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Abstract: Aspects of increase of efficiency of spacecraft’s motion control are discussed. It is supposed that basic means of 

control for change of spacecraft position are jet engines. The combining of control regimes of orientation and orbit correction, 

as perspective way of problem solution, is considered. New specific index of optimality is entered for estimate of a quality of 

motion control. Then, the problem of combining terminal orientation with correction of orbit altitude maintenance by optimal 

way is solved. Concrete control algorithm of spacecraft reorientation combined with orbit correction, in application to large 

massive spacecrafts and, in particular, orbital station, is presented. Results of mathematical simulation of motion control which 

uses the designed method are given. Also, estimation of efficiency indices is made for the mount scheme of motionless micro-

engines. High efficiency of combining regimes of attitude control and correction of spacecraft’s orbit altitude is shown. 
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1. Introduction 

Angular stabilization and reorientation of a spacecraft are 

the most frequently used dynamic regimes. The research 

programs conducted during the flight and the related 

stringent requirements for precision and efficiency of control 

over the spacecraft angular motion motivate the interest in 

the problem of optimization of the process of spacecraft 

reorientation. The significant increase in size, mass and 

active lifetime of orbital spacecraft supplied with systems of 

attitude control and correction leads to a sharp increase in the 

relative propellant load necessary for operation of the 

executing devices of the motion control system. The 

conception of the control of motion as the center of mass, as 

well as of the motion with respect to the center of mass of the 

spacecraft by means of non-central jet force is successfully 

used in designing the control system of rockets. Using and 

developing the above idea, one can economize a significant 

amount of fuel when designing systems of control of 

spacecraft motion. Such economy can be achieved by 

combining the regimes of attitude control and correction, 

accomplished through applying to the spacecraft the non-

central force produced by the jet engine of the attitude 

control system whose thrust vector does not pass through the 

spacecraft's center of mass. 

The goal of optimally combining the regimes of correction 

and attitude control is advisable only for a certain class of 

spacecraft for which the condition Gc ≈ Go, holds true; here 

Gc and Go are the propellant loads intended for the orbit 

correction and the spacecraft attitude control, respectively. If 

inertial executing devices (powered gyroscopes) are used, then 

Go represents the fuel consumption necessary to compensate 

the inadmissible increase of kinetic moment of the gyro-

system. The considered class of spacecraft includes the long-

term orbital stations also. In this paper, the problem of the 

optimal programmed turn of the spacecraft combined with 

correction of its orbit is considered in the general form. Let us 

assume that jet micro-engines are used as main executing 

devices of the motion control system. In this case, possibilities 

to increase the efficiency of the spacecraft turn are related to 

three main directions: (1) efficient arrangement of the attitude 

control engines on the spacecraft body; (2) synthesis of the 

optimal, with respect to fuel consumption, laws of control of 

spacecraft reorientation, and (3) combining the process of 

attitude with a correction of the spacecraft orbit altitude. 

Development of the first theme leads us to a transition from 

control with respect to the principal central axes of a spacecraft 

to control with respect to the axes bound to its angular 

momentum vector. For this type of control, provisions must be 

made for shifting the point of attachment of the control engines 
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with respect to the spacecraft body, which requires some 

special design features. The second subject is well known, and 

the largest number of works on optimization of spacecraft 

rotations (though without requiring the simultaneous 

correction of the orbit) has been dedicated toil [1-5]. In 

particular, problems of the solid body rotation, optimal in fast 

response and minimum energy expenditures, were considered 

in [1]. An analytic solution was obtained using the 

Pontryagin’s maximum principle. The combined control of the 

motion around the center of mass and of the motion of the 

spacecraft center of mass itself permits us to significantly 

reduce the total stocks of propellant, necessary for all the 

dynamic regimes of attitude control of the spacecraft and 

correction of its orbit. This domain is relatively new, but it is 

very promising nevertheless. 

Now, combining of terminal orientation and orbit correction 

of spacecraft by optimal way is considered in detail. Numerical 

realization of the algorithm with a prognostic model [6] is 

proposed. The peculiarity of the model in use is the prediction 

of the “free” motion in the class of spacecraft rotations along 

the trajectory where the vector of angular momentum of 

spacecraft body is constant in the inertial coordinate system. 

This allows us to change over from the continuous synthesis of 

controls to their determination and action onto the spacecraft at 

discreet instants of time. 

2. General Statement of the Problem, 

and Introduction of Efficiency 

Index 

Increase of control efficiency by motion of the orbital 

spacecraft is possible at the expense of combination of 

regimes of orientation and correction of spacecraft orbit. 

Let, in the course of the combined control increase in the 

required direction of the correcting impulse of velocity Vc be 

transmitted in the center of spacecraft mass; in the process, 

an amount of working medium GCOM is spent for the turn and 

orbit correction. Had the processes of the spacecraft 

reorientation and correction of its orbit been independent, the 

total fuel consumption would have been Gr + Gc. To estimate 

the efficiency of the control, we introduce function E = (GR 

min + GC)/GCOM. Here, GR min denotes the minimum fuel 

expenditure for the independent turn of the spacecraft, Gc is 

the fuel expenditure for the orbit correction, and GCOM is the 

fuel expenditure for the combined control. The absolute fuel 

economy is determined by the value ∆GCOM = GR min + +GC – 

GCOM. 

It is obvious that the turn that is optimal for fuel 

expenditure corresponds to the maximum value of the target 

function E. Only in this case is the effect of combining the 

regimes of control revealed to the fullest extent. Thus, when 

optimizing laws of the combined control of spacecraft 

motion, first determine the value of the minimum fuel 

expenditure for the rotation independent of orbit correction, 

which requires in its turn, the prior solution of the traditional 

problem, i.e., the problem of optimization of control of the 

spacecraft reorientation. Therefore, we formulate the problem 

of combined control of the spacecraft reorientation as 

follows: one should determine the control providing, with the 

prescribed accuracy ∆ϕ, the spacecraft turn from the arbi-

trary initial position Λin to the required final position Λf 

within the fixed time T, with the minimum fuel expenditure: 

the increment of velocity ∆V transmitted to the spacecraft 

center of mass during the turn should be maximum. It is 

accepted that the initial and final angular velocities are equal 

to zero. When solving the formulated problem, we made 

some assumptions: (1) The spacecraft is considered to be a 

perfectly rigid body, (2) Possible misalignment of the 

principal central axes of the spacecraft's ellipsoid of inertia 

with the axes of the bound coordinate system is ignored; (3) 

The time of action of the controlling moment is small 

compared to the time of the turn; (4) The angular momentum 

imparted by the attitude control engines to the spacecraft 

body significantly exceeds the angular momentum acquired 

during the turn from external disturbances, (5) The influence 

of the projection of thrust impulse of the attitude control 

engines on the normal to the spacecraft orbital velocity is 

negligible small. 

For an estimation of a control efficiency by a turn, are used 

three indicators: 

1) absolute economy of fuel ∆G = GR min + GC – GCOM, 

where GR min is minimum possible (theoretically) the expense 

of fuel for a turn at independent control; GCOM is the expense 

of fuel for a turn combined with correction of maintenance of 

orbit height (it is obvious, GCOM≥GR min); GC is the expense of 

the fuel necessary for orbit correction creating the same 

effect of orbit's raising (height increase) as after the turn 

which is executed using the investigated method; GR min 

corresponds to two-impulse control for a turn [7]; ∆G is a 

difference between the expense of fuel for motion control at 

the independent and combined control of orientation and 

orbit correction of the spacecraft; 

2) efficiency of the combined control of a turn Е = (GR min 

+ GC)/GCOM; 

3) an indicator of a combining Q = (GR + GC)/GCOM, 

where GR is the expense of fuel for a turn (it is agreed with 

the developed method) at independent control of orientation 

and orbit correction. 

If control of spacecraft motion is made by the engines 

established motionlessly concerning the spacecraft body then 

GCOM = GR, and GCOM = kV VC, where VC is an increment of 

orbital (linear) speed of the spacecraft, got during a turn (the 

correcting impulse); kV is the coefficient of proportionality 

connecting the speed increment created by the correcting 

engine and the fuel expense necessary for giving the 

additional speed to the spacecraft in value VC. 

More efficient control of motion corresponds to more 

value of indicators Е and Q (when the control of a turn is 

more effective, the values Е, Q are closer to 2). 

However, more capacious (and fairly) an indicator for an 

estimation (and comparisons with other analogues) of 

method of turn control combined with orbit correction is the 

rating 
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I = (GCOM − GC)/GR min 

Obviously, the volume of fuel equal GC is necessary to 

spend in any case (irrespective of turn method and its 

optimality) as the effect of speed increment VC for orbit 

correction can be reached only at the expense of jet thrust. At 

independent control, is required at least GR min + GC fuel (it is 

the minimum level); at the combined control of considered 

method of a turn, the fuel expense is GCOM or (GCOM − GC) + 

+GC. We can consider the quantity GCOM − GC as a payment 

for necessity of spacecraft turn but not just correction of its 

orbit. The difference between minimal possible expenses of 

fuel at independent control of a turn and the expense for that 

what the spacecraft has accepted the given angular position 

Λf as a result of motion control is the economy received for 

the account of combination of control regimes. The absolute 

economy ∆G also is coordinated with earlier accepted 

indicator: ∆G = GR min − (GCOM − GC). At independent 

control, is spent GR min + GC, at the combined control we 

have GС. From here we receive the difference ∆G. At an ideal 

turn (the bottom lath) as pattern, is required GR min fuel, and 

at combined turn GCOM − GC (as from GCOM whole GC goes 

for orbit correction, and remains GCOM − GC for the rotation). 

For efficient control of spacecraft motion, is necessary that 

the value I corresponding to control method was as small as 

possible (in an ideal case it comes nearer to zero). 

The planar turn is a special case (it meets seldom), and its 

separate studying is not so actually. We will note only, what 

even in case of planar rotation of a spacecraft for a 

combination indicator is fairly 2 <Q<2 (it easily to 

demonstrate). Even by the example of this particular case 

(the planar rotation of the spacecraft around the principal 

central axis of inertia) one can clearly see that the use of the 

idea of regulation of the spacecraft’s angular position by 

means of the non-central jet force allows us to gain 

significant fuel economy. 

The general case of a spatial turn (three-dimensional 

rotation of the spacecraft when Euler's axis does not coincide 

with one of axes of body-fixed coordinate system) represents 

interest. Let's consider this case more in detail. 

3. Solution of the Problem of 

Combined Control of Spacecraft's 

Spatial Motion 

At first, let's solve the problem of optimal control of 

spacecraft's three-dimensional reorientation independent of 

orbit correction. Turn of a spacecraft around the Euler axis 

and the turn in the form of the regular precession 

(simultaneous rotation around the longitudinal axis of the 

spacecraft and the motionless axis in inertial space) we not 

consider because they obviously are not optimum (the fuel 

expense in these cases much more of the optimal value, at 

least, in 1.4-1.6 times). The method proposed below belongs 

to a group of algorithms of the combined synthesis of optimal 

control with predicting [6]. As the prognostic models we take 

the model of the rotational motion of a dynamically 

symmetric spacecraft. Prediction of the "free" motion 

corresponds to the regular precession of the spacecraft. We 

chose the parameters of the prognostic models on the basis of 

the condition of maximum symmetry of the predicted motion 

to the actual motion of the spacecraft. The spacecraft’s 

rotational motion is described by the following equations: 

, , 

 

,  

,  

Here, ω1, ω2, and ω3 are the projections of the spacecraft’s 

angular velocity on the hound axes; J1, J2, and J3 are the 

principal central moments of inertia of the spacecraft; M1, 

M2, and M3 are the moments of external forces; λ0, λ1, λ2, and 

λ3 are components of the quaternion Λ describing the relative 

orientation of the bound and inertial coordinate systems. For 

the sake of definiteness, we assume that the OX-axis is the 

longitudinal axis of the spacecraft, J2 > J3, and J2, J3 > J1. 

Note that the chosen spacecraft class satisfies the condition 

of quasi-symmetry: J2 ≈ J3, but J2 ≠ J3, and min {|J3 − J1|, |J2 

− J1|} > |J2 − J3|. Hence, the moment (J2 − J3)ω2 ω3 is small, 

and we can consider it as a perturbation. Further, we select 

the moment of inertia with respect to the transverse axis J on 

the basis of the condition of invariance of the characteristic 

equation of the dynamic system: 

J = (1 + η) / (J2 + J3 − J1),  

where |η| = [(J2 − J1)(J3 − J1)/(J2 J3)]
 1/2

, and |η| < 1. 

In the accepted notation is, the dynamics of real spacecraft 

will be described by the system: 

,  

 

In the determination of the motion by prediction, the 

controlling moments are taken to be zero. Therefore, M1, M2, 

and M3 include only the perturbing moments. Analysis of this 

system shows that the right-hand sides of the equations are 

the small values (the perturbations); thus, in the prognostic 

model, we neglect them. Finally, the equations of the 

prognostic model assume the form: 

, ,  

Solving the boundary value problem Λ(0) = Λin, Λ(tf) = Λf 

with allowance for last system, we obtain the required 

1 1 3 2 2 3 1( )ɺJ J J Mω ω ω+ − = 2 2 1 3 1 3 2( )ɺJ J J Mω ω ω+ − =

3 3 2 1 1 2 3( )ɺJ J J Mω ω ω+ − =

0 1 1 2 2 3 32 ɺλ λ ω λ ω λ ω= − − − 1 0 1 2 3 3 22 ɺλ λ ω λ ω λ ω= + −

2 0 2 3 1 1 32 ɺλ λ ω λ ω λ ω= + − 3 0 3 1 2 2 12 ɺλ λ ω λ ω λ ω= + −

1 1 2 3 2 3 1( )ɺJ J J Mω ω ω= − + 3 1 1 2 1 3 2 3 1 2 3 3 3( ) [ ( ) ( )] / /ɺJ J J J J J J J J J M J Jω ω ω ω ω+ − = − + − +

2 1 1 3 1 2 3 2 1 3 2 2 2( ) [ ( ) ( )] / /ɺJ J J J J J J J J J M J Jω ω ω ω ω+ − = − + − +

1 1 0ɺJ ω = 2 1 1 3( ) 0ɺJ J Jω ω ω+ − = 3 1 1 2( ) 0ɺJ J Jω ω ω+ − =
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angular velocities: 

ω10 = Jβn1 /(J1T), ω20 = Jβn2 /(J2T), ω30 = Jβn3 /(J3T) 

Angles β and θ and vector n are determined by the fol-

lowing system of relationships: 

cos(β/2) cos(θ/2) − n1
 sin(β/2) sin(θ/2) = ν0,  

cos(β/2) sin(θ/2) + n1 sin(β/2) cos(θ/2) = ν1, 

n3 sin(β/2) sin(θ/2) + n2
 sin(β/2) cos(θ/2) = ν2,  

n3
 sin(β/2) cos(θ/2) − n2

 sin(β/2) sin(θ/2) = ν3, 

θ = n1β(J − J1)/ J1, 

where ν0, ν1, ν2, and ν3 are components of the quaternion of 

the turn ; 0 ≤ β ≤ π. 

Taking into account the fact that the true motion of the 

spacecraft differs only slightly from the predicted motion, we 

will use the method of iterative guidance in order to form the 

control commands in the process of rotation. According to 

this method, the trajectory is divided into several legs where 

the control is absent (M = 0). The transition from one leg to 

another is accomplished by the correcting pulses. There is 

only one requirement for the legs: they must pass through 

Λ(t) and Λ(T). The objective of the control consists in 

providing such initial conditions for the legs without control 

that the motion by prediction passes through the final 

position Λf. To do this, for the beginning of each leg ti, the 

quaternion of the turn is determined, , by 

which the required initial conditions for the next leg, ω1i, ω2i, 

and ω3i are determined. The spacecraft motion on the stages 

of acceleration and retardation coincide with the predicted 

trajectories (since Mp << MC), and their duration τ is 

determined by the prescribed time T of the turn, the available 

value of the controlling moment M, and the rotation angle ϕ0 

= 2 arccos (sqal ( )), by which it is necessary to 

rotate the spacecraft. Duration of the motion along the 

spacecraft’s free motion legs is determined from the 

condition of minimization of fuel expenditure G and depends 

on the logic of formation of the commands on execution of 

the angular momentum correction. Usually, several (up to 4–

6, depending on the rotation angle) impulses of correction of 

the angular momentum are sufficient. The optimization is 

reduced to determination of the durations of gain and 

cancellation of the spacecraft angular velocity. The 

controlling moments M1, M2, and M3 on the legs of 

acceleration and retardation are determined by two 

conditions: M=ρK and |Mj |≤Uj for all j=1, 2, 3, and at the 

same time, (a) for the leg of acceleration, ρ>0 and K is the 

calculated value of the angular momentum: Kj = Jj ωj0; and 

(b) for the leg of retardation, ρ<0 and K is the actual angular 

momentum of the spacecraft at the beginning of retardation. 

On both legs, M=const in the inertial coordinate system. 

Thus, control of the spacecraft reorientation is reduced to 

the execution of the following operations [8]: 

1) Calculation of the turn quaternion  and 

determination of the initial conditions for the free motion leg 

ω10, ω20, and ω30; determination of the calculated value of the 

angular momentum K* and the controlling moments M1, M2, 

and M3; 

2) Spacecraft acceleration with the maximal controlling 

moment to the required value of the angular momentum 

L = (J1
2 ω10

2 + J2
2 ω20

2 + J3
2 ω30

2) 1/2 

during the process, the controlling moment direction being 

constant in the inertial coordinate system: 

M = , M⋅K > 0 

3) Free rotation of the spacecraft, M = 0, up to the instant 

ti of the spacecraft motion correction; 

4) At time instant ti, determination of the error signal 

quaternion , and calculation of the boundary 

conditions corresponding to it (the new hitting trajectory), 

ω1i, ω2i, and ω3i, for the next leg of the motion without 

control. Determination of the required impulse of the angular 

momentum ∆K: ∆Kj = Jj (ωji − ωj) for j=1, 2, 3. 

We calculate the controlling moments on the basis of the 

requirement |Mj |≤Uj for all j = , according to the 

expression Mj = Jj (ωji − ωj)/∆t, where ∆t = (∆Кj/Uj). 

Then, one should assume that t0 = ti, and repeat operation 

3) and 4) until the time instant when the spacecraft can be 

rotated through the remaining error angle ϕrem = 2 arccos 

(sqal ( )) within the time τ necessary to cancel the 

angular velocity. 

5) Braking of the spacecraft with the maximal controlling 

moment: 

M = , M⋅K < 0, Kj = Jj ωj (j = ) 

at this phase, controlling moment is directed strictly opposite 

to the actual angular momentum. 

Correction of the trajectory of spacecraft motion can be 

made at regular intervals ∆T or at regular decrements of 

the remaining error angle ∆ϕrem. The time instants ti can 

be formed by the logarithmic scale as well, in the direction 

of lowering ∆ti or ∆ϕrem as time passes. The smaller the 

remaining angular distance to the prescribed position Λf, 

the more frequently are corrections made of spacecraft 

angular momentum. The choice of a particular program 

for determination of the sequence of times ti during the 

spacecraft rotation (the cyclogram of the output of the 

correcting impulses of spacecraft angular momentum) 

depends on the priorities of accomplishing the planned 

tasks. The proposed algorithm is based on the method of 

iterative guidance with the use of prognostic model. 

Therefore, it needs no continuous formation of the 

controls and is reduced to moderate correction of the 

trajectory of the spacecraft rotational motion at certain 

instants of time. 

It is known, that the minimum fuel expenditure is reached 

t in f
ɶ �Λ = Λ Λ

( )
t f( )ɶ �
i

itΛ = Λ Λ

in f
ɶ �Λ Λ

t in f
ɶ �Λ = Λ Λ

AMɶ � �Λ Λ

E f( )ɶ �itΛ = Λ Λ

1,3

max
j

f
ɶ �Λ Λ

BMɶ � �Λ Λ 1,3
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at two-impulse control of a turn [1]. And for increase of 

accuracy of spacecraft reorientation into the required angular 

position we offer to correct rotary motion of the spacecraft 

during time interval between acceleration and braking. 

Corrections make at time moments ti when equalities ϕi = a 

ϕi –1 are carried out, where a < 1, i is correction number, ϕi = 

2 arccos (sqal ( )). Such law of formation of 

correction moments is possible also ϕi = ϕ0 q
 i
, where q < 1 

(for example, q = 1/2 or q = 3/5). 

The designed method of control is invariant to the 

external as well as to the parametric disturbances and 

provides high efficiency and accuracy of the spacecraft 

reorientation. 

The index of efficiency of the synthesized law of 

control of a single spatial turn of the spacecraft can be 

naturally represented in the form E = (Gr + Gc) / GCOM. 

We form the control commands for the attitude control 

engines on the basis of the assumption that the main 

purpose of control is to minimize fuel expenditures on the 

spacecraft reorientation, Gr → min, and the orbit 

correction is the consequence of this process. Hence, it is 

reasonable to assume that GCOM = Gr; i.e., the fuel is not 

consumed specially for increase of the orbit altitude. 

According to this approach, Gc represents the fuel 

expenditures necessary to provide the same effect of orbit 

altitude increase for the independent control: Gc = kV VC, 

where VC is the spacecraft velocity increase obtained as 

the result of the reorientation, kV =m/W=const, m is the 

spacecraft mass, and W is the gas exhaust velocity of the 

altitude control engines. 

The values Gr and Gc depend on the pattern of 

mounting the attitude control engines. For spacecraft’s 

planar rotation, the optimal combining of the regimes of 

attitude and orbit correction require the possibility to turn 

the jet engine thrust in an arbitrary way. It is obvious that, 

for the case of spacecraft’s spatial rotation combined with 

orbit correction, the optimal control also necessitates 

orienting the engine thrust P in the required direction with 

respect to the bound spacecraft axes. However, such a 

method of control implies a mounting the attitude control 

engines in gimbal mounts, which involves non-small (and 

even considerable) constructive difficulties. Because of 

this, we consider pattern of the rigid mounting of the 

attitude control engines, which is expedient from the 

practical point of view (see Figure 1). The reorientation 

control law becomes rather simple: in order to create the 

prescribed controlling moment M providing the spacecraft 

transition from the initial angular position Λin to the 

required final position Λf within the prescribed time T, we 

switch on only those engines whose thrust makes the acute 

angle with the velocity V. It can be easily seen that this is 

always possible, since, in order to create the required 

controlling moment one of two oppositely directed 

attitude control engines can be chosen. 

Values of the optimized fuel expense GCOM and of the 

index of optimality were determined by the method of 

mathematical shooting using a personal computer [9]. 

When considering the problem of combining the regimes 

of attitude and correction, we make one important 

assumption: the velocity vector V is constant in inertial 

space (we have neglected the spacecraft’s orbital motion 

during the rotation time T and have not taken into account 

the rotation of the orbital coordinate system with respect 

to the inertial basis). For the new generation orbital 

stations where the rotation time T is large, this 

simplification might be too restrictive (and even 

inadmissible for exact estimations of the index of 

efficiency of combining). Hence, in the mathematical 

simulation, we take account of all factors of the 

spacecraft’s real flight including the variation in space of 

the direction of velocity V during the rotation. 

According to the notations in left part of Figure 1, we have 

M = MCr + M1, MCr = {M2, M3}, where MCr is the 

controlling moment in cross-section; M1 is longitudinal 

component of controlling moment M. In the calculations, the 

following simplifications ere accepted; all the engines are 

situated at equal stances from the longitudinal axis OX and 

are symmetrically located with respect to the plane YOZ, and 

point O coincides with the center of mass of the spacecraft. 

Let us introduce the notations 

∆mX = (W l1)
−1 ≈∆К1/ (W l1),  

∆mY = (W l2)
−1

∫
∆t

dtM
0

2
≈∆К2/ (W l2), 

∆mZ = (W l3)
−1

∫
∆t

dtM
0

3
≈∆К3/ (W l3), 

where ∆t is the time of action of the thrust impulse. 

Similarly, ∆md = (W ld)
−1

,  

∆mg = (W lg)
−1

. 

Let, V1, V2, and V3 are the projections of the unit vector of 

velocity V on the bound axes (V1
2
+V2

2
+V3

2
=1), ∆Gc is the 

fuel economy due to combining control per one impulse (one 

switching on of the attitude control engines); and ∆m is the 

fuel expenditure per one impulse. Then, Gc= , 

Gr= , where N is the number of impulses of the 

spacecraft angular momentum per one turn. Omitting the 

detailed reasoning, we present the final logic of the 

calculations of ∆m and ∆Gc for presented pattern of 

mounting the attitude control engines (the pattern with 32 

attitude control engines, see right part of Figure 1): 

 

f( )ɶ �itΛ Λ

1
0

t

M dt
∆

∫

d
0

t

M dt
∆

∫

g
0

t

M dt
∆

∫

C
1

N

i
i

G
=

∆∑

1

N

i
i

m
=

∆∑
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Figure 1. The scheme of mounting the controlling engines (16 at the left and 32 on the right). 

if ∆mx ≤ ∆my + ∆mz, then ∆m = ∆my + ∆mz and ∆Gc = 

=∆my |V3 | + ∆mz |V2 |; 
if ∆mx > ∆my + ∆mz, then ∆m = ∆mx and, at the same time: 

if ∆mz > (∆my, (∆mx + ∆my + ∆mz)/4), then  

∆Gc = |V3 |(∆mx − ∆mz) + ∆mz|V2 |; 
if ∆my > (∆mz, (∆mx + ∆my + ∆mz)/4), then  

∆Gc = |V2 |(∆mx − ∆my) + ∆my|V3 |; 
if (∆mx + ∆my + ∆mz)/4 > (∆my, ∆mz), then  

∆Gc = ∆mx (|V2 | + |V3 |)/2. 

For basic modes of a turn, indicators of a combining Q are 

known (after mathematical simulation of virtual turn), as a 

rule. Dependence between other characteristics (E and I) is 

expressed by formulas: 

Е = Q + GR min /G − 1, I = (2 − Q) G /GR min 

Relation Е ≤ Q is fair for indicators Е and Q (parity Е = Q 

only for the two-impulse control accepted as a standard). 

 

 

 

Figure 2. Result of mathematical simulation. 
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4. Example of Computational 

Modeling the Spatial Motion Under 

Optimized Control 

Now, we give numerical illustrating the results of solving 

the problem of optimal rotation. For example, let us consider 

three-dimensional maneuver of some spacecraft (as solid 

body) from position Λin into position Λf (the quaternions Λin 

and Λf give initial and final attitude). It was assumed that 

initial and final angular velocities are zero: ω(0) = ω(T) = 0. 

In the considered case the quaternion Λin is Λin = {1, 0, 0, 0}, 

and the elements of the quaternion Λf are λ0 = 0, λ1 = 

=0.7071068, and λ2 = λ3 = 0.5. Also, we assume that duration 

of maneuver should be not more than 360 seconds, and 

spacecraft have following characteristics: J1 = 128016.5 

kg⋅m2;
 J2 = 457472.7 kg⋅m2;

 J3 = 403310.0 kg⋅m2;
 values Uj 

are equal U1 = 46.4 N⋅m, U2 = 87.7 N⋅m, U3 = 87.5 N⋅m. 

After computational modeling we have: durations of 

acceleration and braking are 23.68 s and 23.64 s, 

accordingly; the entire turn is completed in a time T = 357.25 

s, optimal control satisfies the condition T ≤ Tgiv (because Tgiv 

= 360 s). It means that perturbations (including asymmetry of 

the spacecraft) helped rotation into required position. Visual 

illustration of rotation dynamics is given in Figure 2. The 

upper and the middle parts of this figure correspond to phase 

variables of motion: the upper part shows graphs of the 

variation of the angular velocities in the body coordinate 

system ω1(t), ω2(t), ω3(t); the middle part shows graphs of the 

variation of the components of the quaternion Λ(t), which 

specifies the current attitude of the spacecraft during the 

rotation maneuver: λ0(t), λ1(t), λ2(t) and λ3(t). The variables 

λj are smooth functions of time. Finally, the lower part of 

Figure 2 presents the dynamics of the variation of the 

variables p1(t), p2(t) and p3(t), which are components of the 

ort of the angular momentum. The following rule is observed 

for the functions ω1(t) and p1(t): for any combinations of the 

limiting values of Λin and Λf, these functions are always sign-

invariant and of the same sign. From Figure 2, we see that 

number of motion corrections is four. Corrections of spatial 

motion are formed by following law: 

ti + 1 = ti + 2 −i t1, 

where i is number of correction. First correction of spacecraft 

motion carried out at instant t1 when ϕ = ϕ0 / 2, where 

ϕ=2arccos(sqal( )) is discrepancy angle in current 

instant of time t; ϕ0 = 2arccos(sqal( )) is initial angle 

of discrepancy. In this example of controlled rotation, we 

have following durations of correction: ∆t1 = 0.68 s, ∆t2 = 

1.16 s, ∆t3 = 0.64 s, ∆t4 = 0.64 s. 

Notice that the quaternion of the turn Λt corresponds to the 

case when the final rotation vector (Euler’s axis) makes the 

same angle with the longitudinal axis OX as with the plane 

perpendicular to OX, and initial angle of discrepancy ϕ0 is 

180 degrees. This is most difficult case of reorientation of 

solid body. 

The presented results of solving the reorientation problem 

demonstrates what the characteristics of designed method of 

spacecraft control are very good (and the best from known 

modes). 

5. Data of Mathematical Simulation 

As an example, we present modeling results of a series of 

virtual turns of the spacecraft as the orbital station type, 

which has kV = 36.32 kg⋅s/m, and the coefficients of 

expenditure by channels Cj = Jj / (W lj), are equal: C1 = 8.74 

kg⋅s, C2 = 11.59 kg⋅s, and C3 = 7.09 kg⋅s. The simulation was 

accomplished for a large number of turns, while the initial 

find final angular positions of the spacecraft were chosen at 

random and the reorientation time was assumed to be 

proportional to the angle of turn. The mathematical 

simulation results in estimations of the average fuel 

consumption per one rotation G and the location accuracy, as 

well as of the performance of combining the regimes of 

attitude and orbit correction for considered scheme of 

mounting of the control engines. For 16 engines, we have the 

average fuel consumption per one rotation G=5.24 kg, the 

index of combining the control Q=1.59 and the index of 

optimality I=0.418. The reorientation precision was equal to 

ξ=0.2 °. Values of the optimized functional G and of the 

index of combining Q were determined by the method of 

mathematical shooting using a personal computer [9]. For the 

new family of orbital stations where the rotation time T is 

large, in the mathematical simulation, we take account of all 

factors of the spacecraft’s real flight including the variation 

in space of the direction of spacecraft’s linear velocity V 

during the rotation. One can clearly see that the use of the 

idea of regulation of the spacecraft’s angular position by 

means of the non-central jet force allows us to gain 

significant fuel economy. 

For the purpose of comparison, we present the results of 

modeling of spacecraft reorientation by the two-impulse 

control pattern [7], which provides the absolutely minimum 

fuel consumption for the rotation, independent of the orbit 

correction. For the pattern with 16 attitude control engines, 

we have: G=5.14 kg, Q=1.43 and I=0.570. They well 

demonstrates what the characteristics of method of spacecraft 

control designed by us are the best. 

To increase an efficiency of motion control of orbital 

spacecraft is possible at the expense of number increase of 

control jet-engines (by distribution or "a smearing" them 

onboard of a spacecraft). The number increase of the all-

possible directions of thrusts of a included jet-engines for 

creation of a necessary moment of the controlling forces 

decreases a time of engines work for achievement of a 

required impulse of angular momentum, it decreases volume 

of fuel expense for control of motion around a centre of 

mass, on the one hand, and, on the other hand, it increases a 

probability of this that a thrust of working engines makes 

with a vector of spacecraft velocity minimal angle (obviously 

less than 90 degrees), and it will increase the increment VC of 

orbital velocity (VC is result of motion control during time of 

maneuver) and, as consequence, will increase the value GC 

f
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which is necessary for creation of same correcting impulse 

VC at independent control of spacecraft motion of a centre of 

mass. As a result, at more number of control engines, the 

coefficient of a combining will be more, and the control 

efficiency index (or the index of optimality) is less. As an 

example, the scheme with 32 control engines which are 

established onboard of a spacecraft is possible (it is shown in 

Figure 2). For this scheme, we received following values of 

basic indexes reflecting an efficiency of motion control: 

Q =1.72; I =0.286 (and, E =1.70) 

At this, absolute values have turned out equal: GC = 3.30 

kg, GCOM = 4.58 kg (and, GR min = 4.48 kg). 

For comparison, we give the values of the same indexes 

for the two-impulse control pattern: 

Q =1.51; I = 0.490 (and, E =1.51), and absolute volumes: 

GR = 4.48 kg, GC = 2.28 kg, GCOM = 4.48 kg. 

An analysis of these data distinctly shows what even 

having 16 engines, our developed control method of 

spacecraft motion using an iterative (multi-impulse) principle 

of control will be more preferable than the two-impulse 

scheme of spacecraft's rotation control at the presence of 32 

engines, because Qit =1.59 > Q2im =1.51, Eit =1.57 > E2im 

=1.51, Iit =0.418 < I2im =0.49. 

6. Conclusion 

Aspects of motion control and issues of optimal control 

are known very well [1-5, 10-12], the solved problems are 

multifarious, many works in various formulations have 

interesting solutions [3-5]. We suppose that the control 

efficiency of a motion of the orbital spacecraft may be 

raised by simultaneous control of spacecraft rotation and 

motion of the centre of mass. The combining of regimes of 

attitude control with orbit correction is very effective way 

of improving the quality of control for saving the 

propellant which is necessary for dynamic operations and 

control of spacecraft motion. In this research, optimal 

control of a spacecraft turn combined with correction of 

maintenance of the orbit altitude is considered. An 

algorithm of the control of reorientation combined with 

orbit correction for orbital spacecraft (in particular, for 

spacecraft of the long-term orbital station’s type) is 

synthesized in this paper. 

Designed by us algorithm uses measurements of angular 

velocity and information about angular position of a 

spacecraft. Data of angular velocity vector is necessary for 

control of the angular momentum and determination of 

required correcting impulse at the moments of rotation 

correction (and at the phases of acceleration and braking 

also). The feedback organization over position allows to 

increase the accuracy of spacecraft reorientation (at the 

expense of the control of the remained turn angle before 

required position, of determination of the moments of 

correction of spacecraft motion and calculation of the angular 

momentum necessary at the beginning of phases of 

uncontrolled rotation). 

The high efficiency of the combining of the regimes of 

attitude and maintenance of the spacecraft orbit altitude is 

shown. A numerical simulation of spatial rotations of a 

spacecraft (as the orbital station) using the designed 

algorithm of control was executed. As a result, the practically 

attainable values of fuel expenditure and the indices of 

efficiency of combining the regimes which can be reached 

were obtained. The practical application of the proposed 

method of control of spacecraft’s spatial motion allows us to 

lower significantly the fuel consumption for the dynamic 

operations as a whole. The results of mathematical sim-

ulation show that this economy reaches no less than 60%. For 

sufficiently frequent changes of spacecraft attitude, the value 

of the velocity impulse necessary to maintain the orbit 

altitude can be achieved through control over the spacecraft 

angular position only. The operating experience of the orbital 

scientific complex Mir (before a joining with the reusable 

transport spacecrafts of Space Shuttle system) shows the 

approximate equality of the actual fuel consumption for 

attitude control and orbit altitude maintenance. The ratio of 

the considered consumptions Gc / Ga varies between 0.68 

and 0.75, which corresponds to the range of the index 

variation of a combining Q ∈ [1.68, 1.75]. These data 

confirm the real possibility of practical use of the combined 

regimes of control over motion of the orbital spacecraft by 

means of jet micro-engines. It may be possible in the future 

to abandon the executing special corrections of the orbit in 

order to increase its altitude (or, at least, to reduce sharply the 

number of such corrections). 
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