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Abstract 
Many phenomena in quantum mechanics and theories of modern dynamics systems are 

represented in topological spaces with high dimensions and modern information systems 

use topological space as mathematical model which express it. As far as linking between 

dimensions of topological spaces and accuracy of approximation are not taught before 

and mentioned only in Pawlak space. The topology associated with Pawlak 

approximation space has a zero dimension, the generalized space generated by general 

binary relation is not generally of zero dimension. The purpose of this paper is to 

compute dimensions of topologies associated with information systems which resulted 

from general relations and connection between the dimension of topologies and 

approximation accuracy of uncertain concepts. Examples for topologies resulted from 

various subsets of features are given. We use the concept of topology, boundary, basis, 

the upper and lower approximation for calculation approximation accuracy. Also, we 

construct topologies from data table (information systems) by using general relations and 

compute dimensions of these topologies for its importance in finding connection 

between accuracy of approximation and dimensions. 

1. Introduction 

Abstract topological spaces play an important role in applicable fields such as artificial 

intelligence, digital topology and photo processing in additional to several other trends. 

So far as the special studies to calculate the dimensions of abstract topological spaces 

which exist by theoretical method and do not indicate finite and infinite applicable 

examples. So the purpose of this paper is calculation dimensions of topologies associated 

with information systems where information systems were used extensively in the areas 

of data retrieval and decision making in many aspects of life. 

Topology is generally considered to be one of the three linchpins of modern abstract 

mathematics (along with analysis and algebra). In the early history of topology, results 

were primarily motivated by investigations of real-world problems. Rough Set Theory 

(RST) is one of the newest mathematical tools to deal with the imperfect knowledge. 

2. Basic Concepts 

2.1. Information Systems [1, 5, 4, 7, 8, 9, 10, 11, 12, 13] 

Topology is one of the important sciences concerned with the problem of ambiguities  



41 Malak Raslan et al.:  Dimension of Topologies Associated with Information Systems  

 

 

in the information, since the topological view of the 

boundary region is the clearest approach to implement the 

area of uncertainty in knowledge, which was first formulated 

in 1893 by GottlobFrege. Lately, the use of topology in many 

applications has been expanded, for example in structural 

analysis, in chemistry, physics and biology. Rough Set 

Theory (RST) is a new mathematical tool based on topology, 

it had a structure depended on a topological space. 

A data set is represented in two forms: as information 

tables and as decision tables, In information tables all 

variables are called attributes while in decision tables one of 

the variables is called a decision. For both tables are called 

information system ( ��) . Formally the triple �� =��, �, 	
���∈�), where � is the set of all cases, � is the set 

of all attributes and 	
���∈� is a value of the attribute �, 

each attribute � ∈ � is a function, which is defined as below: �: � → 
��such that ���) ∈ 
��  ∀ � ⊆ � ��is called a total if and only if ���) ≠ ∅ for all � ∈ �, 

and for all � ∈ �. 
2.2. Topological Space Generated by a 

Family of General Relations 

In this section, several definitions of lower, upper 

approximation and accuracy. 

Definition 2.2.1. [3, 7, 11] 

Let � be a non empty finite universe and � is an arbitrary 

relation on � , then ��, �)  is a generalized approximation 

space, frequently topology resulted from this relation called 

topological approximation space denoted by TAS (sometimes 

called Yao space). 

In Yao space ��, �), for � ∈ � 

The after set of �  with respect to �  on �  is denoted by ��)� = 	� ∈ �: ��, �) ∈ ��, and the for set of � with respect 

to � on � is denoted by ���) = 	� ∈ �: ��, �) ∈ ��. 
The upper and lower approximations of a subset � of � are 

defined respectively as follows 

����������) = 	� ∈ �: ���) ∩ � ≠ ∅� 

�����) = 	� ∈ �: ���) ⊆ �� 

The accuracy of the rough-set representation of the set � 

can be given (Pawlak 1991) by the following: 

Accuracy(�) = !"#�$)!|"#�������$)| 
Where Accuracy(�) is greater than or equal zero and less 

than or equal 1. 

If Accuracy(�) = 1, then � is called definable set. 

Definition 2.2.2. [2, 8] 

We consider the family of all after sets (for sets) as a sub-

base of a topological structure on �. 
If' = 	�(: ) ∈ ∆� be a family of general relations on �, 

then a topological structure on �  can be generated in the 

following approaches : �: - Consider that +,( = 	��)�(: � ∈ ���+,( =	�(��): � ∈ ��) as the family of all after sets induced by �(, 

then let +, = 	- +,((∈∆ �  be a sub-base of a topological 

structure ./  on �, then 0 = 	1 23: 	23�3456 ⊆  +,6345 � ∪ 	�� is 

a base of a topological structure ./ on �. ��: - Let +,( = 	��)�(: � ∈ ��, 0( = 	1 
3: 	
3�3456 ⊆6345 +,� ∪ 	�� is a base of .(  on �.Now, consider 0 = 1 0((∈∆  

is a base of .// = 1 .((∈∆  on �. ���:- Suppose that Ɍ= - �((∈∆ ,  +, = 	��)8 : � ∈ ��  is a 

sub-base of a topological structure .///  on �,  then 0 =	1 23: 	23�3456 ⊆  +,6345 � ∪ 	��  is a base ofa topological 

structure ./// on �. �9: - Consider that +,( = 	��)�(: � ∈ ��, 0( =	1 
3: 	
3�3456 ⊆  +,6345 � ∪ 	��  is a base of .(  on �.  Let 0 = 	1 2((∈∆ : 2( ∈ 0(�, is a base of a topological structure ./: on �. 
Remark 2.2.1. if we have only one relation � on a space �, 

we can compute a topological space from this relation as 

follows : 

(A) ��)� = 	� ∈ �: ��, �) ∈ �� 

(B) +, = 	��)�: � ∈ �� is sub-base for a topological space, 

then 

(C) 0 = 	1 23: 	23�3456 ⊆  +,6345 � ∪ 	�� is a base of a 

topological structure on � and hence we compose the 

topology. 

2.3. Inductive Dimension of Topological 

Spaces 

The concept of dimensions of spaces plays an important role 

in operations represent real problems by Mathematics. 

In physics and mathematics, the dimension of a 

mathematical space (or object) is informally defined as the 

minimum number of coordinates needed to specify any point 

within it. Thus a line has a dimension of one because only 

one coordinate is needed to specify a point on it-for example, 

the point at 5 on a number line. A surface such as a plane or 

the surface of a cylinder or sphere has a dimension of two 

because two coordinates are needed to specify a point on it-

for example, both a latitude and longitude are required to 

locate a point on the surface of a sphere is three-dimensional 

because three coordinates are needed to locate a point within 

these space. 

The works if the representation problems in geometric 

spaces such as line, plane and space. But when you represent 

data in topological space which neighborhoods and open sets 

play primary role in analysis and conclusion. Most studies on 

dimensions were limited on abstract definitions and did not 

address the spaces resulting from the actual data. 

In view of Euclidean topology, points have dimension zero 

and the curve is one dimensional, where the walls (the 

boundary) of the curve are discrete points which are a zero 

dimensional, and the surface is two dimensional, where its 

walls are lines, which have dimension one, the solid body is 

three dimensional where the walls of the room are surfaces 

which are two dimensional. 

From the above discussion, we notice that all dimensions 

are dependent on the concept of boundary. We aim in this 

paper to present a method of computing the inductive 
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dimension as a type of topological dimensions and its 

relation with accuracy [7, 11]. 

Definition 2.3.1. [6, 5] 

1. Let ��, .) be a topological space, Then ��, .)  has 

inductive dimension equal to (-1) if and only if � = ∅which 

is denoted by ;<=� = −1. 
2. Let< be an integer larger than or equal zero, then��. .) 

has inductive dimension less than or equal <, if it has a base 0 such that for every ? ∈ 0 , the boundary @��?)  has 

inductive dimension less than or equal �< − 1) and we write ;<=� ≤ < 

3. Let ��, .)  be topological space. If �  has inductive 

dimension less than or equal <, and if it is false that � has 

inductive dimension less than or equal �< − 1) , then the 

inductive dimension of � is <, and denoted by ;<=� = <. 

4. If for every < ∈ BC  it is false that �  has inductive 

dimension less than or equal < , then � is said to have an 

infinite inductive dimension, and we have ;<=� = ∞. 

Remark 2.3. 1 [6] To compute the inductive dimension of 

the topology of the space ��, .), we take a member ? of the 

base of . and find the boundary @�?. 
(1). If @�? is ∅ then the inductive dimension of @�? is -1 

(2). If @�? is not ∅, we consider @�?  as a subspace and 

compute the boundary of all members of the base of .D#E. 

(3). Repeat the above steps until the boundary is ∅ for all 

members of the base. 

(4). If < is the number of steps to arrive that all members? 

of the base has an empty boundary, then the inductive 

dimension of the space is less than or equal (n-1), then ;<=� ≤ < − 1. 
Remark 2.3.2 [6] A topological space ��, .) is inductive 

zero-dimension space if it has a base of clopen sets. 

3. Motivation Examples 

Example 3.1 

Consider the information system containing the results of 

exams in 4 subjects performed for 4 students in � =	�5, �F, �G, �H� the set of all cases, and � = 	I, �, J, �� the 

set of all attributes where  I =Mathematics, � =Arabic, J=English and �= Science in table 1. 

Table 1. Information system containing the results of exams. 

K L M N O �5 90 97 91 96 �F 88 85 75 80 �G 70 88 79 85 �H 80 88 94 96 

Definition 3.1 

If �� = ��, �, 	
���∈�)be information system, For each ? ⊂ �  the relation �E ⊂ � × �  is defined ��E� ↔∑ |3�T)U3�V)|W∈X |E| < Z, where |?| is the cardinality of ? and Zis a 

represented any number (determined by the specialist and its 

value lies between the minimum and the maximum in data 

table), |;��) − ;��)|  represents the absolute value of the 

difference values which corresponding to case. We determine 

the inductive dimension for the constructed topology 

associated with each �E. 

Let ? = 	I�, |?| = 1, ��E� ↔ �|;��) − ;��)|)/1 < Z, we 

compose table 2 from table 1 by subtraction the values of the 

cases for attribute ? = 	I�. 

Table 2. Subtraction the values of the cases for attribute ? = 	I�. 
L \] \^ \_ \` �5 0 2 20 10 �F 2 0 18 8 �G 20 18 0 10 �H 10 8 10 0 

When Z ≤ 5, We find the subset information system from 

table 2 as follows: ��	b�c =	��5, �5), ��5, �F), ��F, �5), ��F, �F), ��G, �G), ��H, �H)�,  

then �5�	b� = 	�5, �F�, �F�	b� = 	�5, �F�, �G�	b� =	�G�, �H�	b� = 	�H�, ��)�	b� = d	�5, �F�, 	�G�, 	�H�eas in Yao method. 

Then, ��	b� = d	�5, �F�, 	�G�, 	�H�eas in TAS method. 

In our method TAS ''Topological Approximation Space'', 

we get: ?�	b� = d∅, 	�5, �F�, 	�G�, 	�H�e, which from remark 2.2.1 .	b� = .	b������ =d∅, �, 	�5, �F�, 	�G�, 	�H�, 	�5, �F, �G�, 	�5, �F, �H�, 	�G, �H�e is 

the complement of the topological space. 

therefore ;<=� = 0 since each element in ?�	b� is clopen 

furthermore boundary is empty. 

Similarity for attributes �, J, �et Z ≤ 5, we find ;<=� = 0 

When  Z ≤ 10 , We find the subset information system 

from Table 2 as follows: ��	b�c
= g��5, �5), ��5, �F), ��5, �H), ��F, �5), ��F, �F), ��F, �H),��G, �G), ��G, �H), ��H, �5)��H, �F), ��H, �G), ��H, �H) h, 
�5�	b� = 	�5, �F, �H�, �F�	b� = 	�5, �F, �H�, �G�	b� = 	�H, �G�, �H�	b� = 	�5, �F, �G, �H�, ��)�	b�= d	�5, �F, �H�, 	�H, �G�, 	�5, �F, �G, �H�e ��	b� = d	�5, �F, �H�, 	�H, �G�, 	�5, �F, �G, �H�e ?�	b� = d	�5, �F, �H�, 	�H, �G�, 	�5, �F, �G, �H�, 	�H�e .	b� = d∅, �, 	�5, �F, �H�, 	�H, �G�, 	�H�e .	b������ = 	∅, �, 	�5, �F�, 	�G�, �	�5, �F, �G� where .	b������ be the 

complement of topological space for computing the inductive 

dimension follows remark 2.3.1. as follows: ?5 = 	�5, �F, �H�, ?F = 	�H, �G�, ?G = 	�H�where 

{?5, ?F , ?G� are elements of a base for relation ?�	b� ,=?5 = �\	�5, �F, �H� = 	�G� ≠ ∅, ,=?F = 	�5, �F� ≠ ∅, ,=?G = 	�5, �F, �G� ≠ ∅ .jkEl = .	Tm�=.	b� ∩ 	�G� = d∅, 	�G�e,?	Tm� = d∅, 	�G�e, ,=	�G� = ∅ , .jkEn = .	Tl,Tn� = d∅, 	�5, �F�e, ?	Tl,Tn� =d∅, 	�5, �F�e, ,=d	�5, �F�e = ∅ , .jkEm = .	Tl,Tn,Tm� =d∅, 	�5, �F�, 	�5, �F, �G�e, ?	Tl,Tn,Tm� = d	�G�, 	�5, �F�, 	�5, �F, �G�e ,=	�5, �F� = 	�G� ≠ ∅, ,=	�G� = 	�G� ≠ ∅, ,=	�5, �F, �G�= 	�H� ≠ ∅ 
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3..jk	Tl,Tn� = .	Tm� = d∅, 	�G�e, ?	Tm� = d∅, 	�G�e, ,=	�5, �F� = ∅, .	To� = d∅, 	�H�e, ?	To�  = d∅, 	�H�e ;<=,=	�5, �F, �H� = 0, ;<=,=	�H, �G� = 0, ;<=,=	�H�= 2 − 1 = 1 ;<=� = 3 − 1 = 2 

Table 3. Subtraction the values of the cases for attribute ? = 	��. 

M \] \^ \_ \` �5 0 12 9 9 �F 12 0 3 3 �G 9 3 0 0 �H 9 3 0 0 

When Z ≤ 5, We find the subset information system from 

table 3 as follows: 

Let ? = 	��, |?| = 1, ��Ec ↔ �|;��) − ;��)|)/1 < Z 

��	��c = g��5, �5), ��F, �F), ��F, �G), ��F, �H), ��G, �F),��H, �F), ��H, �H), ��H, �G), ��G, �G),��G, �H) h, 
�5�	�� = 	�5�, �F�	�� = 	�F, �G, �H�, �G�	�� = 	�F, �G, �H�, �H�	�� = 	�F, �G, �H�, ��)�	�� = d	�5�, 	�F, �G, �H�e as in 

Yao method [7]. ��	�� = d	�5�, 	�F, �G, �H�eas in TAS method. ?�	�� = d∅, 	�5�, 	�F, �G, �H�e, .	�� = .	������� = d∅, �, 	�5�, , 	�F, �G, �H�e 

Then ;<= � = 0 

When Z ≤ 10, We find the subset information system from 

Table 3 as follows: ��	��c= r��5, �5), ��5, �G), ��5, �H), ��F, �F), ��F, �G), ��F, �H), ��G, �5)��G, �F), ��G, �G), ��G, �H), ��H, �5), ��H, �F), ��H, �G), ��H, �H)s, �5�	�� = 	�5, �G, �H�, �F�	�� = 	�F, �G, �H�, �G�	��= 	�5, �F, �H, �G�, �H�	��= 	�5, �F, �G, �H�, ��)�	��= d	�5, �G, �H�, 	�F, �G, �H�, 	�5, �F, �G, �H�e ��)�	�� = d	�5, �G, �H�, 	�F, �G, �H�, 	�5, �F, �G, �H�e ?�	�� = d	�5, �G, �H�, 	�F, �G, �H�, 	�G, �H�, �e .	�� = d∅, �, 	�5, �G, �H�, 	�F, �G, �H�, 	�G, �H�e 

1.?5=	�5, �G, �H�, ?F = 	�F, �G, �H�, ?G = 	�G, �H� ,=?5 = 	�F� ≠ ∅, ,=?F = 	�5� ≠ ∅, ,=?G = 	�5, �F� ≠ ∅ 

2. .jkEl = d∅, 	�F�e , .jkEn = d∅, 	�5�e , .jkEm =d∅, 	�5�, 	�F�, 	�5, �F�e ?jkEl = d∅, 	�F�e , ?jkEn = d∅, 	�5�e , ?jkEm =d	�5�, 	�F�, 	�5, �F�e 

After two steps each element of the base equals empty. ;<= � = 2 − 1 = 1 ;<=,=?5 = 0, ;<=,=?F = 0, ;<=,=?G = 0 

When Z ≤ 20, We find the subset information system from 

Table 3 as follows: ��	��c
= tu

v��5, �5), ��5, �F), ��5, �G), ��5, �H), ��F, �5), ��F, �F),��F, �G), ��F, �H), ��G, �5)��G, �F), ��G, �G), ��G, �H), ��H, �5), ��H, �F),��H, �G), ��H, �H) wx
y, 

�5�	�� = 	�5, �F, �G, �H�, �F�	�� = 	�5, �F, �G, �H�, 

�G�	�� = 	�5, �F, �H, �G�, �H�	�� = 	�5, �F, �G, �H�, ��)�	�� = d	�5, �F, �G, �H�e is classes of cases associated 

with attribute 	A� ��	�� = d	�5, �F, �G, �H�e is the sub-basis associated with 

attribute 	A� ?�	�� = d	�5, �F, �G, �H�e is the basis associated with 

attribute 	A� .	�� = 	∅, ��is the topology associated with attribute 	A� ;<= � = 0 

Table 4. Subtraction the values of the cases for attribute ? = 	J�. 
N \] \^ \_ \` �5 0 16 12 3 �F 16 0 4 19 �G 12 4 0 15 �H 3 19 15 0 

Table 5. Subtraction the values of the cases for attribute ? = 	��. 

O \] \^ \_ \` �5 0 16 11 0 �F 16 0 5 16 �G 11 5 0 11 �H 0 16 11 0 

Example 3.2 

We determine the inductive dimension for the constructed 

topology from attributes ? = 	I, ��in each Z in table 1. We 

construct table 5 by subtraction table of attribute I  from 

table of attribute� for matching cases then divide on 2 and 

similarity the attributes 	I, J�, 	�, J�, 	�, �� and 	�, J� 

Table 6. Subtraction the corresponding values of attribute 	I�  from 

attribute 	�� and divide on 2. 

L, M \] \^ \_ \` �5 0 7 14.5 9.5 �F 7 0 10.5 5.5 �G 14.5 10.5 0 5 �H 9.5 5.5 5 0 

When Z ≤ 5, We find the subset information system from 

table 6 as follows: ��	b,��c= 	��5, �5), ��F, �F), ��G, �H), ��H, �H), ��H, �G), ��G, �G)�, �5�	b,�� = 	�5�, �F�	b,�� = 	�F�, �G�	b,��= 	�G, �H�, �H�	b,�� = 	�G, �H�, ��)�	b,�� = d	�5�, 	�F�, 	�G, �H�e ��	b,�� = d	�5�, 	�F�, 	�G, �H�e ?�	b,�� = d∅, 	�5�, 	�F�, 	�G, �H�e .	b,�� = .	b,���������= d∅, �, 	�5, �G, �H�, 	�F, �G, �H�, 	�G, �H�, 	�5, �F�, 	�5�, 	�F�e ;<=� = 0 

When Z ≤ 10, We find the subset information system from 

Table 6 as follows: ��	b,��c= r��5, �5), ��5, �G), ��5, �H), ��F, �F), ��F, �G), ��F, �H), ��G, �5)��G, �F), ��G, �G), ��G, �H), ��H, �5), ��H, �F), ��H, �G), ��H, �H)s, �5�	b,�� = 	�5, �G, �H�, �F�	b,�� = 	�F, �G, �H�, �G�	b,�� = 	�5, �F, �H, �G�, �H�	b,�� = 	�5, �F, �G, �H�, ��)�	b,�� = d	�5, �G, �H�, 	�F, �G, �H�, 	�5, �F, �G, �H�e 
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��)�	b,�� = d	�5, �G, �H�, 	�F, �G, �H�, 	�5, �F, �G, �H�e ?�	b,�� = d	�5, �G, �H�, 	�F, �G, �H�, 	�G, �H�, �e .	b,�� = d∅, �, 	�5, �G, �H�, 	�F, �G, �H�, 	�G, �H�e 

1.?5=	�5, �G, �H�, ?F = 	�F, �G, �H�, ?G = 	�G, �H� ,=?5 = 	�F� ≠ ∅, ,=?F = 	�5� ≠ ∅, ,=?G = 	�5, �F� ≠ ∅ 

2. .jkEl = d∅, 	�F�e , .jkEn = d∅, 	�5�e , .jkEm =d∅, 	�5�, 	�F�, 	�5, �F�e ?jkEl = d∅, 	�F�e , ?jkEn = d∅, 	�5�e , ?jkEm =d	�5�, 	�F�, 	�5, �F�e 

After two steps each element of the base equals empty. 

;<= � = 2 − 1 = 1 ;<=,=?5 = 0, ;<=,=?F = 0, ;<=,=?G = 0 

Table 7. Subtraction the corresponding values of attribute 	I�  from 

attribute 	J� and divide on 2. 

L, N \] \^ \_ \` �5 0 9 16 6.5 �F 9 0 11 13.5 �G 16 11 0 12.5 �H 6.5 13.5 12.5 0 

 

When Z ≤ 5, We find the subset information system from table 7 as follows: 

��	b,{�c = 	��5, �5), ��F, �F), ��H, �H), ��G, �G)�, 
�5�	b,{� = 	�5�, �F�	b,{� = 	�F�, �G�	b,{� = 	�G�, �H�	b,{� = 	�H�, 
��)�	b,{� = d	�5�, 	�F�, 	�G�, 	�H�e 

��	b,{� = d	�5�, 	�F�, 	�G�, 	�H�e 

?�	b,{� = d∅, 	�5�, 	�F�, 	�G�, 	�H�e 

.	b,{� = .	b,{�������� = r∅, �, 	�5, �G, �H�, 	�F, �G, �H�, 	�5, �F, �H�, 	�5, �F, �G�, 	�G, �H�, 	�5, �F�, 	�5�, 	�F�, 	�G�	�F, �H�, 	�5, �G�, 	�H�, 	�F, �G�, 	�H, �5� s 

;<=� = 0 

When Z ≤ 10, We find the subset information system from Table 7 as follows 

��	b,{�c = r��5, �5), ��5, �F), ��5, �G), ��F, �5), ��F, �F), ��G, �G),��H, �5), ��H, �H) s, 
�5�	b,{� = 	�5, �F, �G�, �F�	b,{� = 	�5, �F�, �G�	b,{� = 	�G�, 
�H�	b,{� = 	�5, �H�, ��)�	b,{� = d	�5, �F, �G�, 	�5, �F�, 	�G�, 	�5, �H�e 

��	b,{� = d	�5, �F, �G�, 	�5, �F�, 	�G�, 	�5, �H�e 

?�	b,{� = d	�5, �F, �G�, 	�5, �F�, 	�G�, 	�5, �H�, 	�5�, ∅e 

.	b,{� = d∅, �, 	�5, �F, �G�, 	�5, �F�, 	�G�, 	�5, �H�, 	�5�, 	�5, �G, �H�, 	�5, �G�, 	�5, �F, �H�e 

.	b,{�������� = d∅, �, 	�5, �F, �H�, 	�F, �H�, 	�G�, 	�F�, 	�G, �H�, 	�H�, 	�F, �G, �H�, 	�F, �G�e 

1.?5 = 	�5, �F, �G�, ?F = 	�5, �F�, ?G = 	�G�, ?H = 	�5, �H�, ?| = 	�5� 

,=?5 = 	�H�, ,=?F = 	�G, �H�, ,=?G = ∅, ,=?H = 	�F�, ,=?| = 	�F, �H� 
2..	To� = d∅, 	�H�e,.	Tm,To� = d∅, 	�G, �H�, 	�G�, 	�H�e,.	Tn� = d∅, 	�F�e, .	Tn,To� = d∅, 	�F, �H�, 	�F�, 	�H�e ;<=,=?5 = 0, ;<=,=?F = 0, ;<=,=?H = 0, ;<=,=?| = 0 ;<= � = 1 since after two steps become boundary of each element in the basis equals empty. 

When Z ≤ 20, We find the subset information system from Table 7 as follows: 

��	b,{�c = r��5, �5), ��5, �F), ��5, �G), ��5, �H), ��F, �5), ��F, �F), ��F, �G), ��F, �H), ��G, �5)��G, �F), ��G, �G), ��G, �H), ��H, �5), ��H, �F), ��H, �G), ��H, �H) s, 
�5�	b,{� = 	�5, �F, �G, �H�, �F�	b,{� = 	�5, �F, �G, �H�, 

�G�	b,{� = 	�5, �F, �H, �G�, �H�	b,{� = 	�5, �F, �G, �H�, ��)�	b,{� = d	�5, �F, �G, �H�e 
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��	b,{� = d	�5, �F, �G, �H�e 

?�	b,{� = d	�5, �F, �G, �H�e 

.	b,{� = 	∅, �� 

;<=� = 0 

Table 8. Subtraction the corresponding values of attribute 	I�  from 

attribute 	�� and divide on 2. 

L, O \] \^ \_ \` �5 0 9 15.5 5 �F 9 0 11.5 12 �G 15.5 11.5 0 10.5 �H 5 12 10.5 0 

Table 9. Subtraction the corresponding values of attribute 	�� from attribute 	J� and divide on 2. 

M, N \] \^ \_ \` �5 0 2 1.5 3 �F 2 0 0.5 8 �G 1.5 0.5 0 7.5 �H 3 8 7.5 0 

Table 10. Subtraction the corresponding values of attribute 	��  from 

attribute 	J� and divide on 2. 

O, N \] \^ \_ \` �5 0 0 0.5 1.5 �F 0 0 0.5 1.5 �G 0.5 0.5 0 2 �H 1.5 1.5 2 0 

Table 11. Subtraction the corresponding values of attribute 	��  from 

attribute 	�� and divide on 2. 

M, O \] \^ \_ \` �5 0 2 1 4.5 �F 2 0 1 6.5 �G 1 1 0 5.5 �H 4.5 6.5 5.5 0 

Example 3.3 

We construct table 12 by subtraction the corresponding 

values of cases of table of 	I, �� from table of � then divide 

on 3. We determine the inductive dimension of attribute 	I, �, ��  at cases Z ≤ 5, Z ≤ 10 and Z ≤ 20  accordingly to 

relation ��E� ↔ ∑ |3�T)U3�V)|W∈X |E| < Z and similarity the 

attributes 	I, J, ��, 	�, J, ���<= 	I, J, �� 

Table 12. Subtraction the corresponding values of cases of table 3 of 	I, �� 

from attribute {�� then divide on 3. 

L, M, O \] \^ \_ \` �5 0 10 13.333333 6.3333333 �F 10 0 8.6666667 9 �G 13.333333 8.6666667 0 7 �H 6.3333333 9 7 0 

When Z ≤ 5, We find the subset information system from 

table 12 as follows: ��	b,�,}�c = 	��5, �5), ��F, �F), ��H, �H), ��G, �G)�, �5�	b,�,}� = 	�5�, �F�	b,�,}� = 	�F�, �G�	b,�,}�= 	�G�, �H�	b,�,}� = 	�H�, ��)�	b,�,}� = d	�5�, 	�F�, 	�G�, 	�H�e ��	b,�,}� = d	�5�, 	�F�, 	�G�, 	�H�e ?�	b,�,}� = d∅, 	�5�, 	�F�, 	�G�, 	�H�e 

.	b,�,}� = .	b,�,}���������� = r∅, �, 	�5�, 	�F�, 	�H�, 	�G�, 	�5, �F�, 	�F, �G�, 	�G, �H�, 	�5, �H�, 	�5, �G�, 	�F, �H�,	�5, �G, �H�, 	�5, �F, �G�, 	�F, �G, �H�, 	�5, �F, �H� s ;<=� = 0 

When Z ≤ 10, We find the subset information system from 

Table 12 as follows: ��	b,�,}�c= r��5, �5), ��5, �F), ��5, �H), ��F, �5), ��F, �F), ��F, �H),��G, �G), ��G, �H), ��H, �5), ��H, �F)��H, �G), ��H, �H) s, �5�	b,�,}� = 	�5, �F, �H�, �F�	b,�,}� = 	�5, �F, �H�, �G�	b,�,}�= 	�G, �H�, �H�	b,�,}� = 	�5, �F, �G, �H�, ��)�	b,�,}�= d	�5, �F, �H�, 	�G, �H�, �e ��	b,�,}� = d	�5, �F, �H�, 	�G, �H�, �e ?�	b,�,}� = d	�5, �F, �H�, 	�G, �H�, �, 	�H�e .	b,�,}� = d∅, �, 	�5, �F, �H�, 	�G, �H�, 	�H�e .	b,�,}���������� = d∅, �, 	�5, �F, �G�, 	�5, �F�, 	�G�e 

1.?5 = 	�5, �F, �H�, ?F = 	�G, �H�, ?G = 	�H� ,=?5 = 	�G�, ,=?F = 	�5, �F�, ,=?G = 	�5, �F, �G� 

2..jkEl = d∅, 	�G�e, .jkEn = d∅, 	�5, �F�e, .jkEm = d∅, 	�G�, 	�5, �F�, 	�5, �F, �G�e ?	Tm� = d∅, 	�G�e , ?	Tl,Tn� = d∅, 	�5, �F�e, ?	Tl,Tn,Tm� =d	�G�, 	�5, �F�, 	�5, �F, �G�e,,=	Tm� = ∅, ,=	Tl,Tn� = ∅ ;<=,=?5 = 1 − 1 = 0, ;<=,=?F = 0, ;<= ,=?G = 0 ;<= � = 2 − 1 = 1 

Table 13. Subtraction the corresponding values of cases of 	I, J�  from 

attribute {�� then divide on 3. 

L, N, O \] \^ \_ \` �5 0 11.333333 14.333333 4.3333333 �F 11.333333 0 9 14.333333 �G 14.333333 9 0 12 �H 4.3333333 14.333333 12 0 

WhenZ ≤ 5 , We find the subset information system as 

follows: ��	b,{,}�c= 	��5, �5), ��5, �H), ��F, �F), ��H, �5), ��H, �H), ��G, �G)�, �5�	b,{,}� = 	�5, �H�, �F�	b,{,}� = 	�F�, �G�	b,{,}�= 	�G�, �H�	b,{,}� = 	�5, �H�, ��)�	b,{,}� = d	�5, �H�, 	�F�, 	�G�e ��	b,{,}� = d	�5, �H�, 	�F�, 	�G�e ?�5F = d∅, 	�5, �H�, 	�F�, 	�G�e .	b,{,}� = .	b,{,}���������� = r∅, �, 	�F�, 	�G�, 	�F, �G�, 	�5, �H�,	�5, �G, �H�, , 	�5, �F, �H� s ;<= � = 0 

When  Z ≤ 10 , We find the subset information system 

from Table 13 as follows: 
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��	b,{,}�c = r��5, �5), ��5, �H), ��F, �F), ��F, �G),��G, �G), ��H, �5), ��H, �H), ��G, �F)s, �5�	b,{,}� = 	�5, �H�, �F�5F = 	�F, �G�, �G�	b,{,}�= 	�F, �G�, �H�	b,{,}� = 	�5, �H�, ��)�5F= d	�5, �H�, 	�F, �G�e ��	b,{,}� = d	�5, �H�, 	�F, �G�e ?�	b,{,}� = d∅, 	�5, �H�, 	�F, �G�e .	b,{,}� = d	�5, �H�, 	�F, �G�, ∅, �e ;<= � = 0 

at Z ≤ 20, ;<= � = 0 

Table 14. Subtraction the corresponding values of cases of 	I, ��  from 

attribute {�� then divide on 3. 

L, M, O \] \^ \_ \` �5 0 10 13.333333 6.3333333 �F 10 0 8.6666667 9 �G 13.333333 8.6666667 0 7 �H 6.3333333 9 7 0 

Table 15. Subtraction the corresponding values of cases of 	�, J�  from 

attribute {�� then divide on 3. 

M, N, O \] \^ \_ \` �5 0 14.666667 10.666667 4 �F 14.666667 0 4 12.666667 �G 10.666667 4 0 8.6666667 �H 4 12.666667 8.6666667 0 

We summarize the previous results of inductive dimension 

in the following table: 

Table 16. Summary of the previous results of inductive dimension. 

 ⅄ ≤ � ⅄ ≤ ]� ⅄ ≤ ^� I ;<=� = 0 ;<=� = 2 ;<=� = 0 � ;<=� = 0 ;<=� = 1 ;<=� = 0 J ;<=� = 0 ;<=� = 0 ;<=� = 0 � ;<=� = 0 ;<=� = 0 ;<=� = 0 I, � ;<=� = 0 ;<=� = 1 ;<=� = 0 I, J ;<=� = 0 ;<=� = 1 ;<=� = 0 I, � ;<=� = 0 ;<=� = 1 ;<=� = 0 J, � ;<=� = 2 ;<=� = 0 ;<=� = 0 J, � ;<=� = 0 ;<=� = 0 ;<=� = 0 �, � ;<=� = 2 ;<=� = 0 ;<=� = 0 �, J, � ;<=� = 0 ;<=� = 1 ;<=� = 0 I, �, J ;<=� = 0 ;<=� = 1 ;<=� = 0 I, J, � ;<=� = 0 ;<=� = 0 ;<=� = 0 I, �, � ;<=� = 0 ;<=� = 1 ;<=� = 0 �, J, � ;<=� = 0 ;<=� = 1 ;<=� = 0 

Example 3.4 

We find the lower and upper approximation for a subset � = 	�5, �G�  frequently calculation accuracy for each 

previous cases. 

At  Z ≤ 5 , we determine the accuracy of a subset  � =	�5, �G�  corresponding to the topologies for each attribute 

from table 1. 

 

 

Table 17. Summary of accuracy at Z ≤ 5. 

 (interior)� (closure)� Accuracy=
!�!��� I 	�G� 	�5, �F, �G� 1/3 � 	�5� � 1/4 J ∅ � 0 � ∅ � 0 I, � 	�5� 	�5, �G, �H� 1/3 I, J 	�5, �G� 	�5, �G� 1 I, � 	�G� 	�5, �G, �H� 1/3 I, �, J 	�5, �G� 	�5, �G� 1 I, J, � 	�G� 	�5, �G, �H� 1/3 I, �, � 	�5, �G� 	�5, �G� 1 �, J, � ∅ � 0 J, � ∅ � 0 �, � ∅ � 0 �, J 	�5� � 1/4 

At Z ≤ 10 , we determine the accuracy of a subset  � =	�5, �G�  corresponding to the topologies for each attribute 

from table 1. 

Table 18. Summary of accuracy at Z ≤ 10. 

 (interior)� (closure)� Accuracy=
!�!��� I ∅ 	�5, �F, �G� 0 � ∅ � 0 J ∅ � 0 � ∅ � 0 I, � ∅ 	�5, �F, �G� 0 I, J 	�5, �G� � 1/2 I, � 	�5, �G� � 1/2 I, �, J ∅ 	�5, �G� 0 I, J, � ∅ � 0 I, �, � ∅ 	�5, �G� 0 �, J, � 	�G� � 1/4 J, � ∅ � 0 �, � ∅ � 0 J, � ∅ � 0 

At Z ≤ 20 

Table 19. Summary of accuracy at Z ≤ 20. 

 (interior)� (closure)� Accuracy=
!�!��� I ∅ � 0 � ∅ � 0 J ∅ � 0 � ∅ � 0 I, � ∅ � 0 I, J ∅ � 0 I, � ∅ � 0 I, �, J ∅ � 0 I, J, � ∅ � 0 I, �, � ∅ � 0 �, J, � ∅ � 0 J, � ∅ � 0 �, � ∅ � 0 �, J ∅ � 0 

We summarize the accuracy of the previous cases in the 

following table 
 

 



47 Malak Raslan et al.:  Dimension of Topologies Associated with Information Systems  

 

Table 20. Summary of the previous results of accuracy. 

 � ≤ � � ≤ ]� � ≤ ^� I 1\3 0 0 � 1\4 0 0 J 0 0 0 � 0 0 0 I, � 1\3 0 0 I, J 1 1\2 0 I, � 1\3 1\2 0 I, �, J 1 0 0 I, J, � 1\3 0 0 I, �, � 1 0 0 �, J, � 0 1\4 0 �, J 1\4 0 0 J, � 0 0 0 �, � 0 0 0 

We summarize the previous results in the following table: 

Table 21. Summary of the previous results of inductive dimension and accuracy. 

 � ≤ � � ≤ ]� � ≤ ^� � ≤ � � ≤ ]� � ≤ ^� I ;<=� = 0 ;<=� = 2. ;<=� = 0 Acc=1 3�  Acc=0 Acc=0 � ;<=� = 0. ;<=� = 1. ;<=� = 0 Acc=1 4�  Acc=0 Acc=0 J ;<=� = 0. ;<=� = 0. ;<=� = 0 Acc=0 Acc=0 Acc=0 � ;<=� = 0. ;<=� = 0. ;<=� = 0 Acc=0 Acc=0 Acc=0 I, � ;<=� = 0. ;<=� = 1. ;<=� = 0 Acc=1 3�  Acc=0 Acc=0 I, J ;<=� = 0. ;<=� = 1. ;<=� = 0 Acc=1 Acc=1\2 Acc=0 I, � ;<=� = 0. ;<=� = 1. ;<=� = 0 Acc=1 3�  Acc=1\2 Acc=0 I, �, J ;<=� = 0. ;<=� = 1. ;<=� = 0 Acc=1 Acc=0 Acc=0 I, J, � ;<=� = 0. ;<=� = 0. ;<=� = 0 Acc=1 3�  Acc=0 Acc=0 I, �, � ;<=� = 0. ;<=� = 1. ;<=� = 0 Acc=1 Acc=0 Acc=0 �, J, � ;<=� = 0. ;<=� = 1. ;<=� = 0 Acc=0 Acc=1\4 Acc=0 �, J ;<=� = 2. ;<=� = 0. ;<=� = 0 Acc=1\4 Acc=0 Acc=0 J, � ;<=� = 0. ;<=� = 0. ;<=� = 0 Acc=0 Acc=0 Acc=0 �, � ;<=� = 2. ;<=� = 0. ;<=� = 0 Acc=0 Acc=0 Acc=0 

 

Lemma 3.1. If ;<=� > 0 , then degree of accuracy 

approximation for elements of the base is less than 1. 

Proof In the case ;<=� = 0 (i.e. there is base of clopen and 

frequently accuracy approximation is 1), but in the case ;<=� > 0 (i.e. there exists at the least element from the base 

its boundary is not empty) and frequently the cardinality of 

interior less than the cardinality of closure) implies accuracy 

less than 1. 

Remark 3.1 

When value of Z takes the minimum and the maximum in 

data table for each attribute, we obtain discrete and indiscrete 

topology and frequently ;<=� = 0 

4. Conclusion 

The approach presented in this work for computing 

dimension of topologies associated with information systems 

open the way for choosing suitable topologies for 

information systems that give the highly accurate 

approximations and this help in all fields of rough set 

applications such as vagueness and imperfect knowledge. 

When value of Z takes the minimum and the maximum in 

data table for each attribute, we obtain discrete and indiscrete 

topology and frequently ;<=� = 0 . The accuracy of any 

subset � from � depends on itself. 
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