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Abstract 
The main objective of this paper is to evaluate the effects of functionally graded, rotation 

and initial stress on the displacement design sensitivities of the magneto-thermo-elastic 

functionally graded anisotropic (FGA) structures subjected to moving heat source. An 

implicit time-stepping scheme based on the dual reciprocity boundary element method 

(DRBEM) was used to obtain the temperature and displacement components. Also, an 

implicit differentiation of the discretized boundary integral equation with respect to 

design variables is used to calculate displacement design sensitivities of FGA structures 

with very high accuracy. The validity of the proposed method is examined and excellent 

agreement is obtained with existent results. The numerical results show our method is 

strong and efficient. 

1. Introduction 

The dynamical interaction between the thermal and mechanical fields in anisotropic 

materials has great practical applications in modern aeronautics, astronautics, nuclear 

reactors, earthquake engineering and high-energy particle accelerators. In recent years, 

an important number of engineering and mathematical papers devoted to the numerical 

solution have studied the overall behavior of such materials [1-11]. 

The development of initial stresses in the medium can be associated with many 

reasons, for example: difference of temperature, process of quenching, shot pinning and 

cold working, slow process of creep, differential external forces, gravity variations, etc. 

Biot [12] studied the influence of these stresses on the propagation of stress waves. 

Fahmy [13, 14] used boundary element method to obtain thermal stresses in a non-

homogeneous anisotropic solid. The dual reciprocity boundary element method 

(DRBEM) was introduced by Nardini and Brebbia [15] for elastodynamic problems and 

extended to time-domain problems by Wrobel [16]. A more extensive historical review 

and applications of DRBEM may be found in Refs. [17-41]. 
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The main aim of this paper is to study the influence of 

functionally graded, rotation and initial stress on the 

displacement design sensitivities of the magneto-thermo-

elastic FGA structures subjected to moving heat source. The 

governing equations are solved using DRBEM and the 

numerical calculations are carried out for the temperature and 

displacement components. Then, an implicit differentiation 

method was used to compute the temperature design 

sensitivity and displacement design sensitivity with respect to 

design variables with very high accuracy. The obtained 

numerical results are compared with existent results to 

demonstrate the validity of the proposed method. The 

numerical results show our method is efficient and precise. 

2. Formulation of the Problem 

With reference to a Cartesian frame denoted by ���� , 

consider initially stressed thermoelastic FGA structure 

subjected to moving heat source and placed in a constant 

primary magnetic field ��  acting in the direction of the �-

axis and rotating about this axis. Here we address the 

generalized two-dimensional deformation problem as shown 

in Figure 1. 

 

Figure 1. The coordinate system of the structure. 

The governing equations of magneto-thermo-elasticity for 

an anisotropic solid in the presence of moving heat-source 

can be written as follows [42] 

��	,	 � ��	,	 
 Γ�	 
 ��� � 1������ � ��� � 1���� �    (1) 

��	 � �� � 1�� ���	����,� 
 ��	���, �, ��� , ��	�� � ����	 �
�	��� , ��	 � �	�                                  (2) 

��	 �  �� � 1��!"��	 � "	�� 
 #	��"����$, "� �
!% & �u & H�$�                                  (3) 

Γ�	 � )�� � 1�� *+,-
+./


 +,/
+.-

0                      (4) 

1�	�,�	 � 2��3 
 �4 1�	 � 1	�, �16��� 
 1661�� 7 0   (5) 

With the heat flux vector 9� given by Fourier's law 

9� � 
1�	�,	                                   (6) 

where ��	  is the mechanical stress tensor, ��	  Maxwell’s 

electromagnetic stress tensor, �� is the displacement, � is the 

temperature, )  is the initial stress, ��	��  and ��	  are 

respectively, the constant elastic moduli and stress-

temperature coefficients of the anisotropic medium,   is the 

magnetic permeability, " is the perturbed magnetic field, � is 

the uniform angular velocity, 1�	  are the thermal 

conductivity coefficients, � is the density, : is functionally 

graded parameter, 2 is the specific heat capacity of the solid, 

� is the time and 4 is the moving heat source. Also, Ψ<, #�, Η> 

and "?  are suitably prescribed functions and @�  are the 

tractions defined by @� � ��	A	. 

The initial and boundary conditions for the current 

problem are assumed to be written as 

����, �, 0� � �3 ���, �, 0� � 0 for ��, �� E F G �        (7) 

����, �, �� � Ψ<��, �, τ� for ��, �� E �I        (8) 

@���, �, �� � #���, �, �� for ��, �� E �J, � K 0, � � �I G �J, 

�I L �J � M                                    (9) 

���, �, 0� � N��, �� for ��, �� E F G �               (10) 

���, �, �� � Η>��, �, �� for ��, �� E �6, � K 0           (11) 

9��, �, �� � "?��, �, �� for ��, �� E ��, � K 0, � � �6 G ��, 

�6 L �� � M                                   (12) 

A superposed dot denotes differentiation with respect to 

the time and a comma followed by a subscript denotes partial 

differentiation with respect to the corresponding coordinates. 

3. Numerical Scheme 

The main objective of the numerical scheme is to describe 

the implementation of the DRBEM formulation for the 

solution of the Eqs. (1) and (5). 

3.1. Temperature Field 

From Eq. (5) using the DRBEM as described in Ref. 43, 

we obtain the representation formula 

��O� � P �9Q� 
 �Q9�RCT 
 P !2��3 
 �4$�QdRW      (13) 

To transform the domain integral in (13) to the boundary, 

the generalized source term is approximated with a series of 

given source terms NX  and unknown coefficients Y?X as 

follows 

P !2��3 
 �4$�QdRW Z ∑ Y?X\X]6 P NX�QdRW          (14) 

Consequently, the dual reciprocity representation formula 

can be written as follows 
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��O� � P ��Q9 
 9Q��RC = ∑ ��X�O� + P ��∗9X −T_̂]6T 9∗�X�RC� Y?X                               (15) 

The field variables � and 9 and the particular solutions �X 

and 9X are then approximated as 

`�, 9a ≈ ∑ b?�\�]6 c�d�, 9e�f = Φ> hc�d, 9ef, `�X , 9Xa ≈∑ b?�\�]6 c�d�X , 9e�Xf = Φ> hc�d X , 9eXf                (16) 

where �d , 9e, �d X, 9eX and Φ>  are matrices 

Using (16) and applying the point collocation procedure to 

(15), we have the following system 

i j�d − kj9e = ∑ !i j�d X − kj9eX$Y?X\X]6                (17) 

Let 

Τm = n�d6 �d �  … �d \p, ℘>m = r9e6 9e�  … 9e\s, Y? = rY?6 Y?�  … Y?\sh  (18) 

Using (18) into (17) we have 

i j�d − kj9e = !i jΤm − kj℘>m $Y?                      (19) 

Where the matrices Τm  and ℘>m  contain the particular 

solutions. 

Then, by applying a point collocation procedure to Eq. 

(18) we obtain 

2��3d − �ť = v?Y?���                           (20) 

From Eq. (20) the following expression can be derived 

Y?��� = v?w6 �2��3d − �ť�                       (21) 

Which can be substituted into (19) producing 

ℳ> �3d��� + i j�d��� = kj9e��� + Βm���               (22) 

where 

ℳ> = 2�z, Βm = �zť, z = −!i j�d − kj℘>m $v?w6         (23) 

In order to solve the system (22), the nodal vectors are 

subdivided into known and unknown parts denoted by the 

superscripts 1 and � 

c�d �, 9e,f ∈ C6, c�d ,, 9e�f ∈ C�                     (24) 

The following matrix equation is obtained from (22): 

{ℳ> 66 ℳ> 6�
ℳ> �6 ℳ> ��| }�3d ����

�3d ,���~ + {i j66 i j6�
i j�6 i j��| }�d �����d ,���~ = {kj66 kj6�

kj�6 kj��| {9e����9e,���| + }�d6����d ����~                                (25) 

The unknown fluxes 9e,�@� are obtained from the first row of matrix equation (25) are expressed as 

9e,��� = �kj6��w6 �ℳ> 66�3d ���� + ℳ> 6��3d ,��� + i j66�d ���� + i j6��d ,��� − kj669e���� − �d6����                          (26) 

Making use of Eq. (26), we can write the second row of matrix equation (25) as follows 

ℳ> ,�3d ,��� + i j,�d ,��� = �?����                                                                     (27) 

where 

�?���� = �d ���� + kj�9e���� − ℳ> ��3d ���� − ij��d ����, ℳ> , = ℳ> �� − kj���kj6��w6ℳ> 6�, i j, = ij�� − kj���kj6��w6i j6�, �d ���� = ����� − kj���kj6��w6�6���,  kj� = kj�6 − kj���kj6��w6kj66, ℳ> � = ℳ> �6 − kj���kj6��w6ℳ> 66, i j� = ij�6 − kj���kj6��w6i j66. 

By using finite difference scheme as described by Ref. 44, Eq. (23) can be written as follows 

�j,�d��6, = ℚ> ��6�                                                                                       (28) 

Where ℚ> ��6� = �?��6� + ℳ> �
∆� �d�,, � j, = ℳ> �

∆� + ij, 

Thus, with T�x, y, t� determined, the remaining task is to solve (1) subject to (2)-(4). 

3.2. Displacement Field 

Making use of (2)-(4), we can write (1) as follows 

����� = ��� � − �!��� + Λ��6�$�� + ��� − P�	� − ������ = ��� � − ��� = ����                               (29) 

where 

��� = ��	� +
+.-, ��	� = ��	�� +

+.� , ��� =  ��� * +
+./ + #�6�0 +

+.�, �� = −��	 * +
+.- + #	6�0 , �	� = *+,-+./ − +,/+.- 0 , � = �

.��, 
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According to Ref. 24, the representation formula may be written as 

���O� � P !���Q ��, O�@���� − @��∗ ��, O������$RCT − P ���∗ ��, O����� ���RRW                                  (30) 

Let 

���� = ��� � − �!��� + Λ��6�$�� + ��� − P�	� − ������ ≈ ∑ N��X α�X\X]6 = ∑ !�	����X $α�X\X]6                        (31) 

We proceed in a manner similar to that used in Ref. 45, in order to obtain the following dual reciprocity representation 

formula 

���O� = P !���∗ @� − @��∗ ��$RCT + ∑ ����X �O� − P ����∗ @��X − @��∗ ���X �RCT �\X]6 α�_                             (32) 

The representation formula (32) is only valid if O lies inside the domain R. To obtain an expression that contains only 

boundary variables, the load point O has to be moved to the boundary. Therefore, the boundary is deformed by a small circular 

region with radius � around the load point O ∈ � as shown in Figure 1. 

Following Ref. 45, the dual reciprocity boundary integral equation can be expressed as follows 

2�	����� + p. v. P ��@��∗ RΓT − P ���∗T @�RΓ = ∑ �2�	���X ��� + p. v. P ���X @��∗ RΓT − P ���∗T @��X RΓ� α�__̂]6      (33) 

where p. v. means the principal value of the integral. 

The unknown field variables and the particular solutions are respectively approximated by means of nodal values r .̌ s� and 

shape functions b� 

`�, @a ≈ ∑ b�\�]6 `�e�, @̌�a = Φh`�e, @̌a, `�X , @Xa ≈ ∑ b�\�]6 c�e�X , @̌�Xf = Φh`�eX , @̌Xa                             (34) 

where �e, @̌, �eX , @̌X and Φ are matrices. 

On the basis of these approximations, and using the point 

collocation procedure, the dual reciprocity boundary integral 

equation (33) results to the following system of equations 

i�e − k@̌ = ∑ �i�eX − k@̌X�YX���\X]6                  (35) 

By letting 

�m = r�e6 �e� … �e\s, ℘� = r@̌6 @̌� … @̌\s, Y = rY6 Y� … Y\sh   (36) 

We can write (35) as follows 

i�e��� − k@̌��� = !i�m − k℘�$Y���               (37) 

The coefficient vector Y��� can be calculated by setting up 

a system of   equations from (31) using the point collocation 

procedure, which yields 

���d��� − ��d��� = vY���                     (38) 

Now, from (38), we may derive 

Y��� = vw6!���d��� − ��d���$                   (39) 

Substitution of (39) into (37) yields the system 

ℳ��d + i�e = k@̌��� + ℬm���                      (40) 

where 

℧ = !k℘� − i�m$vw6, ℳ = �℧, ℬm��� = �℧�d���.          (41) 

By subdividing the nodal vectors into known and unknown 

parts as follows 

`�e� , @̌,a ∈ CI, `�e, , @̌�a ∈ CJ                     (42) 

where the superscripts 1  and �  denote, respectively, the 

known and unknown parts 

Hence we can write the system (40) in the following form 

�ℳ66 ℳ6�
ℳ�6 ℳ��� } ��d������d,��� ~ + {i66 i6�

i�6 i��| {�e�����e,���| = {k66 k6�
k�6 k��| }@̌����@̌,���~ + }ℬm6���ℬm����~                            (43) 

The unknown fluxes @̌,��� can be obtained from the first row of (43) as follows 

@̌,��� = �k6��w6nℳ66��d���� + ℳ6���d,��� + i66�e���� + i6��e,��� − k66@̌���� − ℬm6���p                      (44) 

With the aid of (44) into the second row of (43) we obtain 

ℳ,��d,��� + i,�e,��� = �����                                                                     (45) 

where 

����� = ℬm���� + k� @̌���� − ℳ���d���� − i��e����, ℬm���� = ℬ���� − k���k6��w6ℬ6���, 
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ℳ, � ℳ�� 
 k���k6��w6ℳ6�, i, � i�� 
 k���k6��w6i6�, 

ℳ� � ℳ�6 
 k���k6��w6ℳ66, i� � i�6 
 k���k6��w6i66. 

We can write (45) at time step A � 1 

ℳ,��d��6, ��� + i,�e��6, ��� = ���6� ���                                                               (46) 

where 

���6� ��� = ℬm��6� ��� + k� @̌��6� ��� − ℳ���d��6� ��� − i��e��6� ��� 

Now, we consider an implicit backward finite difference scheme for solving the system of ordinary differential equations 

(46), the so-called Houbolt’s algorithm is applied to reduce (46) to an algebraic system. To do this, the velocities �3 ��6 and 

accelerations �� ��6 at time step A + 1 are approximated as [43] 

�3d��6 ≈ 6
£∆¤ �11�e��6 − 18�e� + 9�e�w6 − 2�e�w��                                                       (47) 

��d��6 ≈ 6
∆¤¨ �2�e��6 − 5�e� + 4�e�w6 − �e�w��                                                       (48) 

Substituting (47) and (48) into (46) we have 

�,�e��6, ��� = ℚ��6� ���                                                                     (49) 

Where �, = �ℳ�
∆¤¨ + i, , ℚ��6� = ���6� + ℳ�

∆¤¨ �5�e� − 4�e�w6 + �e�w�� 

Applying the same technique described in Ref. 38, we can 

obtain the unknown �3d��6, , ��d��6,  and @��6,  from (47), (48) and 

(44) respectively. 

Thus, the displacement design sensitivity is performed by 

implicit differentiation of equation (49) and also the 

temperature design sensitivity is performed by implicit 

differentiation of equation (28). 

4. Numerical Results and Discussion 

We assume that the moving heat source takes the following 

form 

4��, �, �� = ����«�� sinh���
°�� + «�  

Where � is the Heaviside unit step function, �� is the heat 

source strength and « its velocity and all are constants. 

In order to illustrate the theoretical results obtained in the 

preceding sections, the material chosen for this purpose is 

monoclinic graphite-epoxy with physical data given as 

Elasticity tensor 

��	�� =
±²
²²
²³
430.1 130.4 18.2130.4 116.7 21.018.2 21.0 73.6

0 0  201.30 0  70.10 0  2.40 0 00 0 0201.3 70.1  2.4
19.8 −8.0  0 −8.0 29.1 0  0 0 147.3 ·̧

¸̧
¹̧
 GPa 

Mechanical temperature coefficient 

��	 = º1.01 2.00 02.00 1.48 00 0 7.52» ∙ 10£ N/Km� 

Tensor of thermal conductivity 

1�	 = º5.2 0 00 7.6 00 0 38.3» W/Km 

Mass density � = 7820 Kg/ mI  and heat capacity 2 =461 J/Kg  K, �� = 1000000 Oersted,  = 0.5 

Gauss/Oersted, �� = 0.5 , : = 0.5 , ∆� = 0.0001 . The 

numerical values of the temperature and displacement are 

obtained by discretizing the boundary into 120 elements � ¾ = 120�  and choosing 60 well spaced out collocation 

points � ¿ = 60� in the interior of the solution domain [44-

46]. 

The initial and boundary conditions considered in the 

calculations are 

at � = 0 �3 6 = �3 � = �� 6 = �� �, �3 = 0 

at � = 0 +,À+. = +,¨+. = 0, +h
+. = 0 

at � = 1 +,À+. = +,¨+. = 0, +h
+. = 0 

at � = 0 +,À+Á = +,¨+Á = 0, +h
+Á = 0 

at � = 1 +,À+Á = +,¨+Á = 0, +h
+Á = 0 

In order to get the influence of the functionally graded, 

rotation and initial stress parameters on the displacement 

design sensitivities, we assume that the presence of each 

parameter takes the value 0.5  and the absence of each 

parameter takes the value 0  and the results presented 

graphically in Figures 2 and 3. 

Figure 2. Shows the variation of the displacement �6 

sensitivity with the time under the effects of functionally 

graded, rotation and initial stress. The figure indicates that 

the displacement �6 sensitivity records higher values in the 

case of presence of rotation parameter and absence of 

functionally graded and initial stress parameters. 

Figure 3. Shows the variation of the displacement �� 

sensitivity with the time under the effects of functionally 
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graded, rotation and initial stress. The figure indicates that 

the displacement �� sensitivity records higher values in the 

case of presence of functionally graded parameter and 

absence of rotation and initial stress parameters. 

 

Figure 2. Variation of the displacement u1 sensitivity with time �. 

 

Figure 3. Variation of the displacement u2 sensitivity with time τ. 

The present work should be applicable to any design 

sensitivity of magneto-thermoelastic problem. The example 

considered by Sladek et al. [47] may be considered as a 

special case of the current general problem in the context of 

the uncoupled thermoelasticity theory. Also, there are a lot of 

practical applications may be deduced as special cases from 

this general study and may be implemented in commercial 

finite element method (FEM) software packages FlexPDE 6. 

In the special case under consideration, the numerical results 

of the temperature with the time are plotted in Figure 4 to 

show the validity of the DRBEM. The obtained DRBEM 

results have been compared graphically with the obtained 

Meshless Local Petrov–Galerkin (MLPG) method results of 

Sladek et al. [47] and also the obtained FlexPDE 6 results are 

shown graphically in the same figure to confirm the validity 

of the proposed method. It can be seen from this figure that 

the DRBEM results are in excellent agreement with the 

results obtained by MLPG and FEM, thus confirming the 

accuracy of the DRBEM. 

 

Figure 2. Variation of the temperature T with time �  for three methods: 

DRBEM, MLPG, FEM. 

This phenomenon gives clear evidence of magneto-themo-

elastic effect in initially stressed FGA structure rotating about 

its axis and subjected to moving heat source. From this 

knowledge of transient variations of displacement 

components, we can design various initially stressed magneto 

thermoelastic structures under rotation load to meet specific 

engineering requirements and utilize it in measurement 

techniques of magneto-thermo-elasticity. 

5. Conclusion 

The DRBEM is more efficient and easy to use than FEM 

because it only needs the boundary of the integration domain 

to be discretized into elements. 

For closed or open boundary problem the users of need 

only to deal with real geometry boundaries. Most problems 

of design sensitivity analysis of magneto-thermo- elastic 

FGA structures are associated with open boundary structures. 

For these open boundary structures, the users of FEM use 

artificial boundaries, which are far away from the real 

structure. So, DRBEM becomes the best method for the 

general problem considered in this study. 

From the present research that has been performed, it is 

possible to conclude that the design of the structure is 

sensitive to boundary shape. Also from this knowledge of the 

variation of the displacements and temperature sensitivities 

with time under the effects of functionally graded, rotation 

and initial stress on the magneto-thermo-elastic functionally 

graded anisotropic (FGA) structures subjected to moving 

heat source, we can design various structures to meet specific 

design requirements and put them to appropriate use, will be 

better able to design structures. 
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