
 

American Journal of Mathematical and Computational Sciences 

2017; 2(3): 19-23 

http://www.aascit.org/journal/ajmcs  

 

 

 
 
 
 
Keywords 
Max-plus Algebra,  

Tolerance Solution,  

Control Solution,  

Interval Inequalities 

 

 

 

Received: July 6, 2017 

Accepted: August 2, 2017 

Published: August 31, 2017 

 

Tolerance Solution and Control 
Solution of Max-plus Interval 
Inequalities 

Lihua Wang
1
, Ruili Guo

2 

1Institute of Operational Research and Cybernetic, Hangzhou Dianzi University, Hangzhou, China 
2College of Science, University of Shanghai for Science and Technology, Shanghai, China 

Email address 
2570169643@qq.com (Lihua Wang), 915282812@qq.com (Ruili Guo) 

Citation 
Lihua Wang, Ruili Guo. Tolerance Solution and Control Solution of Max-plus Interval Inequalities. 

American Journal of Mathematical and Computational Sciences. Vol. 2, No. 3, 2017, pp. 19-23. 

Abstract 
In recent years, with the introduction of max-plus algebra architecture to the field of 

interval mathematics, some equivalent propositions of various solutions in max-plus 

algebra have been paid close attention to by many scholars in the world. In the paper, first 

of all, in the structure of max-plus algebras, we define tolerance solution and control 

solution of interval inequalities, and then we established equivalent conditions of 

tolerance solution and control solution of max-plus algebra. Finally, we give some 

corresponding examples to illustrate. 

1. Introduction 

As an uncertain system of equations and inequalities, interval linear equations and 

inequalities have been studied by many scholars recently. For example, in [1-2], the 

authors consider the linear interval equations and interval equations of various solutions; 

in [3-4], Researching AE solution is the beginning in interval uncertain linear equations 

and inequalities; in [5-8], the authors discuss the problem which is interval optimization 

the solution of uncertain interval local solutions of equations and inequalities. In recent 

years, with max-plus algebra has appeared in interval mathematics, The system of 

max-plus algebra is also concerned. In [9, 13-14], the weak solution strong solutions, 

tolerance solutions and control solutions of the interval equations under max-plus are 

obtained. The necessary and sufficient conditions and relevant inferences are obtained. 

After the definitions of the left local solution and right local solution are introduced into 

the max-plus algebra, see e.g. [10-12], and the definition of the left and right local 

solutions under the max-plus algebra and related conclusions are given. Since then, in 

[15-19], many authors have redefined max-plus algebras in the variable ,[ ]x x x∈ , 

equivalent conditions of various solutions of the x⊗A = b  and x⊗ ≤A b  are obtained. 

Some authors applied the properties of max-plus algebra to analyze some important 

characteristics of max-plus linear discrete event which the event consists of production 

system, queuing system and array processor, see e.g. [20-23]. In this paper, firstly, we 

define tolerance solution and control solution of interval inequalities in the structure of 

max-plus algebras, and then we established equivalent conditions of tolerance solution 

and control solution of max-plus algebra. Finally, we give corresponding examples to 

illustrate. 

2. Preliminaries 

We remark ℝ  as real sets. Defined interval as [ ]a,a=a , where ,  a a ∈ℝ , and  
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a a≤ , then [ ] { }, |a a x a x a= = ∈ ≤ ≤ℝa . All sets of 

interval sign as Iℝ . When a a a= = , it is called degenerate 

interval, namely real. We define that A A∈ℝ， . A A≤
 

said 

each element of the matrix A  of the position corresponding 

are less than or equal to A  matrix elements, interval matrix 

A  is a set of real matrices, denoted as 

  [ ] | }{ m nA A A A A A×= = ∈ ≤ ≤ℝ，A . Denoted all interval 

matrices under m n× -orders as m n×Ιℝ ,and all interval 

matrices under n -orders as nΙℝ . During the last 50 years 

special algebras structures appeared, where defined ( ),⊕ ⊗  

which is a semi-group operation. We denoted that

( ) (, , )max⊕ ⊗ = + . The operation corresponding real sets on 

2 2⊗ ≤A x b . then, we have ( , , )max max max= + −∞ℝ ℝ . in 

maxℝ ,assume maxα ∈ℝ ,then 

{ , }maxα α α⊕ −∞ = −∞ = ,  ( ) ( )  α α⊗ −∞ = + −∞ = −∞ . 

For matrix where all elements belong to maxℝ , it labeled

m n
max

×
ℝ . If n

maxx ∈ℝ  is a column vector made by 1 2, ,..., nx x x . 

Then 1 2 , ,..( ).,T
nx x x x= , when arbitrary 1 2, ,...,( )T

nx x x x=

 n∈ℝ , arbitrary 1 2, ,...,( )  T n
ny y y y= ∈ℝ , denoted as 

1

1 1( ( )) ( )
T

n

n

j

n j jx y x y x y x y

=

⊗ = ⊗ ⊕ ⊕ ⊗ = ⊗⊕⋯  

when , n
maxx y ∈ℝ , 

1
1

( ) { }
T

j j j j
n

n

j
j

x y x y max x y
≤ ≤=

⊗ = ⊗ = +⊕  

For a m n×  matrix m n
maxA ×∈ℝ , and 1,..., , 1,..., ,i m j n= =

then, ( ) max
mA x⊗ ∈ℝ have operations, for  1,...,i m= , 

1

( ) ( )

n

i

j

i j jA x a x

=

⊗ = +⊕  

1( ) (( ) , , ( ) )T
mA x A x A x⊗ ⊗=⊗ ⋯  

and ,ij max j maxa x∈ ∈ℝ ℝ  

( ) { }
1

1

( ) max

n

i ij j ij j
j n

j

A a x a xx
≤ ≤=

⊗ = + = +⊕  

if iA ⋅  sign as the ith rows of matrix A . Obviously, for 

1, ,i m= ⋯ . 

( )i iA x A x⋅⊗ = ⊗  

when ( ),⊕ ⊗  in maxℝ , ,0−∞  is zero element. then

{ }max ,α α α⊕ −∞ = −∞ = , 0 0α α α⊗ = + = . 

Labeled matrix ( ) m n
ijA a ×= ∈ℝ , matrix ( ) m n

ijC c ×= ∈ℝ , 

vector ( ) n
jx x= ∈ℝ , vector ( ) n

jy y= ∈ℝ , where 

{ } { }1,2, , , 1, 2, ,i m j n∈ ∈⋯ ⋯ . if 

{ } { }1,2, , , 1, 2, ,i m j n∀ ∈ ∀ ∈⋯ ⋯ ij ija c≤ , then 

m n m nA C× ×≤ . If { }1,2, ,j n∈ ⋯ , j jx y≤ , then x y≤ . 

Lemma [2.1] (isotone continuous function) 

Matrix ( ) 
m n

ij maxA a
×= ∈ℝ , matrix max( )

m n
ij maxC c

×= ∈ℝ , if 

 m n m nA C× ×≤ , then A x C x⊗ ≤ ⊗ .  

Proof. According to the definition of max-plus algebras in 
m n
max

×
ℝ , 

1
1

( ) ( ) { } i ij j j
j

n

ij
n

j

x xA a max xa
≤= ≤

⊗ + +== ⊕  

1
1

( ) ( ) { } i ij j j
j

n

ij
n

j

x xC c max xc
≤= ≤

⊗ + +== ⊕  

We know that, if 1,2,{ },i m∀ ∈ ⋯ , 1,2,{ },j n∀ ∈ ⋯ , 

 m n m nA C× ×≤  we have      ij ija c≤ .  Then

( ) ( ) ij j ij ja x c x≤+ + ,  therefore A x C x⊗ ≤ ⊗ . 

3. Tolerance Solution and Control 

Solution of Interval Inequalities 

Consider interval inequalities 

1 1x⊗ ≤A b                      (1) 

2 2x⊗ ≤A b                     (2) 

Where 1 m n
max

×∈ ΙℝA , 2 m n
max

×∈ ΙℝA , 1
max
m∈ Ιℝb , and 

2
max
m∈ Ιℝb . 

3.1. Tolerance Solution of Inequalities 

Consider interval inequalities of eq. (1) and eq. (2) 

Where 1 m n
max

×∈ ΙℝA , 2 m n
max

×∈ ΙℝA , 1
max
m∈ Ιℝb , and 

2
max
m∈ Ιℝb . 

Definition 3.1.1 A tolerance solution of eq. (1) and eq. (2), 

For each 1 1A ∈ A  and each 2 2A ∈ A , if there exist 1 1b b∈ , 

exist 2 2b b∈ , such that 1 1A x b⊗ ≤  and 2 2A x b⊗ ≥ . 

Theorem 3.1.1 A vector n
maxx ∈ℝ  is a tolerance solution 

of eq. (1) and eq. (2). If and only if 

1 1A x b⊗ ≤                      (3) 
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2 2A x b⊗ ≥                     (4) 

Proof. If vector n
maxx ∈ℝ  is a tolerance solution of eq. (1) 

and eq. (2), then we know by definition 3.1.1 that, for each
11A ∈ A , each 22A A∈ , exist 1 1

0b = b , and exist 2 2
0b = b , we 

have 

1 1 1
0A x b b⊗ ≤ ≤                    (5) 

2 2 2
0A x b b⊗ ≥ ≥                   (6) 

Because 1A , 2A are arbitrary, therefore, if 1 1A A= , we 

obtain eq. (3) and if 2 2A A= , we obtain eq. (4). 

For the opposite implication, let us suppose that n
maxx ∈ℝ  

fulfills eq. (3) and eq. (4), but it is not a tolerance solution of (1) 

and (2). For each 1 1b b∈  and each 2 2b b∈ , there exist 
1 1A ∈ɶ A  and 2 2A ∈ɶ A , such that either 

1 1A x b⊗ ≤/ɶ                    (7) 

or 

2 2A x b⊗ ≥/ɶ                     (8) 

By isotone continuous function of lemma [2.1], for each
1 1b b∈ , there exist 1 1A ∈ɶ A  and exist 0 {1, , }ni ∈ ⋯  such 

that either 

0 0 0

1 1

1 1 1
( ) ( )

i j i j i jj

n

j

j

n

j

a a bx x

= =

⊗ ≥ ⊗ >⊕ ⊕ ɶ         (9) 

or for each 2 2b b∈ , exist 2 2A ∈ɶ A and exist 1 {1, , }ni ∈ ⋯  

1 1 1

2 2 2

1 1

( ) ( )
i j i j i j

n n

j j

j jx xa a b

= =

≤ <⊗ ⊗⊕ ⊕ ɶ       (10) 

In the former case, because 1b  is arbitrary, therefore, if

0 0

1 1

i j i j
b b= , then 

0 0

1

1

1
( )

i j i j

n

j

jxa b

=

>⊗⊕  holds, it contradicts eq. 

(3) and in the latter case, because 2b  is arbitrary, therefore, if

1 1

2 2

i j i j
b b= , we have 

1 1

2

1

2
( )

i j i j

n

j

jxa b

=

<⊗⊕ , but eq. (4) is not 

fulfilled. Therefore, we proof that vector n
maxx ∈ℝ  is a 

tolerance solution of interval inequalities of eq. (1) and eq. (2). 

This completes the proof. 

Corollary 1. From the proof of the above theorem, we can 

see that when the row number of 1
A  and 2

A , and 1
b  and 

2
b  is inconsistent, this conclusion still holds. 

 

3.2. Control Solution of Inequalities 

Consider interval inequalities of eq. (1) and eq. (2) 

Where 1 m n
max

×∈ ΙℝA , 2 m n
max

×∈ ΙℝA , 1
max
m∈ Ιℝb , and 

2
max
m∈ Ιℝb . 

Definition 3.2.1 A control solution of eq. (1) and eq. (2), For 

each 1 1b b∈  and each 2 2b b∈ , if there exist 1 1A ∈ A , exist 
2 2A ∈ A , such that 1 1A x b⊗ ≤  and 2 2A x b⊗ ≥ . 

Theorem 3.2.1 A vector n
maxx ∈ℝ  is a control solution of 

eq. (1) and eq. (2). If and only if 

1 1A x b⊗ ≤                     (11) 

2 2A x b⊗ ≥                     (12) 

Proof. If vector n
maxx ∈ℝ  is a control solution of eq. (1) 

and eq. (2), then we know by definition 3.2.1 and isotone 

continuous function of lemma [2.1] that, for each 1 1b b∈ , and 

each 2 2b b∈ , there exist 1 1
0A A= , and exist 2 2

0A A= , such that 

1 1 1
0A x A x b⊗ ≤ ⊗ ≤                (13) 

2 2 2
0A x A x b⊗ ≥ ⊗ ≥               (14) 

Because 1b , 2b are arbitrary, therefore, if 1 1b b= , we obtain 

(11) and if 
2 2b b= , we obtain eq. (12). 

For the opposite implication, let us suppose that n
maxx ∈ℝ  

fulfills (11) and eq. (12), but it is not a control solution of eq. 

(1) and eq. (2). Then we know by definition 3.2.1 that, for each
1 1A ∈ A  and each 2 2A ∈ A , there exist 1 1b b∈ɶ  and 
2 2b b∈ɶ , such that either 

1 1A x b⊗ ≤/ ɶ                     (15) 

or 

2 2A x b⊗ ≥/ ɶ                    (16) 

then, 0 [1, , ]i m∃ ∈ ⋯ , we have 

0 0 0

1

1

1 1
( )

i j i j i jj

n

j

xa b b

=

≥>⊗⊕ ɶ           (17) 

or 1 [1, , ]i m∃ ∈ ⋯ , we have 

1 1 1

2

1

2 2
( )

i j i j i jj

n

j

xa b b

=

≤<⊗⊕ ɶ            (18) 

then, in the case of eq. (17), As a result of 
0

1

i j
a  is arbitrary. 

Then, if we set 
0 0

1 1

i j i j
a a= , we have 
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0 0

1

1

1
( )

i j i j

n

j

jxa b

=

>⊗⊕               (19) 

However, eq. (19) and eq. (11) contradict each other. 

Therefore, we proof that vector n
max∈ℝx  is a control 

solution of eq. (1) and eq. (2). 

In the case of eq. (18), As a result of 
1

2

i j
a  is arbitrary, then, 

when 
1

2

i j
a , we have 

1 1

2

1

2
( )

i j i j

n

j

jxa b

=

<⊗⊕             (20) 

However, eq. (20) and eq. (12) contradict each other. 

Therefore, we proof that vector n
max∈ℝx  is a control 

solution of interval inequalities of eq. (1) and eq. (2). This 

completes the proof. 

Corollary 2. From the proof of the above theorem, we can 

see that when the row number of 1
A  and 2

A , 1
b  and 2

b  

is inconsistent, this conclusion still holds. 

4. Examples of Tolerance Solution of 

Inequalities 

Example 4.1 

Consider interval inequalities 

[ ] [ ]1,3    8,12x⊗ ≤               (21) 

[ ] [ ]2, 4   3,6x⊗ ≥                (22) 

From the analysis, we know 3x =  is a tolerance solution 

of eq. (21) and eq. (22). 

Proof. First of all, by the necessary and sufficient condition 

of the tolerance solution of interval inequalities in the 

max-plus algebra, we see that 

1 1A x = 3+3 6 < 12 = b⊗ =             (23) 

2 2A x = 2+3 = 5 > 3 = b⊗            (24) 

Then, we solve the above problem according to the 

definition of the tolerance solution of interval inequalities in 

the max-plus algebra. 

By isotone continuous function of lemma [2.1], eq. (23) and 

eq. (24). For each 1 1A ∈ A  and each 2 2A ∈ A , we have 

1 1 1A x A x = 3+3 6 < 12 = b⊗ ≤ ⊗ =         (25) 

1 2 2A x A x = 2+3 = 5 > 3 = b⊗ ≥ ⊗         (26) 

Therefore, 3x =  is a tolerance solution of eq. (21) and eq. 

(22). 

Example 4.2 

Consider interval inequalities 

[4,6] [2,7]

[5,8] [7,10

[7,11]
   

[10,17]]
x

   
  ⊗ ≤  
   

          (27) 

[ 1, 4] [2,5]

[ 2,7] [4,11]   

[3,7] [ 4,

[4,8]

[ 1,10]

[3,9] ]1

x

   
   −   
  

−
− ⊗ ≥

−    

        (28) 

From the analysis, we know T[2,3]x =  is a tolerance 

solution of eq. (27) and eq. (28). 

Proof. First of all, by the necessary and sufficient condition 

of the tolerance solution of interval inequalities in the 

max-plus algebra, we see that 

1 16 7 2 10 11

8 10 3 13 17
A x = = b

       
⊗ ⊗ ≤       

       
=      (29) 

2 2

1 2 5 4
2

2 4 7 1
3

3 4 5 3

A x = = = b

−     
      ⊗ − ⊗ ≥ −      
      −     

    (30) 

Then, we solve the above problem according to the 

definition of the tolerance solution of interval inequalities in 

the max-plus algebra. 

By isotone continuous function of lemma [2.1], eq. (29) and 

eq. (30). For each 1 1A ∈ A  and each 2 2A ∈ A , we have 

1 1 14 2 2 6 7

5 7 3 10 10
A x = = b b

       
⊗ ⊗ ≤ ≤       

       
=     31) 

2 2 2

4 5 8 8
2

7 11 14 10
3

7 1 9 9

A x = = = b b

     
      ⊗ ⊗ ≥ ≥      
           

  (32) 

Therefore, T[2,3]x =  is a tolerance solution of 

inequalities of eq. (27) and eq. (28). 

Example 4.3 

Consider interval inequalities 

[2,3] [ 2,1]

[ 2,7] [5,8]

[4,7]
   

[10,20]
x

−   
   −  

≤


⊗       (33) 

[ ][4,7] [ 2,7]  [6,10]x− ⊗ ≥           (34) 

From the analysis, we know T[2,3]x =  is a control 

solution of eq. (33) and eq. (34). 

Proof. First of all, by the necessary and sufficient condition 

of the control solution of interval inequalities in the max-plus 

algebra, we see that 

1 12 2 2 4 4

2 5 3 8 10
A x = = b

−       
⊗ ⊗ ≤       −       

=      (35) 
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[ ]2 22
7 7 10 10

3
A x = = = b

 
⊗ ⊗ ≥ 

 
       (36) 

Then, we solve the above problem according to the 

definition of the control solution of interval inequalities in the 

max-plus algebra. 

By isotone continuous function of lemma [2.1], eq. (35) and 

eq. (36). For each 1 1b b∈  and each 2 2b b∈ , we have 

1 1 12 2 2 4 4

2 5 3 8 10
A x = = b b

−       
⊗ ⊗ ≤ ≤       −       

=    (37) 

[ ]2 2 22
7 7 10 10

3
A x = = = b b

 
⊗ ⊗ ≥ ≥ 

 
      (38) 

Therefore, T[2,3]x =  is a control solution of inequalities 

of eq. (33) and eq. (34). 

5. Conclusion 

First of all, by defining the tolerance solution and the 

control solution of interval inequalities of the max-plus 

algebra, equivalence condition of the tolerance solution and 

the control solution of the interval inequalities are given. And 

then, by means of the definitions of the tolerance solution and 

the control solution of interval inequalities of the max-plus 

algebra and the necessary and sufficient conditions obtained in 

this paper, we give corresponding examples to illustrate the 

tolerance solution and the control solution of interval 

inequalities of the max-plus algebra. It is a complete 

complement to various solutions of interval inequalities under 

max-plus algebra, and its related properties are worth further 

study. At the same time, its understanding is also the 

beginning of the study of multi-variables interval equations. 
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