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Abstract 
In this paper, the exp-function method has been used to find the soliton solutions of 

Fornberg-Whitham equation. The solution procedure of this method, with the help of 

symbolic computation of maple software, is of utter simplicity. The exp-function method 

is a powerful and straightforward mathematical tool to solve the nonlinear equations in 

mathematical physics. 

1. Introduction 

The rapid development of nonlinear sciences, leads to new dimensions in the recent 

past. The detailed study of literature [1-33] reveals that most of the physical problems 

are mathematically modeled by initial and boundary value problems and hence finding 

their appropriate solutions are of utmost importance. John Scott Russell was the pioneer 

who observed the solitary waves in 1834. He observed a large sticking out of water 

steadily travelling on the Edinburgh-Glasgow canal without any variation of its shape. 

He observed the thrust out of water and called it ‘‘Great Wave of Translation” was 

travelling along the channel of water for a long period of time while still retaining its 

shape. The single humped wave of bulge of water is now called solitary wave or soliton. 

In 1895, Diederik Korteweg and Gustav de Vries modeled the Korteweg de Vries 

equation (KdV). They also gave its solitary wave and periodic wave solutions. In 1965, 

Norman Zabusky and Martin Kruskal investigated numerically the nonlinear interaction 

of a large solitary waves, and the recurrence of initial states. They discovered that 

solitary waves undergo nonlinear interaction with KdV equation. The remarkable 

discovery of Russell that solitary waves possess their identities and their character 

resemble particle like behavior, motivated Zabusky and Kruskal to call these solitary 

waves to solitons. A substantial amount of work has been invested for solving the 

governing equations of these physical models. Several techniques including Hyperbolic 

function method, Jacobi elliptic method, tanh-coth method, sine-cosine method and 

homogeneous balance method have been used for the solution of such problems; see [1-6, 

16-19] and the references therein. It is always more convenient to tackle ordinary 

differential equations as opposed to partial differential equations. Ma [1-6] introduced a 

very efficient transformation, which converts the given partial differential equation to the 

corresponding ordinary differential equation that can easily be solved by any appropriate  
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technique. It is worth mentioning that Ma et. al presented the 

Wronskian technique for solving involved non-homogeneous 

partial differential equations and obtained solution formulae 

helpful in constructing the existing solution coupled with a 

number of other new solutions including rational solutions, 

solitons, negatons and breathers. Recently, Ma, Wu and He 

[1-6] presented a much more general idea to yield exact 

solutions to nonlinear wave equations by searching for the 

so-called frobenius transformations. The physical properties 

of numerous nonlinear travelling wave solutions have also 

been determined by constructing and evaluating their 

graphical results. Most of these techniques encounter the 

inbuilt deficiencies and involve huge computational work. 

Nonlinear evolution equations (NLEEs) has turned out to 

be one of the most exciting and particularly active areas of 

research. The appearance of solitary wave solutions in nature 

is quite common; Bell-shaped sech-solutions, kink-shaped 

tanh-solutions, wave phenomena in elastic media, plasmas, 

solid state physics, condensed matter physics, electrical 

circuits, optical fibers, chemical kinematics, fluids and bio-

genetics etc. The basic motivation of this paper is to develop 

a modified version of exp-function method to construct 

generalized solitary wave solutions of nonlinear Fornberg-

Whitham equation. This modification is based on introducing 

the homogenous balancing principle phenomena in exp-

function method [1-6, 16-19, 21-33]. It is observed that the 

proposed modification is highly compatible to find solitary 

wave solutions [7-15, 20-24] of nonlinear problems of 

diversified physical nature and the same can be extended to 

other problems even with very strong nonlinearity. To 

estimate the values of cqp ,,  and d  the following theorems 

will be used. 

Theorem 1. Suppose that )(ru and su are respectively the 

highest order linear term and the highest order nonlinear term 

of a nonlinear ODE, where r and s are both positive integers. 

Then the balancing procedure using the exp-function ansatz 
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Theorem 2. suppose that )(ru  and ks uu )( are respectively 

the highest order linear term and the highest order nonlinear 

term of a nonlinear ODE, where sr,  and k  are all positive 

integers. Then the balancing procedure using the exp-

function ansatz leads to cp = and qd = , ∀ .1,, ≥ksr  

Theorem 3. Suppose that )(ru and
Ω)(su are respectively the 

highest order linear term and the highest order nonlinear term 

of a nonlinear ODE, where sr, and Ω  are all positive 

integers. Then the balancing procedure using the exp-

function ansatz leads to cp = and qd = , ∀ .2,1, ≥Ω∀≥sr  

2. Exp-function Method 

Consider the general nonlinear partial differential equation 

of the type 

.0),,,,,,( =…xxxxxttxt uuuuuuP                  (1) 

Using a transformation 

,tkx ωη +=                                (2) 

Where k and ω are constants, we can rewrite equation (1) 

in the following nonlinear ODE, 

( )( ) .0,,,,, =′′′′′′ ⋯

ivuuuuuQ                     (3) 

Where the prime denotes derivative with respect toη . 

According to the exp-function method, which was 

developed by He and Wu [11], it is assumed that the wave 

solutions can be expressed in the following form 
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Where cqp ,,  and d are positive integers which are known 

to be further determined, na and mb  are unknown constants. 

Equation (4) can be written in the following equivalent form 

( ) ( ) ( )
( ) ( ) .

exp...exp

exp...exp
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To determine the value of c  and p , we balance the linear 

term of highest order of equation (3) with the highest order 

nonlinear term. Similarly, to determine the value of d and q , 

we balance the linear term of lowest order of equation (3) 

with lowest order nonlinear term. 

In this research, exp-function method has been used to 

obtain new solitary wave solutions for the Fornberg-

Whitham equation. 

3. Solution Procedure 

Consider the nonlinear Fornberg-Whitham equation 

03 =−+−−+ xxxxxxxxxtxt uuuuuuuuu  ,0>t   (6) 

subject to initial condition ( ) .0, 2

x

exu =  

Introducing a transformation as ,tkx ωη += equation (6) 

can be converted into ordinary differential equation 

.03 332 =′′′−′+′′′−′′′−′+′ uukuukuukukuku ωω    (7) 

Where the prime denotes derivative with respect toη . 

The trial solution of the equation (7) can be expressed as 

follows, 
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To determine the value of c  and p , we balance the linear 

term of highest order of equation (7) with the highest order 

nonlinear term. Proceeding as before, we obtain 
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cp =  and qd = . 

Case I. we can freely choose the values of c  and d , but 

we will illustrate that the final solution does not strongly 

depend upon the choice of values of c  and d . For simplicity, 

we set 1== cp and 1== dq  equation (5) reduces to 
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Substituting equation (8) into equation (7), we have 
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( ) ( )( )6

101 expexp5 ηη −++= −bbbA  where ( )5,4,......,4,5 −−=ici                                           (9) 

are constants obtained by Maple 16. 

Equating the coefficients of ( )ηnexp  to be zero, we obtain 

( )0,0,0,0,0,0,0,0,0,0,0 54321012345 =========== −−−−− ccccccccccc                      (10) 

We have following solution sets satisfy the given equation. 

1
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We therefore, obtained the following generalized solitary 

solution ( )txu , of equation (6) 
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Figure 1. Solitary wave solution for different values of parameters. 

2
nd

 Solution set: 
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Figure 2. Solitary wave solution for different values of parameters. 

3
rd

 Solution set: 
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Figure 3. Solitary wave solution for different values of parameters. 

4
th
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Figure 4. Solitary wave solution for different values of parameters. 

Case II. If ,2== cp  and 1== dq then equation (5) 

reduces to 
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Proceeding as before, we obtain 

5
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Hence we get the generalized solitary wave solution of equation (6) as follows 
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Figure 5. Solitary wave solution for different values of parameters. 

6
th

 Solution set: 
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Figure 6. Solitary wave solution for different values of parameters. 

In both cases, for different choices of qpc ,,  and d , we get 

the same soliton solutions which clearly illustrate that final 

solution does not strongly depends upon these parameters. 

4. Conclusion 

The generalized solitary solutions to the nonlinear 

Fornberg-Whitham equation has readily be acquired by using 

the exp–function method. Mathematical results coupled with 

the graphical representations reveal the complete 

compatibility of proposed algorithm for such problems. The 

application of exp–function method can also be widened to 

other non-linear evolution equations. The exp-function 

method is a promising and powerful new method for NLEEs 

arising in mathematical physics. Its applications are worth 

further studying in mathematical sciences. 
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