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Abstract: For polynomial splines of n-th degree with non-uniform knots the new type wavelet, semi-orthogonal according 

to scalar product with derivatives, is offered. With use of splitting on even and odd knots the algorithm of wavelet-

decomposition via solution of band system of linear algebraic equations is received. The task of definition of factors of 

differential equations of nonlinear dynamic system is decided. For group of homogeneous objects of exponential type the 

equation of system is used in linearized form. The problems of modeling of surfaces of highways with use of data of laser 

scanning are described. The examples of imposing of the designed road pavement on the previously processed laser 

measurements are shown. 
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1. Introduction 

The majority of complex processes and phenomena of 

nature, engineering and public life have dynamic character, 

that is the meanings of variable values are connected not only 

with the current, but also with the earlier on time meanings of 

external and internal characteristics. The attempts of 

describing such processes and phenomena by linear methods 

of identification based on concepts of polynomial trend and 

the sum of harmonic oscillations, do not guarantee the 

adequate analysis and authentic prediction even on limited 

time intervals. It is caused by the local instability of linear 

dynamic systems. Really, any such system has the limited 

spectrum of own frequencies and under influence of 

compelling force of the appropriate frequency comes into 

condition of resonance. On the other hand, we notice 

frequently surprising independence of complex natural and 

social-economic systems on external influences. 

At the end of the last century the works have appeared, in 

which it is shown, that the steady acyclic decisions can arise 

for rather simple systems of nonlinear differential equations 

of the third order. It is accepted to name such decisions 

"strange attractors", and their external manifestation is 

viewed by that the observable meanings of variable values 

make chaotic spread-spectrum sequences – "determined 

chaos" [1]. Usually the presence of such irregularities is 

treated as result of influence of stochastic random noise and 

is withdrawn from analytical description of model during 

identification. 

In the paper the more modest task of development of 

method for restoration of nonlinear differential equations, 

simulating complex dynamic system on observable 

realizations of its variables, is put. Thus the laws of change 

of parameters are represented as vector splines, and the 

spline-coefficients are defined iteratively with the help of 

vector system of equations constructed on the basis of 

property of accuracy of computational schemes on 

polynomials. The special attention is given to the case, when 

the dynamic system represents group of homogeneous 

objects which are taking place in the same conditions. In this 

connection the concept of group of exponential type (for 

which equilibrium average trajectories are monotonous on all 

the interval of observation [2, page 162]) is entered. 

The results of numerical modeling of road pavements by use 

of laser scanned data and wavelet-decomposition are given. 
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2. The Bases of the Theory of  

Spline-Wavelets 

Wavelets are by now a widely accepted tool in signal and 

image processing as well as in numerical simulation. 

Application of algorithms based on construction of wavelet 

decompositions is today one of the most popular ways for 

filtration and compression of numerical information such as 

temporal series and spatial fields, thanks to their high 

efficiency [3, 4]. In the field of numerical analysis, methods 

based on wavelets are successfully used especially for 

preconditioning of large systems arising from discretization 

of elliptic partial differential equations, sparse 

representations of some types of operators and adaptive 

solving of functional equations [5]. 

In the theory of multi-scale analysis wavelets name the 

basis of the set, filling the difference between approximating 

spaces on rich and coarse grids (see [6, page 41]). In the 

classical case of approximation on the uniform grid, 

infinitely continued at both ends, such basis is generated by 

compressions and shifts of the unique wave function which is 

looking like short or quickly fading splash, which refers to as 

wavelet. Because of compression wavelets reveal with a 

different degree of details the distinction in the characteristics 

of the measured signal, and by shifts are capable to analyze 

properties of the signal in different points on the entire 

investigated interval. At the analysis of non-stationary signals 

the local property of wavelets provides the essential 

advantage before transformation of Fourier, which gives only 

global items of information about the properties of the 

researched signal, as basic functions, used at it (the sine and 

cosine), have the infinite support. At the decision of tasks of 

numerical analysis, as wavelets transform system of basic 

functions with the distributed (allocated) parameters to 

system with concentrated parameters, such basis appears 

much more effective from the point of view of conditionality 

and convergence. 

As the basis for construction of wavelets is the presence of 

so-called scaling relations such, that each basic function on 

coarse grid can be expressed as linear combination of basic 

functions on a rich grid. In particular, splines – smooth 

functions which have been stuck together from pieces of 

polynomials of degree n on the enclosed sequence of grids 

have such relations. In case of uniform grids on the entire 

numerical axes these relations are well known [7], as well as 

some cases of approximation on the finite interval. About the 

practically important case of measurements given on the non-

uniform grid, it is known much less. In [8] scaling relations 

for cubic splines were formally written out for any knots. 

However explicit expressions of scaling factors were not 

specified. Therefore in the given work we offer the 

elementary way of decision of this problem based on 

application of the idea of local approximation, exact on 

splines, and well known lemma of De Boor - Fix [9]. 

The second, that underlies any wavelet-transformation, are 

scaling relations for wavelets themselves. Such relations are 

known for the cases of orthogonal and biorthogonal wavelets, 

that allow by infinite iteration procedure to receive their 

graphic representation, but do not deliver analytical 

expressions to use as trial functions, for example, in a method 

like type of Galerkin. As against it, semi-orthogonal (see [10, 

page 112]) and non-orthogonal [11] wavelets are defined 

explicitly as linear combinations of basic splines on a rich 

grid. Characteristic property of semi-orthogonal wavelets, 

which sometimes is the basis of appropriate numerical 

method [12] for construction of wavelet-transformation, is 

that wavelet-decomposition provides construction of least 

square approximation of splines on a rich grid by means of 

splines on a coarse grid. It gives serious advantages at the 

decision of task of compression of discrete numerical 

information. However given advantages degrade at 

differentiation of received spline-wavelet decomposition. On 

our point of view, the optimum decision is spline-wavelets, 

ensuring least square approximation of derivative of splines 

on a rich grid by means of derivative of splines on a coarse 

grid. For the first time such wavelets were investigated in the 

case of cubic splines [13, 14]. Thus it appears that these 

wavelets have very simple construction. In addition, they 

have deserved the common recognition at the decision of 

differential equations [15] and numerically were realized as 

standard program [16] in MatLab. The attempt of 

generalization of given construction to the case of non-

uniform grid was undertaken in [8]. But the resulting 

expressions have turned out to be very confusing. 

At last, the third under the account, but not on importance 

task of the theory of wavelets, is the problem of evaluation of 

coefficients of wavelet-decomposition for given function. In 

the case of orthogonal and biorthogonal wavelets the decision 

is reduced to application of local averaging filters. We 

consider it with lack, as information for accounting each 

factor on coarse grid is used not completely. As against it, the 

factors of semi-orthogonal (see [9, page 115]) and non-

orthogonal [10] wavelets are evaluated from systems of 

linear algebraic equations, but the good conditionality for 

them is not guaranteed. In case of measurements given on 

non-uniform grid, these problems are aggravated by the 

problem of instability concerning an arrangement of knots of 

a grid [17]. In [8] at calculations it was offered to take 

advantage of the unique property "Point Value Vanishing" of 

constructed wavelets to receive algorithm of discrete 

wavelet-transformation requiring the calculation of factors of 

some interpolation spline. Also it was announced the 

generalization of given algorithm to spline-wavelets of any 

degree. To the similar result leads developed by the first 

author earlier [4] universal reception of even-odd splitting on 

the basis of finite implicit relations connecting basic 

functions of spline space on a rich grid, basic functions on a 

coarse grid and wavelets. 

2.1. Polynomial Splines of one Variable 

Let on the interval of observation [0, Т] the grid of time 

markings ∆: 0 = t0 < t1 <... < tN = Т is entered. Ordinary 

polynomial spline of the degree n and defect 1 refers to as the 

function Sn(t), which coincides with polynomial of the degree 
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not above n on every time piece [ti-1, ti], i = 1, 2,.., N, and has 

continuous derivatives up to the order n–1. The set of all the 

splines Sn (t) forms the finite-dimensional space Sn (∆) with 

dimension N + п. To receive basic functions of the space Sn 

(∆), we add to the grid ∆ the fictitious time markings t–n <... < 

t–1 < t0, tN+1 < …< tN+2 < … < tN+n and construct for the 

function ( ) ( ), max 0,
n

n v t v tϕ  = −   the divided differences 

of (n+1)-st order on values of argument 1,...,i i nv t t + += . Then 

the functions ([17, page 86]) 

( ) ( )1 1,..., ;i
n i n i n i i nB t t t t t tϕ+ + + += −     are normalized B-

splines. They are spline-functions of degree n of defect 1. 

They are different from zero on intervals (supports) (ti, ti+n+1) 

and are identically equal to zero outside of them. Or else, at 

the points ti, ti+n+1 the derivatives ( )i
nB t  up to the order n–1 

are equal to zero. It imposes 2n of conditions on parameters 

of received spline, and one else free parameter in this case is 

determined so that normality condition 

( )1
1, 0 ,

N i
nn

B t t T
−

=−
= ≤ ≤∑  takes place. Every spline 

( ) ( )n nS t S∈ ∆  can be uniquely presented as linear 

combination of B-splines ( ) ( )1
,

N i
n i ni n

S t d B t
−

=−
=∑

 

where di – 

constant factors. 

We don't establish any conditions of continuity in the 

boundary points of considered interval. It corresponds that 

the basis of B-splines provides correct representation of 

elements of the space Sn (∆) only on the interval [0, Т]. Thus 

to include into consideration the case of defect > 1, it is 

necessary to attribute to the knots of the grid ∆ multiplicity, 

equal to the defect of spline in these points, and to renumber 

the knots taking into account their multiplicity. Through B-

splines the power functions (monomials) of t up to the degree 

n can be expressed, and it is the initial moment for 

construction of approximation formulas. 

Let ( ) ( ) ( )1 ! 0 / !,
n

i i id n
µ µµξ µ ψ −= = −  where 0 ≤ µ ≤ n, 

( ) ( ) ( )1 ...i i i nv v t v tψ + += − − . Then the equality 

( ) , 0 ,nS t t t Tµ≡ ≤ ≤  is fair. Moreover, if 

( ) ( ) ( )( ) ( ) ( ),

0

1
1

!i

n
k n k kn

i i i i

k

x x
n

τλ ψ τ τ−

=

= −∑
 

with any values of argument iτ  on the open interval (ti, ti+n+1), 

then ( ),i

n j j
i n iBτλ δ= (Kronecker delta) at all j. Thus the 

formula of local approximation of the form 

( ) ( ) ( )
1

,;
i

N
n i

n i n

i n

S f t f B tτλ
−

=−

=∑
 

– is exact on splines with knots ti. In it there is the essence of 

the lemma of De Boor - Fix [9]. 

2.2. The Construction of Polynomial  

Spline-Wavelets 

Let n initial and n final knots are chose so, that for the case 

of odd n: (1 )/2 0 ( 1)/20 ,n N N nt t t t T− + −= = = = = =… … . Then 

at ( 1)/2 ( 1)/2 1 0n n N n Nd d d d− − + − + −= = = = = =… …  the 

entered functions satisfy to homogeneous boundary 

conditions 

( 1)/2 ( 1)/2(0) (0) (0) ( ) ( ) ( ) 0.n nS S S S T S T S T− −′ ′= = = = = = = =… …
 

Henceforth we shall believe, that N = 2
L
, and designate the 

received grid as ∆
L
, and the appropriate set of splines of the 

degree n – as VL. Into basic functions we shall also enter the 

value L, designating ( ) ( 1)/2 ( )i L
n i nB t N t+ +=  and entering thus, 

as it is accepted for splines of odd degree, numbering by 

central knot in the support. For any grid ∆
L
 spline S

L
(t) ∈ VL 

can be presented on the interval [0, Т] of parameter t as 

( ) ( )
2 1

1

, 0 .

L

L L L
i i

i

S t C N t t T

−

=

= ≤ ≤∑                 (1) 

As the grid ∆
L–1

 is received from ∆
L
 by means of removal 

of every second knot (not counting fictitious knots), the 

appropriate space VL–1 with the basic functions ( )1L
iN t−

, not 

equal to zero on double supports 2 1 2 1( , )i n i nt t− − + + , is enclosed 

in VL. The two-scale relation between basic functions in VL 

and VL–1, not touching the ends of the piece of approximation, 

was received in [19] for the case of non-uniform grid, in a 

special way infinitely continued, in very complex, in our 

opinion, form. We shall use instead for calculations very 

simple expressions following from the lemma of De Boor - 

Fix. In particular, for the case n = 3 it is possible to receive 

that 

( ) ( )
4

1 1
, 2 2

0

, 2,3, 2 2.L L L
i i k i k

k

N t p N t i− −
− +

=

= = −∑ …         (2) 

Here, taking into account, that (see [18, page 96]) 

1 1 1( ) 0, ( ) , ( ) 2( ), ( ) 6, ,j j j j j j j j j j j j j j jt t h h t h h t h t tψ ψ ψ ψ− − +′ ′′ ′′′= = − ⋅ = − = = −
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2 1 2 4 2 3 2 4
,1 ,0 ,1

2 2 2 4 2 2 4

2 2 2 1 2 1 2 2 2 1 2 4
,2 ,1

2 2 2 2 2 2 2 4 2 2 2 2

2 1 2 4 2 3 2 4
,3 ,4 ,3

2 2 2 4 2 2 4

, ,

( )( )
,

( )( )

,

i i i i
i i i

i i i i

i i i i i i
i i

i i i i i i

i i i i
i i i

i i i i

t t t t
p p p

t t t t

t t t t t t
p p

t t t t t t

t t t t
p p p

t t t t

− − − −

+ − −

+ + + − − +

+ − − + + −

+ + + +

− + +

− −
= =

− −
− − −

= +
− − −

− −
= =

− −
.

                                                     (3)
 

The scaling relations between basic functions in VL and VL–

1 for the case of two-multiple knot on the left edge of the 

interval look like (2) with i=1, p1,0=0 and 

1 0
,1

4 0

6 3 3 0 4 1
,2 ,1 2

6 0 4 0

3 6 5 6
,3 ,4 ,3

0 6 2 6

,

( )( )
,

( )

, ,

i

i i

i i i

t t
p

t t

t t t t t t
p p

t t t t

t t t t
p p p

t t t t

−
=

−
− − −

= +
− −

− −
= =

− −

            (4) 

whereas for the case of two-multiple knot on the right edge 

of the interval look like (2) with i=2
L–1

–1, pi,4=0 and 

2 2 1
,3

2 2 4

2 6 2 3 2 1 2 4 2 2 3
,2 ,3 2

2 6 2 2 2 4

2 3 2 6 2 5 2 6
,1 ,0 ,1

2 2 6 2 2 2 6

,

( )( )
,

( )

, .

L L

L L

L L L L L L

L L L L

L L L L

L L L L

i

i i

i i i

t t
p

t t

t t t t t t
p p

t t t t

t t t t
p p p

t t t t

−

−

− − − − −

− −

− − − −

− − −

−
=

−

− − −
= +

− −

− −
= =

− −

    (5) 

The wavelet space WL–1 is defined as orthogonal 

complement of VL–1 up to VL in Hilbert space (see [18, pages 

63, 60 and 175] 

( 1)/2 ( 1)/2 2
0

( 1)/2 ( 1)/2

[0, ] { [0, ], [0, ],

(0) (0) (0) ( ) ( ) ( ) 0},

n n

n n

H T f C T f L T

f f f f T f T f T

+ +

− −

= ∈ ∈

′ ′= = = = = = = =… …  

in which the scalar product is defined as  

( 1)/2 ( 1)/2

0
, .

T
n n

f g f g
+ +< >= ∫  

The characteristic property of functions g∈ WL–1 is that 

g(t2i)=0, i=1,2,…, 2
L–1

, whence, in particular, for the case n = 

3 it immediately follows, that the set of basic wavelets 

satisfies the following two-scale relations [8]: 

1
,0 2 2 2 1 ,2 2( ) ( ) ( ) ( ),L L L L

k k k k k kt q N t N t q N tψ −
− −= + +         (6) 

where 

12 1 2 2 2 1 2
,0 ,2

2 2 2 2 2 2

( ) ( )
, , 1, 2, 2 ,

( ) ( )

L L
Lk k k k

k kL L
k k k k

N t N t
q q k

N t N t

−− − −

− −

= − = − = …  

while 11,0 2 ,2
0.Lq q −= =  

It is obvious, that the support of given wavelets is rather 

small  (t2k–4, t2k+2), that  is  less  than  the support  of cubic  B-

spline. Nevertheless, the authors did not manage to find the 

references to use constructed wavelets in practical 

calculations, probably because of the complexity of offered 

in [8] computing algorithm. 

2.3. The Construction of the Block of Filters 

Any function in VL can be written down as the sum of 

some function in VL–1 and some function in WL–1. It is 

convenient to write down factors of spline and basic 

functions, as 1 2 2 1
, , ..., L

T
L L L LС С С С −

 =  
, 

1 1 2 1
φ , , ..., L

L L L L
N N N −
 =   . Then the equation (1) 

corresponds as S
L
 (t) = φ

L
 (t) C

L
. Similarly, at the level of 

coarsening L we shall write down basic wavelet-functions as 

matrix-line 1 2 2
ψ ψ , ψ , ..., ψ L

L L L L =   . The appropriate 

wavelet-factors we shall collect in the vector

1 2 2
, , ..., L

T
L L L LD D D D =  

. Then with use of designation for 

block matrixes the process of obtaining C
L
 from C

L–1
 and D

L–

1
 can be written down as (see [9, page 114]): 

1

1
| .

L
L L L

L

С
С P Q

D

−

−

 
 =      

                      (7) 

The blocks of matrix P
L
 are made of factors of appropriate 

scaling relations. For the case n = 3 they are the relations (2)-

(5), as each wide basic function inside the piece of 

approximation consists of five, and at the edges of the 

interval – of four narrow basic functions. The elements of 

columns of matrix Q
L
 are made of factors of wavelet, and for 

the case n = 3 they are factors of the relation (6). The 

example of matrix [P
L
 | Q

L
], corresponding to L = n = 3, is 

presented below: 

1,1

1,2 2,0 1,2 2,0

1,3 2,1

3 3
1,4 2,2 3,0 2,2 3,0

2,3 3,1

2,4 3,2 3,2 4,0

3,3

0 0 1 0 0 0

0 0 0

0 0 1 0 0

| 0 0

0 0 0 1 0

0 0 0

0 0 0 0 0 1

p

p p q q

p p

p p pP Q q q

p p

p p q q

p

 
 
 
 
 

  =   
 
 
 
 
 

. 
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2.4. Algorithm with Application of Splitting 

The inverse process of decomposition of factors C
L
 on the 

rougher version C
L–1

 and the detailing factors D
L–1

 consists in 

the decision of system of linear equations (7). Thus the 

system (7) is expedient for splitting on even and odd knots. 

Has a place, for example, the following 

Theorem 1. Let for the case n = 3 the values Ci
L–1

 of spline 

coefficients on the coarse grid ∆
L–1

 are calculated from the 

decision of three-diagonal system of linear equations of the 

form 

1

1 1

1 1

1 1
1 2 2 2

1 1 1
1 4 2 4 3 4

1 1
2 6 3 6

1 1
3 8 2 1 2 6

1 1

2 1 2 4 2 2 4

1 1

2 1 2 2 2 2 2

( ) ( ) 0 0 0

( ) ( ) ( )

0 ( ) ( ) 0 0

0 0 ( ) ( ) 0

( ) ( )

0 0 0 ( ) ( )

L L

L L L L

L L L L

L L

L L L

L L

L L

L L

L L

N t N t

N t N t N t

N t N t

N t N t

N t N t

N t N t

−

− −

− −

− −

− − −

− −

− −
− −

− −
− − −

− −
− − −

 
 
 
 
 
 
 
 
 
 
  

⋯

⋱ ⋮ ⋮

⋱

⋱

⋮ ⋮ ⋮ ⋱

⋯

1
1

1
1 1

1
22

1
2 1

2 1

: ,

L
L

L

L

L

C f

fC

fC −
−

−

−

− −−

   
   
   ⋅ =   
   
      

⋮⋮
                  (8) 

where 1
2( ), 1, 2, , 2 1.L L

i if S t i −= = −…  Then the values of 

wavelet-coefficients are equal 

1 1 1

1 1
1 1 1,1 1

1 1 1 1
2 1 1,3 1 ,1

1 1

2 2 1 2 1,3 2 1

,

, 2,3,..., 2 1,

.L L L L

L L L

L L L L L
i i i i i i

L L L

D C p C

D C p C p C i

D C p C− − −

− −

− − − −
− − −

− −
− − −

= −

= − − = −

= −

 

Resolvability of the system (8) follows from uniqueness of 

appropriate interpolating spline (see [17, page 141]). 

3. Modeling by Splines on the Results 

of Observation 

Let for dynamic object the mathematical description of 

interaction of state variables x is presented as the system of 

nonlinear differential equations concerning time t, written 

down in the vector form [20] 

( ) ( ), , , ,t f t=x x u Πɺ                         (9) 

where х = {x1, x2, …, хт} – investigated parameters (state 

variables of the object); u = {u1, u2, … } – input variables 

(managing influences); П = {II1(t), II2(t),...} – parameters of 

the system; f (х, u, П, t) = {f1(х, u, П, t),..., fm(х, u, П, t)} – 

vector function, generally nonlinear, describing dynamic 

connection of parameters. 

The state-space approach to identification of dynamic 

system is, that unknown parameters П (t) and state variables 

x(t) are estimated on the measured values of observable 

parameters (observation variables) 

( ) ( ), , , ,t g t=y x z Π                        (10) 

where g – the known vector or scalar, generally nonlinear, 

function, ( ) ( ) ( ){ }1 2, ,...t z t z t=z  – parameters of external 

environment (random errors). 

Let's assume, that on the interval of observation [0, Т] the 

state variables x(t) can be adequately presented as the vector 

spline ( ) ( )1
.

N i
i ni n

t B t
−

=−
=∑хS d  As it is well known, for this 

purpose it is necessary, that the functions x(t) belong to the 

vector space C[0, Т] – continuous on [0, Т] functions, and for 

high degree of adequacy (small error of approximation) it is 

better, if x(t) belong to the vector space 1[0, ]n T+
∞W  – 

absolutely continuous up to derivative of the order n 

functions with bounded almost everywhere n + 1-st 

derivative. 

Thus, for numerical evaluation of spline Sx(t) on the vector 

of observation y(t) it is necessary to solve approximately 

nonlinear functional equation ( ) ( ), , , .g t t=xS z Π y  

For example, nonlinear variant of the method of least 

squares generates non-stationary iterative process, in which 

at each step k = 1, 2 … for finding of parameters 
( )k

id  of 

vector spline ( ) ( ) ( ) ( )1N kk i
i nn

t B t
−

=−
=∑xS d  it is required to 

solve the following extreme problem 

( ) ( )( ) ( ) ( )( ) ( )
2

1
11

1

0

min , , , .

T N
k kk i

k i i n

i n

g
t t B t dt

−
−−

−
=−

∂∆ − −
∂ ∑∫ xy S z Π d d
x

 

Here ⋅  – usual Euclidean norm in the vector space of 

functions у(t). Also the designation 

( ) ( ) ( )( )1
1 , , ,

k
k t t g t

−
−∆ = − xy y S z Π  is entered and 

( ) ( )( )1
1 , , ,

k
k

g
C t t

−
−

∂=
∂ xS z Π
x

 – the appropriate Jacobian 

matrix (see [21, page 112]). 

Then it is easy to receive, that parameters 
( )k

id  satisfy to 

the vector equalities 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1

1

1 1

0 0

T TN
k k j i j
j j n n n k k

j n

B t B t dt B t M t t dt

−
−

− −
=−

− = ∆∑ ∫ ∫d d y  (11) 

at , ..., 1i n N= − − . 

The designation here is entered: 

( ) ( ) ( )( ) ( )
1

1 1 1 1
T

k k k kM t C t C t C t
−

− − − −= . 

The more simple approach consists in the following [21, 
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22]. Let [23] 

( ) ( ) ( )( ) ( )1 0,
, 1,

i

p
l p ri l p r i

i j i ki j

j r

k L M t kτα λ α− − − −
−+

=−

Λ = =∑y y

ɺ

ɺ ɺ ɺ ɺ

ɺ

 

, ..., 1,i n N= − −  

the set of continuous linear vector functionals in linear vector 

space of real-valued functions, into which the mapping g 

translates the space C[0, Т], and vector parameters 
( )k

id  are 

determined iteratively with the help of vector system of 

equations 

( ) ( ) ( )( ) ( )1
, ,..., 1,

p
k ki

j i j i j i k

j r

k i n Nα −
+ +

=−

− = Λ ∆ = − −∑ d d y

ɺ

ɺ

  (12) 

where ( ) ( )0 0, 1 , , .r r i r n p p N p iφ φ= − − = −ɺ ɺ  

Here p
iL x  – operators of approximation, exact on 

polynomials of the degree not higher р, 0 ≤ р ≤ п, for 

example, least squares polynomials or interpolation Newton 

polynomials, or on splines with knots ti. The form of received 

approximation depends on choice of factors ( )i
j kα . In 

particular, with use of this approach it is possible to reduce 

the fullness of matrix of system of equations in comparison 

with the method of least squares and even to realize recurrent 

scheme for calculation of spline-factors, choosing triangular 

form of matrix and keeping thus approximation properties of 

received solution. 

Theorem 2 [23]. Let the set ( ){ }t∆x  contains the set lP of 

all vector polynomials of any degree up to l, р + r ≤ l ≤ п, and 

the determinant of system of equations (12) is not equal to 

zero. Then for each iteration spline 

( ) ( ) ( )( ) ( )1 1N k k i
i i nn

t B t
− −

=−
∆ = −∑S d d  to coincide with the 

decision ( )t∆x  of equation 

( )( ) ( ) ( )1
, , ,

kg
t t t

−∂ ∆ = ∆
∂ xS z Π x y
x

 

with the right part ( )t∆y , calculated at anyone l∆ ∈x P , it is 

necessary and enough the equalities 

( ) ( ) ( )( )( )

( ) ( )( )

1 1,

,
0, 1,..., ,

i

i

p
l p ri l p r

j i k k i ji j

j r

p
l p ri

j i ji j

j r

k L M t С t

k l p r l

µ
µτ

µ
µτ

α λ

α λ µ

− − − −
− − ++

=−

− −
++

=−

− =

= − = = − − +

∑

∑

T Ξ

T Ξ

ɺ

ɺ ɺ ɺ ɺ

ɺ

ɺ

ɺ ɺ

ɺ

ɺ ɺ

 

been executed on all vectors 

, , 0,1,..., ,i j i jt l
µ µ µ

µ ξ µ+ + = = = T Ξ

����� �����

 in space of state 

variables {x(t)} with components equal tµ , i j
µξ + , 

accordingly, for all 1 ≤ρ≤ m. 

In particular, if l p r
iL − −ɺ ɺ  – identical operator, then 

( ) ( ) ( )( ) ( )1,
, 1.

i

p
l p ri i

i j k ji j

j r

k M t kτα λ α− −
−+

=−

Λ = =∑y y

ɺ

ɺ ɺ

ɺ

 

In view of Taylor's formula for polynomial ( )i vψ  of 

degree n there is fair 

( ) ( )( )
( )

( ),

1

!
...

! !i

k
n kl p r i

i j i ii j

k l p r
n n

µµ
µ

µτ
τµλ ψ τ
µ

−
−− −

++
= − − +

 
 − = = −

−  
∑T Ξ

ɺ ɺ

ɺ ɺ

����������������������������������������  

and consecutive substitution into equations (10) gives 

( ) ( )( ) ( )( )
, 0

, 1,... ,

p
n ni

j i j i i j i

j r j

k l p r l
µ µα ψ τ ψ τ µ− −

+ +
=− ≠

= − = − − +∑
ɺ

ɺ

ɺ ɺ

 

for each vector component. 

The received systems of equations are solvable uniquely 

concerning factors ( )i
j kα , as functions ( )i j vψ +  are 

linearly independent solutions of differential equation 

( )( )1
0

n
vψ − =  and, hence, the matrix of the system is the 

minor of nondegenerate Wronskian matrix (see [21, page 

272]). 

Nevertheless, the matrices in the equations (11), (12) are 

badly conditioned for the basis of B-splines [10]. This bad 

conditionality can be explained by the fact that each function 

of basis of B-splines represents only small part of solution. 

Therefore in case of any extensive change of observation 

vector the sharp transition from one basis to another is 

required. And in this case the iterative method of decision 

which is used for big rarefied systems differs in slow 

convergence to the exact solution. It is clear, that use of basis 

of B-splines in interactive mode can lead to long pauses 

during which the system will recalculate the new solution for 

the observation vector (every time when the user adds or 

changes restrictions for the solution). 

To solve the problem of weak conditionality and slow 

convergence not B-splines but wavelets received from them 

are useful as finite elements. It is possible to consider that in 

case of the choice of basis of wavelets the change in 

observations extend from one point to another much quicker 

because, making changes in this point, it is possible to 

address onto the top of hierarchy, to basic functions with 

wider supports from which it is possible to go down to basic 

functions with narrower supports. Such basis is much more 

effective for interactive mode of identification of objects 

(curves and surfaces) by variation methods. 

In [25] the method of acceleration of calculations at which 

all geometrical restrictions are given to one level of wavelet-

hierarchy is presented and only curvature of received spline-

curve is minimized. This reception allows keeping details of 

initial curve which are usually lost in usual method of 

variation modeling. Often, on the contrary, wavelet-

transformation is used directly for decomposition of initial 

curve on various frequency components. High-frequency 

noise can be filtered during reconstruction. At the same time 
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it is required that the algorithm of filtration is limited to 

elimination of undesirable defects and preserving 

isogeometrical performance of the curve (see [26]). 

4. Identification of Nonlinear 

Dynamic Systems 

After wavelet-analysis of values 10 , ..., mNx x  at moments 

of time , 0,1,..., ,jt j N=  and definition as splines 

(interpolating or smoothing type) of all the parameters 

1{ , ..., }mx x=x  it is possible to determine the right part 

( ), , ,f tx u Π  of differential equation of dynamic system, 

approximating derivatives of appropriate components of 

vector approximation spline [27]. Thus, first, the 

incorrectness of the problem of calculation of numerical 

values of coefficients at nonlinearities as result of irregular 

knots of interpolation is possible; secondly, the choice of 

used non-linearity is substantially subjective owing to basic 

impossibility to unambiguously restore the equations 

operating the dynamics of the process [28]. 

4.1. Linearization of Equations of System 

If dynamic system represents the group of homogeneous 

objects distinguished by initial conditions and, probably, 

weak perturbations in the right part of operator (9), the 

alternative approach to the task of identification of system is 

possible. 

Group modeling is understood as modeling on data, 

measured on group from M of objects, with purpose of 

revealing basic laws of investigated processes [23]. In this 

case dynamic properties of entire system are investigated on 

experimental data averaged on group of homogeneous, 

concerning parameters, individual objects making the 

dynamic system. The application of the stated above 

technique for values averaged on group of parameters of the 

system gives some equilibrium trajectory ( ) ( )0,spl t tx u  and 

for forecasting of processes occurring in complex dynamic 

system, its equation is used in linearized form. Thus the 

components of state vector { }
1
, ...,

mind ind indx x=x  of the 

individual object which is included in homogeneous group, 

are expressed through deviations from the basic law 

presented by splines, as 

( ) ( ) ( ) , 1,..., .
i iind spl ix t x t x t i m= + ∆ =  

Definition. Let processes in complex dynamic system take 

place in the stationary steady mode that is the equilibrium 

trajectory is monotonous on the entire interval of observation 

(in this case ( ) 0 ,
isplx t i t≠ ∀ɺ ). Then it is possible to name 

such group as group of exponential type (see [2, page 162]. 

Theorem 3 [23]. For nonlinear dynamic system of 

exponential type the representation is fair 

( ) ( ) ( ) ,x t Е t x t∆ = ∆ɺ
 
where the elements of matrix E(t) are 

factors of the form 

( ) ( )
( ) , , 1,..., ,i

j

spl

i j
spl

x t
e t i j m

x t
= =
ɺɺ

ɺ
 at the moment of time t. 

The received expression is basic for modeling of 

individual trajectories on measurements on homogeneous 

group. For this purpose in the parameters of model (initial 

conditions and factors) are entered small casual perturbations. 

Thus the condition of stability of transitive matrix E(t) at any 

moment of the interval of modeling has the essential 

importance (which is, that all eigenvalues of matrix should be 

on module < 1 [29]), otherwise small changes in parameters 

of model answered the large uncontrollable indignation in 

trajectories and the group "collapses". 

4.2. Development of the Method of Basic 

Trajectories with Reference to the New 

Technology of Laser Scanning in Road 

Reconstruction 

The experience of use of cubic splines as adequate tool of 

mathematical representation of the picket method of tracing 

of reconstructing highways has won recognition of road 

builders [30]. The purpose of given work is to construct the 

novel method of approximation of linear-extended spatial 

objects and to prove its application for decision of tasks of 

processing of results of laser scanning in road reconstruction. 

Laser scanning is rather new method in 3D-measurements of 

high accuracy. Overall objectives of laser scanning of 

highways – restoration of mathematical model of surface of 

the road pavement both detection of cracks and damages at 

places demanding the repair [31]. From the mathematical 

point of view the presence of scheduled axial line of the road 

allows to transform bends of the axial line to some 

rectangular area [32], to which it is possible to apply 

effectively the stated above method of G. I. Marchuk to axial 

trajectories on the basis of parametrical identification of 

nonlinear differential equations and two-dimension 

interpolation splines on rectangular grid. Advantage of such 

approach is the opportunity of preservation of structural lines 

of the road (for example edges), as against popular method of 

restoration of surface by triangulation of chaotic points. It is 

very important that thus the construction and application of 

wavelet-processing of scanned information is considerably 

facilitated, that guarantees high accuracy of restoration of 

thin structure of road pavement in places demanding repair, 

and essential compression in places of the road which are not 

requiring repair. For this purpose in subsection 2.2 the 

polynomial adapted differentiating wavelet-filter was 

constructed. However the problem is complicated by that for 

today the highways in Russia and Tomsk area have a pitiable 

view, and at some all plans of their construction irrevocably 

are lost. Thus, there is an objective need of creation such 

intellectual software, which operatively and precisely can 

receive and (or) restore the necessary data for control of the 

condition of roads, including preliminary data processing 

with purpose of removal of reflections from roadside both 

environmental landscape and filling of the misses created by 

passing automobiles, and definition of the axis of the road 
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[33]. By lack of the received in the theorem 3 representations 

is that it is fair to within errors only of the second order. To 

increase the accuracy of the offered above approach to 

parametrical identification of nonlinear differential equations 

it is possible to include in decomposition of individual 

trajectories the second partial derivatives (see [21, page 334]) 

at the appropriate complication of the used mathematical tool 

as for vector-valued functions the second partial derivatives 

form not the matrix (the Hessian), but the tensor of the rank 3 

(see [21, page 515]). 

In given work it is offered to consider the extension of the 

method of G. I. Marchuk to the case of several basic 

trajectories, as which in relation to highway it is admissible 

to use well distinguishable on the scanned image brows, 

borders and other, linearly extended elements of highway. 

Creation of the new method of approximation of linearly 

extended spatial objects and justification of its application for 

solution of problems of processing of results of laser 

scanning in road construction will be the result of work. The 

urgency of the work is caused by insufficient accounting of 

features of existing road strip at designing repairs of 

highways in conditions of continuously growing intensity of 

transport flows on roads of Russia and Tomsk area. 

5. The Examples 

5.1. The Example of Differentiating  

Spline-Wavelet of the Third Degree 

Let's consider as test the function of Harten [34], given on 

the piece [0, 1]: 

( )

( )

( )

( )

1 1
sin 3 , ,

2 3

1 2
sin 4 , ,

3 3

1 1
sin 3 , .

2 3

t t

f t t t

t t

π

π

π

 ≤

= < ≤

− >


 

It is piecewise-smooth function equal to zero at points t = 

0 and 1. It has breaks of the first kind at points t = 1/3 and 2/3 

and break of the first derivative in the point t = 1/2. Its first 

and second derivatives – piecewise-smooth functions also. 

The task consists in attempt of calculation of second 

derivative of the function of Harten, using investigated in the 

section 2.2 differentiating spline-wavelet of the third degree. 

Let's assume 

2

2

( ) : 0.083 8 (2 ), 1, 2 1,

( ) : 0.097 8 (2 ), 2,3, , 2 2.

L

L L L L
i i

L

L L L L
i i

t t i

t t i

ψ ψ

ψ ψ

−

−

= ⋅ = −

= ⋅ = −…

 

Then ( )L
i tψ  are normalized so, that 

2

2

2

(0,1)

( ) 1L
i

L

d
t

dt
ψ =  

for 1, 2, , 2 1.Li = −…  

As first derivative of the function of Harten in the points t 

= 0 and 1 is not equal to zero, we shall subtract the values of 

cubic interpolating polynomial 

( ) ( ) ( )( )2 2
' 0 1 ' 1 1f t t f t t− − −  with subsequent addition of 

given polynomial to the results of wavelet-synthesis. Besides 

we shall use instead of initial factors of decomposition on 

basis of B-splines the values, poorly distinguished from them, 

of function. In the world literature this reception is rather 

popular and refers to as «Wavelet Crime» [35, 36]. 

In Figure 1 the result of reconstruction of the second 

derivative of the spline of 3-rd degree under condition of 

zeroing wavelet-coefficients on module smaller 185 is 

presented. It is shown clearly alternating behavior on 

intervals of smoothness of the broken line of least square 

approximation of the second derivative. The finite 

differences approximation of the second derivative which 

isn't shown in drawing differs from the line a little, 

demonstrating emissions up to ±10
3
 in points of break of 

function and its first derivative. 

 

Figure 1. The diagram of wavelet-reconstruction of the second derivative of 

the spline of 3-rd degree. 

5.2. The Example of Wavelet-Compression of 

One Track of Laser Scanning 

The total length of the track is more than 4 km, in Figure 2 

the piece of the profile of height to length 450 m long is 

shown. 

There is achieved the compression with factor 15.9. The 

greatest error does not exceed 3.5 sm. 
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Figure 2. The result of compression of information for one track. 

5.3. The Example of Modeling of Surfaces 

We chose for application the tensor decomposition 

technique [37] as the array of cross scans of highway has 

prevailing length in one of two directions. Important 

auxiliary task at interpolation of nonclosed surfaces via 

bicubic splines with zero boundary conditions is the creation 

of surface of Coons [38]. The equation of bicubic surface of 

Coons, in which the values on the boundaries of the 

rectangular grid coincide with the values of approximated 

surface, is necessary to subtract from initial coordinates. 

Then, the corrected values of coordinates are at the edges 

nullified, and it is required to add the subtracted earlier 

equation to bicubic spline received after wavelet processing. 

The above stated algorithms were base of the software 

package [32] for processing materials of laser scanning. The 

results of visualization of the processed data are given in 

Figure 3. 

 

Figure 3. 3D-view of laser points after preliminary filtration. 

The results of visualization of the surface of highway 

projected on the restored spline-surface are given in Figure 4. 
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Figure 4. Imposing of the projected road pavement after filling the misses of 

given data. 

6. Conclusion 

In work the scheme of construction of spline-wavelets, 

semi-orthogonal according to their scalar product with 

derivatives is submitted. The implicit relations of 

decomposition with splitting on even and odd knots giving 

new opportunities for creation of effective computing 

algorithms for construction and use of spline-wavelets on 

non-uniform grids are received. The construction and the 

inverting of the block of filters in problems of processing of 

regular signals and two-dimensional fields are considered. 

The results of numerical experiments on application of 

splines and wavelets for compression of data and results of 

imposing of the designed road pavement on the processed 

points of laser measurements are presented. 

The numbers and schedules following from experiments 

show that wavelet-transformation – the powerful tool of 

analysis and planning of repairs of highways with use of 

information technologies of processing of large volumes of 

data of laser measurements. We believe that multi-scale 

wavelet-decomposition has the potential which can be used 

when processing images and video records. And we expect 

that together with algorithm of detection of cracks and 

damages of road pavement it will be possible further to 

develop intellectual system of restoration of highways. 
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