized solitary 

solution 
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Figure 1. 1st solution set for . 

 

Figure 2. 1st solution set for . 

 

Figure 3. 1st solution set for . 

 

Figure 4. 1st solution set for . 

2nd Solution set: 

 

We, therefore, obtained the following generalized solitary 

solution 

 

 

Figure 5. 2nd solution set for . 
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Figure 6. 2nd solution set for . 

 

Figure 7. 2nd solution set for . 

 

Figure 8. 2nd solution set for . 

3rd Solution set: 
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We, therefore, obtained the following generalized solitary 

solution 
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Figure 9. 3rd solution set for . 

 

Figure 10. 3rd solution set for . 
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Figure 11. 3rd solution set for . 

 

Figure 12. 3rd solution set for  
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We, therefore, obtained the following generalized solitary 

solution 
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Figure 13. 4th solution set for . 

 

Figure 14. 4th solution set for . 

 

Figure 15. 4th solution set for . 
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Figure 16. 4th solution set for . 

5th Solution set: 
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We, therefore, obtained the following generalized solitary 

solution 
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Figure 17. 5th solution set for  

 

Figure 18. 5th solution set for  

 

Figure 19. 5th solution set for  

 

Figure 20. 5th solution set for  
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6th Solution set: 
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We, therefore, obtained the following generalized solitary 

solution 
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Figure 21. 6th solution set for . 

 

Figure 22. 6th solution set for . 

 

Figure 23. 6th solution set for . 

 

Figure 24. 6th solution set for . 

6. Conclusions 

Exp-function method is applied to construct solitary solutions 

of the nonlinear Burgers equation of fractional order. The 

reliability of proposed algorithm is fully supported by the 

computational work, the subsequent results and graphical 

representations. It is observed that Exp-function method is very 

convenient to apply and is very useful for finding solutions of a 

wide class of nonlinear problems of fractional orders. 

References 

[1] A. G. Nikitin, T. A. Barannyk, Solitary waves and other 
solutions for nonlinear heat equations, Cent. Eur. J. Math. 
(2)2005 840-858. 

[2] I. Podlubny, Fractional Differential Equations, Academic 
Press, San Diego, 1999. 

25.=α

50.=α

75.=α

1=α



 American Journal of Mathematical and Computational Sciences 2017; 2(1): 1-9 9 

 

[3] J. H. He, Some app lications of nonlinear fractional 
differential equations and their applications, Bull. Sci. 
Technol., 15(2) (1999) 86-90. 

[4] K. Diethelm, Y. Luchko, Numerical solution of linear 
multiterm differential equations of fractional order, J. Comput. 
Anal. Appl. (6)2004 243-263. 

[5] Z. B. Li, J. H. He, Application of the fractional complex 
transform to fractional differential equations, Nonlinear Sci. 
Lett. A, 2(3) (2011) 121-126. 

[6] A. Rafiq, M. Ahmed, S. Hussain, A general approach to 
specific second order ordinary differential equations using 
homotopy perturbation method, Phys. Lett. A, 372(2008) 372 
4973-4976. 

[7] Z. B. Li, J. H. He, Fractional complex transform for fractional 
differential equations, Math. And Comput. Appl. 15(2) (2010) 
970-973. 

[8] J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of 
the fractional complex transform and derivative chain rule for 
fractional calculus. Phys. Lett. A, (376)2012 257–259. 

[9] R. W. Ibrahim, Fractional complex transforms for fractional 
differential equations, Advan. in Diff. Equat. 2012, vol. 
2012:192 doi: 10.1186/1687 -1847-2012-192. 

[10] J. H. He, An elementary introduction of recently developed 
asymptotic methods and nanomechanics in textile engineering, 
Int. J. Mod. Phys. B 22 (21) (2008), 3487-4578 

[11] J. H. He and M. A. Abdou, New periodic solutions for 
nonlinear evolution equation using exp-method, Chaos, 
Solitons & Fractals, 34 (2007), 1421-1429. 

[12] S. T. Mohyud-Din, M. A. Noor and A. Waheed, Exp-function 
method for generalized travelling solutions of good 
Boussinesq equations, J. Appl. Math. Computg. 30 (2009), 
439-445, DOI 10.1007/s12190-008-0183-8. 

[13] S. T. Mohyud-Din, M. A. Noor and K. I. Noor, Some 
relatively new techniques for nonlinear problems, 
Mathematical Problems in Engineering, Hindawi, 25, (2009), 
doi:10.1155/2009/234849. 

[14] M. A. Noor, S. T. Mohyud-Din and A. Waheed, Exp-function 
method for solving Kuramoto-Sivashinsky and Boussinesq 
equations, J. Appl. Math. Computg. 29 (2008), 1-13. 

[15] M. A. Noor, S. T. Mohyud-Din and A. Waheed, Exp-function 
method for generalized travelling solutions of master partial 
differential equations, Acta Applnda. Mathmtce. (2008), DOI: 
10.1007/s10440-008-9245-z. 

[16] T. Ozis, C. Koroglu, A novel approach for solving the Fisher’s 
equation using Exp-function method, Phys Lett. A 372 (2008) 
3836 - 3840 

[17] X. H. Wu, J. H. He, Exp-function method and its application 
to nonlinear equations, Chaos, Solitons and Fractals 38(3) 
(2008) 903–910. 

[18] X. H. Wu and J. H. He, Solitary solutions, periodic solutions 
and compacton like solutions using the exp-function method, 
Comput. Math. Appl. 54 (2007), 966-986. 

[19] E. Yusufoglu, New solitonary solutions for the MBBN 
equations using exp-function method, Phys. Lett. A. 372 
(2008), 442-446. 

[20] S. Zhang, Application of exp-function method to high-
dimensional nonlinear evolution equation, Chaos, Solitons & 
Fractals, 365 (2007), 448-455. 

[21] S. D. Zhu, Exp-function method for the Hybrid-Lattice 
system, Inter. J. Nonlin. Sci. Num. Simulation, 8 (2007), 461-
464. 

[22] S. D. Zhu, Exp-function method for the discrete m KdV 
lattice, Inter. J. Nonlin. Sci. Num. Simulation, 8 (2007), 465-
468. 

[23] N. A. Kudryashov, Exact soliton solutions of the generalized 
evolution equation of wave dynamics, J. Appl Math and 
Mech, 52 (3), (1988), 361 

[24] S. Momani, An explicit and numerical solutions of the 
fractional KdV equation, Math. Comput. Simul. 70 (2) (2005) 
110-118. 

[25] A. Ebaid An improvement on the Exp-function method when 
balancing the highest order linear and nonlinear terms J. Math. 
Anal. Appl. 392(2012) 1–5. 

[26] A. M. Wazwaz, New higher–dimensional fifth–order 
nonlinear equations with multiple soliton solutions, Phys. Scr. 
84 (2011) 025007. 

[27] W. X. Ma, A. Abdeljabbar, M. G. Asaad, Wronskian and 
Grammian solutions to a (3 + 1)-dimensional generalized KP 
equation, Appl. Math. Comput. 217 (2011) 10016–10023. 

[28] M. A. Abdou and A. A. Soliman, Variational iteration method 
for solving Burger’s and coupled Burger’s equations. J. 
Comput. and A. Math, 181 (2006), 245-251. 

[29] H Jafari, N Kadkhoda, CM Khalique,Travelling wave 
solutions of nonlinear evolution equations using the simplest 
equation method, Computers & Mathematics with 
Applications 64 (6), 2084-2088. 

[30] M. A. Abdou, A. A. Soliman and S. T. Basyony, New 
application of Exp-function method for improved Boussinesq 
equation. Phys. Lett. A, 369 (2007), 469-475. 

[31] J. H. He and M. A. Abdou, New periodic solutions for 
nonlinear evolution equation using exp-method, Chaos 
Solitons. Farct.34 (2007), 1421-1429. 

[32] M. A. Noor, S. T. Mohyud-Din and A. Waheed, Exp-function 
method for solving Kuramoto-Sivashinsky and Boussinesq 
equations, J. Appl. Math. Computg. (2008), DOI: 
10.1007/s12190-008-0083-y. 

 

 


