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Abstract: A method for probabilistic reduced order modeling (ROM) is developed for stochastic problems. Probabilistic 

principal component analysis (PPCA) was modified to generate a basis for the reduced order model from training data, in such a 

way that it allows the noise in the training data to be estimated and also determines the variance of the latent variables. This 

variance information is then used as a prior in a new probabilistic data projection approach. Together these techniques give a fully 

probabilistic method for creating ROMs that allow accurate predictions of noise-free data from data that is dominated by noise. 
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1. Introduction 

The goal of this work is to develop reduced order modeling 

techniques for problems with stochastic noise. The main idea 

is to use low-noise training data to generate basis functions 

that accurately represent the system response, then, given a 

noisy data measurement, project that data onto the basis to 

generate an accurate estimate of the noise-free data. In our 

previous work [1], we showed that noisy Monte Carlo 

simulation data from radiation transport simulations could be 

significantly improved by the projection process. Although 

that work demonstrated the potential of the approach, many of 

the steps needed to make the process practical were 

incomplete. Specifically, the formulation in [1] did not 

properly account for noise in the generation of the basis 

functions, had no mechanism for selecting the number of basis 

functions in the ROM, and used 2L  projection of the trial 

data without mathematical justification. Accurate results were 

obtained essentially by knowing the correct answer and then 

choosing the model parameters such that the error was 

minimized. This approach obviously is not feasible for any 

practical problem. 

In this work, a probabilistic approach is used to remedy 

these deficiencies. To generate the basis, the stochastic 

formulation of the principal component analysis (PCA) [2-8], 

known as probabilistic principal component analysis (PPCA) 

[9-14], is used. PPCA identifies the noise in the training data, 

which cannot be estimated with conventional PCA. We have 

also improved the formulation of PPCA to remove the 

unnecessary assumption that all latent variables have unit 

variance. The new formulation provides more physical insight 

into the eigenvalues of the PPCA and their relation to the 

variance of the latent variables. This information was 

necessary for the new projection procedure that was 

developed. 

The probabilistic formulation also provides a method for 

selecting the number of basis functions to include in the ROM. 

This can be done by combining PPCA with a Bayesian model 

selection [15-24] criterion. Here the Bayesian information 

criterion (BIC) [15, 17, 24-27] is used to identify the optimal 

number of basis functions to include in the ROM, and it is 

demonstrated that this approach reliably chooses the number 

of basis functions that can be identified given that the training 

data alsoincludes noise. 

Lastly, a new approach for projecting the trial data is 

derived. This approach uses prior information obtained from 

the PPCA of the training data to improve the projection of the 

trial data. In our previous work, 2L  projection was used, 

which basically corresponds to a projection with no prior 

knowledge of the projection coefficients. In the following, it is 
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demonstrated that using the training data to define a prior for 

the projection coefficients leads to significantly improved 

results when the trial data has more noise than the training data, 

which is typically the case. Together, these techniques define a 

method for reduced order modeling of problems with 

stochastic noise that can be applied to practical scenarios. 

The paper is organized as follows. First the framework for 

the reduced order model generation and the modified PPCA 

approach is derived. This is then followed by a discussion of 

the model selection approach (BIC) and the derivation of the 

method for projecting the trial data. To demonstrate the 

benefits of this new probabilistic formulation, the ROM 

procedure is applied to a simple stochastic model problem, 

and predictions from the ROM are compared to our previous 

approach and to noise-free data, which was known for the 

model problem. 

2. Reduced Order Modeling 

Formulation 

The ROM is formulated assuming the data is created by a 

process of the form 

=1

= = ,
� � �� � � �

m

j j

j

y w wϕ µ ε µ ε+ + Φ + +∑          (1) 

where 
�

y  is a single data realization for a particular physical 

scenario, which could be obtained either from a numerical 

simulation or an experiment. The dimension of 
�

y  is d , 

which depends on the physical problem being studied. The

, [1, ]
�

j j mϕ ∈ , are basis functions that are scenario 

independent, and the jw ’s are latent variables that vary from 

realization to realization. The jw ’s being random variables 

implies that there is a probability associated with the 

occurrence of each physical scenario. The mean of the latent 

variables is assumed to be zero such that 
�µ  is the mean of 

the data over all scenarios, making
�µ  a scenario-independent 

constant vector. The noise in the process is 
�ε , also a random 

variable, which could represent noise in the experimental 

measurements or in the stochastic numerical simulation 

approach used to generate the data. The noise is assumed to be 

generated by a zero-mean Gaussian process with covariance 
2Iεσ , where I  is the identity matrix of dimension d . 

Although the data is assumed to be generated by a process 

of the form given by (1), none of the parameters of the model 

( , ,
�

mµΦ ) are known. The first step of the reduced order 

modeling process is to generate a set of “training data” that 

can be used to estimate these parameters. The training data is a 

set = { },
�

kY y  for = 1,2,...,k n , of realizations of the process. 

The scenarios associated with these realizations are chosen 

randomly according to the probability density function 

predicting the occurrence of any given scenario. The 

generation of the data can be through either numerical 

simulation or experiment, and both are assumed to also 

include random noise. 

2.1. PPCA 

To estimate Φ  and 
�µ  given Y , PPCA is used. Our 

formulation of PPCA is an improvement on the standard 

derivation (given in Refs. [10, 11]), where it is assumed that 

the latent variables, 
�

w , are uncorrelated and follow a 

Gaussian distribution with unit covariance. In the following, it 

is also assumed that the latent variables are uncorrelated and 

follow a Gaussian distribution, but the covariance is not 

a-priori assumed to be 1. Instead the variances, 2
=1{ }m

w i
i

σ , are 

estimated as part of the derivation. In the following, a 

condensed derivation is given that highlights the main 

differences between the new and original derivation. 

Bayes’ formula to estimate the unknowns, Φ , 
2
εσ , 2

w
i

σ , 

and 
�µ  in the model is 

( ) ( ) ( )2 2 2 2 2 2, , , | | , , , , , , ,
� � �

w w w
i i i

p Y p Y pε ε εσ σ µ σ σ µ σ σ µΦ ∝ Φ Φ  (2) 

where ( )2 2, , , |
�

w
i

p Yεσ σ µΦ  is the posterior distribution, 

( )2 2, , ,
�

w
i

p εσ σ µΦ  is the prior distribution and 

( )2 2| , , ,
�

w
i

p Y εσ σ µΦ  is the likelihood distribution. PPCA uses 

a maximum likelihood estimator (MLE) [28-31] to find the 

unknown parameters assuming no prior knowledge about their 

values i.e. the prior is assumed to be uniform. The MLE is thus 

obtained by maximizing the log-likelihood function, 

( )2 2log | , , ,w
i

p Y εσ σ µΦ �

. 

In order to obtain the likelihood function, the probability 

distribution of an individual realization, 
�

y , conditioned on 

2 2, , ,
�

w
i

εσ σ µΦ , first needs to be identified. This distribution, 

2 2( | , , , )
� �

w
i

p y εσ σ µΦ , is called the predictive distribution and 

can be obtained using the following relations 

2 2 2 2 2 2( | , , , ) = ( , | , , , ) = ( | , , , ) ( | ) ,
� � � � � � � � � � �

w w w
i i i

p y p y w dw p y w p w dwε ε εσ σ µ σ σ µ σ µ σ
∞ ∞

−∞ −∞
Φ Φ Φ∫ ∫               (3) 

where the integral is taken over all components of the vector 
�

w . Assuming the noise in (1) is Gaussian with zero mean, the 

probability distribution of 
�

y  conditioned on the latent 

variable, 
�

w , and the parameters 
2
εσ , 
�µ , and Φ  is given 

by 

( ) ( )2 2| , , , = , ,
� � � � �

p y w w Iε εσ µ µ σΦ Φ +N       (4) 
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where the notation ( )Iw
2

, εσµ�� +ΦN  indicates a Gaussian 

distribution with mean 
� �

w µΦ +  and co-variance matrix 

2Iεσ . 

The latent variables are assumed to be uncorrelated and 

follow a zero-mean Gaussian distribution with a covariance of 

2
w

i
σ , thus 2 2( | ) = (0, ) ,

�

�

w
i

p w σ ΣN  where 
2Σ  is an m m×  

diagonal matrix with the values 2
w

i
σ  on the diagonal. Based 

on this assumption, one can show that the predictive 

distribution is Gaussian of the form ( )I
T 22

, εσµ +ΦΦΣ�

N . 

The likelihood distribution, ( )2 2| , , ,
�

p Y εσ µΦ Σ  for the 

training data, = { }
�

kY y , for = 1,2,...,k n  is the product of 

the individual predictive distributions. The log likelihood can 

be shown to be 

( ) ( ) ( ) ( )
1

2 2 2 2 2 2

=1

1
= log | , , , log 2 log | | ,

2 2 2

n
TT T

k k

k

dn n
L p Y I y I yε ε εσ µ π σ µ σ µ

−
Φ Σ =− − ΦΣ Φ + − − ΦΣ Φ + −∑

� � � � �

    (5) 

where | |⋅  denotes the determinant of a matrix. 

As the prior is uniform, the most probable values of the 

posterior distribution can be determined by maximizing L  

with respect to the unknown parameters, Φ , 
�µ , 

2
εσ . In all 

the following, the subscript MP  indicates these most 

probable values. The maximization process gives the 

following estimate for the mean 
�µ , 

=1

1
= .

� �

n

MP k

k

y
n

µ ∑                 (6) 

The estimate of 
2
εσ  is 

( )
2

= 1

1
= ,

d

iMP

i m
d m

εσ λ
+− ∑              (7) 

where the iλ ’s are the eigenvalues of the data covariance 

matrix, ( )( )
=1

1
=

� � � �
n T

k MP k MPk
S y y

n
µ µ− −∑ . The maximum 

likelihood estimate for
2
εσ  can be interpreted as the average 

magnitude of the eigenvalues of dimension greater than m . 

These eigenvalues can only be caused by noise, as there are 

only m  latent variables. 

Minimizing (5) with respect to Φ , one obtains 

( )( )
1

2 2= ,MP MP MP
U I RεσΦ Σ Λ −           (8) 

where U  is a d m×  matrix whose columns are given by a 

complete subset of (orthonormal) eigenvectors of the data 

covariance matrix S , Λ  is the m m×  diagonal matrix 

consisting of the first m  largest eigenvalues of S , and R  

is an arbitrary m m×  orthonormal matrix. This equation is 

almost the same as in [10, 11], except for the Σ  term. In [10, 

11], R  was chosen to be the identity matrix, which then 

determined Φ . The disadvantage of this choice is that the 

column vectors of Φ  then each must have a magnitude 

determined by the diagonal matrix ( )( )
1

2 2
MP

IεσΛ − . This 

scaling of the basis functions is necessary to ensure that the 

latent variables all have a variance of unity. In the new 

formulation, we can satisfy (8) by choosing 

=MP UΦ                     (9) 

and the estimate for Σ  as 

( )( )
1

2 2= .MP MP
IεσΣ Λ −               (10) 

This allows us to have standard orthonormalbasis functions, 

and also correctly identifies the variance of the latent variables 

(as we confirm in the example problem below). Manipulating 

(10), the relation can put in the following form 

( )
2 2

= .MP MP
IεσΛ Σ +                 (11) 

This shows that the eigenvalues of the covariance matrix 

S  are the variance of latent variables summed with the 

variance of the measurement error. The first m  eigenvalues 

consists of both variances, however the eigenvalues greater 

than m  are strictly due to random measurement error. 

2.2. Model Selection 

In the previous section, the model parameters were 

estimated assuming that the dimension of the ROM, m , was 

a known, fixed number. PPCA together with Bayesian model 

selection criteria can be used to predict the number of basis 

functions required for the ROM. There are many different 

Bayesian model selection criteria [17, 18, 23, 24, 32-35], and 

here we choose the Bayesian information criterion (BIC) [15, 

17, 24-27]. BIC selectsthe value of m  that minimizes 

1
( ) = 2 1 1 log ,

2
BIC MP

m
f m L m d d n

 − − + − − + +  
  

   (12) 

where MPL  is the maximum value of the likelihood 

distribution and the term in the outer parentheses in (12) is the 

number of estimatable parameters in the model, both of which 

depend on m . The number of estimatable parameters arise 

from MPΦ , 
�

MPµ , and 2

MP
εσ . There are 



 American Journal of Mathematical and Computational Sciences 2018; 3(2): 50-61 53 

 

( ) ( ) ( ) ( )( )1 2 3 ... 1 1d d d d m− + − + − + + − − −  parameters in 

MPΦ . Here the 1d −  comes from the fact that the first basis 

vector is required to be normalized to have magnitude 1 so 

when =1m , one can only choose 1d −  independent 

variables. Because of the requirement of orthogonality the 

number of free parameters in choosing a basis vector 

decreases by 1 for each additional basis vector. This results in 

the number of free parameters in Φ  being 

( 1 ( 1) / 2)m d m− − − . The number of parameters in 
�

MPµ  and 

2

MP
εσ  are d  and 1, respectively, giving the total shown in 

parentheses above. 

MPL  is obtained by inserting the maximum likelihood 

estimates of the parameters (6), (7), (9), and (10) into (5). 

Following the simplification techniques in [27] but with our 

maximum likelihood results, this becomes 

( ) ( ) ( )
=1 = 1

1
= log 2 log log .

2 2

m d

MP j j

j j m

dn n
L d m d

d m
π λ λ

+

  
  − − + − +
  −

  
∑ ∑                  (13) 

To find the most probable value for m , ( )BICf m  is 

calculated as a function of m , [1, ]m d∈ , and the value of 

m  that minimizes the function is chosen. 

2.3. Bayesian Projection with Gaussian Prior 

The above sections determined the model parameters, Φ , 
�µ  and m , which is to say that the reduced order model is 

now constructed from thetraining data. In this section, a latent 

variable vector 
�

w  is estimated given a “trial” data vector 
�

y  

that is obtained from a new scenario drawn from the 

distribution of scenario probabilities, i.e. we now project trial 

data onto the ROM. A trial vector
�

y includes noise, Tε , 

which is drawn from a zero-mean Gaussian distribution 

)(0,
2

T
εσN , and the magnitude of this noise, 2

T
εσ , is 

assumed to be different (typically larger) than that of the 

training data. In our previous work 2L  projection of the trial 

data was used to estimate the latent variables and no estimate 

was given for 2

T
εσ ; here the latent variables are estimated 

using Bayesian parameter estimation with a Gaussian prior. 

The estimate of 
2
MPΣ  obtained from the training data is used 

as the covariance of the prior on the latent variables. 

To estimate the probability distribution of 
�

w  and 2

T
εσ , 

conditioned on the observed data, 
�

y , and parameters 
�µ , 

2Σ , and Φ , Bayes’ theorem is used. Applying Bayes’ 

theorem, assuming that 
2Σ  and 2

T
εσ  are independent, we 

have 

( ) ( ) ( )2 2 2 2 2 2, | , , , | , , , , , | , ,
� � � � � � � �

T T T
p w y p y w p wε ε εσ µ σ µ σ µΦ Σ ∝ Φ Σ Φ Σ  

( ) ( ) ( )2 2 2| , , , | .
� � � �

T T
p y w p w pε εσ µ σ∝ Φ Σ                                (14) 

Assuming the model given by (1) holds for the trial data as well, the probability distribution of 
�

y  is 

( ) ( ) ( )
( )

2 2 1/2

2
| , , , | | exp

2

� � � � � �

� � �

T

T T

T

y w y w
p y w Iε ε

ε

µ µ
µ σ σ

σ
−

 
− Φ − − Φ − Φ ∝ − 

 
 

.                   (15) 

As assumed before, the probability of 
�

w  for a given scenario is Gaussian with mean zero and covariance 
2Σ  

( )2 2 1/2 21
| | | exp

2

� � �Tp w w w− − Σ ∝ Σ − Σ 
 

,                               (16) 

so, assuming a uniform prior distribution for 2

T
εσ , the log posterior is obtained from (14), (15), and (16) as 

( ) ( ) ( )2 2 2 2 2

2

1 1 1
log , | , , , log | | log | |

2 2 22

T

T

T T

T

y w y w
p w y I w wε ε

ε

µ µ
σ µ σ

σ
−− Φ − − Φ −

Φ Σ ∝ + + Σ + Σ
� � � � � �

� � � � �

       .(17) 

Setting the derivatives of (17)  with respect to 
�

w  and 

2

T
εσ  to zero to find the maxima gives ( )

1

2 2=
� � �T

MP
T

MP

w I yεσ µ
−

− + Σ Φ − 
 

        (18) 
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and 

( ) ( )2 1
= .

� � � � � �T

MP MP
T

MP

y w y w
d

εσ µ µ− Φ − − Φ −      (19) 

Equations (18)  and (19)  are a system of non-linear 

equations with unknowns 
�

MPw  and 
2

T
MP

εσ . The pair of 

equations can be solved using a fixed point iteration, where it 

is first assumed that 
2

T
MP

εσ  is zero, then (18) is used to 

calculate 
�

MPw . Equation (19), which can be interpreted as a 

calculation of the noise in the data assuming the true data is 

given by 
� �

MPw µΦ + , can then be used to calculate 
2

T
MP

εσ . 

This new value of 
2

T
MP

εσ  is used in (18)  and the process is 

repeated until (18)  and (19)  are satisfied to a specified 

tolerance. 

If 
2

T
MP

εσ  is small relative to the values of 2
w

i
σ , then the 

matrix in parentheses in (18) is essentially the identity matrix 

and the 2L  projection result, ( )=
� � �Tw y µΦ − , is recovered. 

This is the approach that was used in our previous work and is 

also the result that would be obtained assuming a uniform 

prior on 
�

w  instead of a Gaussian prior. However, when the 

noise in the data is large relative to the variance of a latent 

variable, i.e. 
2 2

/ w
T i

MP
εσ σ  is large, the Gaussian-prior 

projection reduces the magnitude of the 2L  projection value 

of iw  to account for the fact that the noise in the data is 

causing an estimation for iw  that is larger than the expected 

variation of that latent variable. We show in the following 

section that this can significantly improve the accuracy of the 

projection for these conditions. 

3. Demonstration 

This section illustrates the above discussed ROM 

techniques for a model problem where the data is generated 

using a model of the form given by (1) i.e. the data is 

generated as a linear combination of a finite number of basis 

functions and latent variables with a mean vector and added 

random noise. As all of the parameters of the data generation 

are known, the ROM process can be validated by comparing 

the estimated parameters to those used to generate the data. 

The q  basis functions used to generate the data are 

discrete sine waves given by 

( )
( )

sin
= for [1, ],

|| sin ||

�

�

�j

j x
j q

j x

π
ϕ

π
∈  

where 
dx R∈�  is a vector of = 100d  uniformly spaced 

points from the domain [0,1]  including endpoints. In the 

above, the norm || . ||  is the Euclidean vector norm such that 

= 1
� �

j jϕ ϕ⋅ . With this normalization, the peak value of the 

basis functions is 1/ ( / 2) 0.14d ≈ . 

The latent variables, jw , were sampled from Gaussian 

distributions with variances of 2
w

j
σ , chosen to be 

2

1

1
= for [1, ].

2
w jj

j qσ − ∈  

Unless stated otherwise, =10q  basis functions and latent 

variables were used to create the data. The mean, 
�µ , was a 

vector of ones. 

 

(a) 

 

(b) 

Figure 1. A single realization from the training data (a) 2
εσ  = 1/10 (b) 2

εσ  

= 1/400.. 

The noise vector, 
�ε  was also sampled from a Gaussian 
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distribution, either ( )20,
�

IεσN  for the training data or 

( )I
T

2,0 εσ
�

N  for the trial data. The data generation process 

was repeated = 10000n  times to generate the training data 

set Y . To investigate the effect of noise in the training data, 

two training data sets were studied, one with 
2 = 1/10εσ  and 

the other with 
2 = 1/ 400εσ . Figure 1 shows a typical 

realization of a data vector from the two training data sets. 

From figure 1(a) it can be seen that, in the case of 
2 = 1/10εσ , 

the noise in the data is significant with a magnitude on the 

order 1/10 0.32± ≈ . Similarly in figure 1(b), the noise 

magnitude is 1 / 400 = 0.05± . 

Averaging over all of the data vectors of the data set Y  

determines the most probable mean vector 
�

MPµ . This is 

shown in Figure 2 for both data sets. The fluctuations in the 

mean should scale as ( ) /wi i
nεσ σ+∑ , which is equal to 

0.0088 and 0.0061 for 
2 = 1/10εσ  and 1/ 400 , respectively. 

This is in good agreement with what is observed in Figure 2. 

The dominant source of error in determining the mean is not 

the noise in the data, but rather determining the average 

outcome of the scenarios. For this reason, the fluctuations in 

both estimated means are of similar magnitude. 

 

Figure 2. Mean distribution for the 2 = 1 / 10εσ  and 2 = 1 / 400εσ  training 

data. 

3.1. PPCA 

According to (9) in Section 2.1, the estimates for the most 

probable basis functions are the dominant subset of m  

eigenvectors of the data covariance matrix, 

( )( )
=1

1
=

� � � �
n T

k MP k MPk
S y y

n
µ µ− −∑ . Figure 3 shows the 

eigenvalue spectrum for the two sets of training data with 
2 = 1/10εσ  and 1/ 400 . Based on (11), the eigenvalues are 

expected to decay like 
11/ 2i−

 because of the 2
w

i
σ  term and 

then plateau at a value of 
2
εσ . The predicted eigenvalues based 

on (11) are also shown on the plot. The curves agree well 

indicating that the new formulation of PPCA accurately predicts 

the dependence of the eigenvalues on both 2
w

i
σ  and 

2
εσ . 

 

Figure 3. Eigenvalue spectra of the data covariance matrices created using 

the 2 = 1 / 10εσ  and 2 = 1 / 400εσ  training data. Predicted spectra based on 

(11) are also shown. 

Figure 4 shows the first, third, fifth, and seventh basis 

functions for the 
2 = 1/10εσ  and 

2 = 1/ 400εσ  training data. 

PPCA is able to extract basis functions that are less affected by 

noise than the actual data; compare the magnitude of the noise 

in Figure 4(a) for 
2 = 1/10εσ  with the noise in Figure 1(a). 

Even for the 7
th

 mode in the case of 
2 = 1/10εσ , shown in 

Figure 4(b), which had 2 6

7
= 1 / 2 = 0.016wσ  much smaller 

than 
2
εσ , PPCA is able to roughly obtain the correct 

functional form. This is primarily because of the large number 

of training data vectors used ( = 10000n ), which allows the 

PPCA to detect the form of the basis in spite of the numerical 

noise. This indicates that one can obtain accurate basis 

functions for the ROM by either reducing the noise in the data 

or by increasing the number of data vectors in the training 

data. 
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Figure 4. Eigenvectors 1, 3, 5, 7 generated using training data with 2
εσ  = 1/10 and 2

εσ  = 1/400. 

3.2. Model Selection 

As described in Section 2.2, the Bayesian information 

criterion (BIC) given in (12) is used to determine the 

dimensionality m . Figure 5 shows ( )BICf m  as a function of 

m  for the two training data sets. The minimum of ( )BICf m  

occurs at = 5m  and =10m  for the 
2 = 1/10εσ  and 

2 = 1/ 400εσ  training data, respectively. Examining figure 3, 

it seems that BIC chooses m  at the point of the change in 

decay rate of the eigenvalues. For 
2 = 1/10εσ , this occurs at 

= 5m  even though only the first three latent variables have 

2 2>w
i

εσ σ . For 
2 = 1/ 400εσ , this occurs at =10m , even 

though only the first eight latent variables have 2>w
i

εσ σ . 

 

(a) 
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(b) 

Figure 5. BIC as a function of model dimension m  (a) for the 2 = 1 / 10εσ  

training data (minimum is at 5 basis functions) (b) for the 2 = 1 / 400εσ  

training data (minimum is at 10 basis functions). 

Once the number of latent variables is estimated, (7) can be 

used to estimate 
2
εσ  and (10) to estimate 2

w
i

σ . Table 1 

summarizes the estimated and true values of 
2
εσ  and 2

w
i

σ  

for the two sets of training data. There are only five values of 
2
w

i
σ  estimated for the training data with 

2 = 1/10εσ , because 

BIC estimated that = 5m  for this data. The first thing to 

observe from the data is that the estimates of 2
w

i
σ  are 

accurate; the percentage errors are less than 5% in all cases 

and in most cases the error is less than 2%. This is also true of 

the estimates of 
2
εσ ; the errors are less than 6% for both 

training data sets. This confirms that the new formulation of 

PPCA correctly estimates 2
w

i
σ . 

Another observation from the estimated values of 2
w

i
σ  is 

that the errors do not vary significantly between the 
2
εσ  = 

1/400 and 1/10 data sets. This implies that for this particular 

data set, the main source of error is not the noise in the 

measurements, but rather the number of data vectors used to 

create the data set ( n ). Both data sets used =10,000n  so the 

accuracy of the estimates of 2
w

i
σ  are similar. 

Table 1. Estimated and true values of 2
w

i
σ  and 

2
εσ  for the two training 

data sets. 

 True 2
εσ  = 1/400 2

εσ  = 1/10 

2
εσ  - 0.002497 0.100297 

2

1
w

σ  1.0000 0.9926 1.0039 

2

2
w

σ  0.5000 0.4911 0.4930 

2

3
w

σ  0.2500 0.2460 0.2496 

2

4
w

σ  0.1250 0.1218 0.1278 

 True 2
εσ  = 1/400 2

εσ  = 1/10 

2

5
wσ  0.0625 0.0645 0.0671 

2

6
w

σ  0.0313 0.0307 - 

2

7
wσ  0.0156 0.0157 - 

2

8
w

σ  0.0078 0.0079 - 

2

9
w

σ  0.0039 0.0039 - 

2

10
w

σ  0.0019 0.0020 - 

3.3. Bayesian Projection with Gaussian Prior 

The goal of the projection process is to use the developed 

model to make an accurate estimate of the true signal, 
� �

w µΦ + , given a “trial” data vector 
�

y  from an unknown 

scenario (
�

w ) containing random noise 
�ε  with unknown 

magnitude, 2

T
εσ . To test the approach described in Section 

2.3, two trial data vectors were generated, one with 
2

= 1 / 5
T

εσ  and the other with 2
= 1/ 200

T
εσ . The Bayesian 

projection approach was then used to estimate 
�

w  and 2

T
εσ  

using (18) and (19). To understand how the training process 

affects the final results, projections were performed with the 5 

and 10 basis function models created above using the 
2 = 1/10εσ  and 1/400 training data respectively. One 

additional ROM was created using training data with 
2 12= 1.5 10εσ −×  and = 50m . BIC selected 42 basis 

functions for this model. 

Projections for four cases were performed. Three cases 

correspond to trial data with a large noise magnitude 

( 2
= 1 / 5

T
εσ ). For these cases reconstructions were done with 

the ROMs obtained from the 
2
εσ  = 1/10, 1/400, and 

121.5 10−×  training data. These cases, allowed us to 

investigate how the quality of the basis functions and the 

number of basis functions in the ROM affected the projections. 

The last case performed a reconstruction using lower noise 

trial data ( 2
= 1/ 200

T
εσ ) with the ROM obtained from the 

2
εσ  = 1/400 data. This case was used to determine the effect 

of the magnitude of noise in the trial data. The combination of 

low noise in the trial data but high noise in the training data is 

not of practical interest, because it is assumed that the training 

data will be of the same or higher quality than the trial data. 

Figure 6 shows the projection results. In each figure, the red 

dotted curve is the ROM projection using a Gaussian prior and 

the blue dash-dotted curve represents a standard 2L  

projection. The gray dash line is the trial data, 
�

y , and the 

solid black line is the true signal i.e. without the added noise. 

Figure 6(a) shows the reconstruction of the 2
= 1 / 5

T
εσ  trial 

data fromthe ROM created using the 
2 = 1/10εσ  training 

data and Figure 6(b) shows the reconstruction using the ROM 



58 Indika Udagedara et al.:  Probabilistic Reduced Order Modeling Using a Bayesian Approach  

 

created using the 
2 = 1/ 400εσ  training data. Both ROMs 

significantly reduce the noise in the data, but the 
2 = 1/ 400εσ  

ROM produces smoother predictions because of the higher 

quality eigenvectors obtained with the PPCA. Comparing the 

2L  projection to the Gaussian-prior projections shows that 

the Gaussian prior projections give a closer approximation to 

the true solution. This is true in both cases, but more so in the 
2 = 1/ 400εσ  ROM. This is because this ROM has more basis 

functions, which allows the 2L  projection to better represent 

the noise in the data and thus increases the deviation from the 

true signal. This is further verified by Figure 6(c), which 

shows that with increasing numbers of basis functions in the 

ROM (42 for this case), the 2L  projection result actually 

deviates from the true solution whereas the Gaussian 

projection does not. The projection of the 2
= 1/ 200

T
εσ  data 

shown in Figure 6(d) shows that as the noise in the trial data is 

reduced, both projections approach the noise-free signal, but 

the Gaussian-prior projection is still more accurate and has 

fewer spurious oscillation that the 2L  projection. 

 

 

Figure 6. Realization y
�

, true solution w µΦ +
� �

, Gaussian-prior projection and 2L  projection for the cases: (a) 2 = 1 / 5
T

εσ , 
2 = 1/10εσ , (b) 

2 = 1 / 5
T

εσ , 2 = 1 / 400εσ , (c) 2 = 1 / 5
T

εσ , 2 12= 1.5 10εσ −× , (d) 2 = 1 / 200
T

εσ , 2 = 1 / 400εσ . 

Table 2 shows the true and estimated values for 2

T
εσ  for 

the four trial cases shown in Figure 6. Estimated values are 

compared for Gaussian and 2L  projection. Note that (19) is 

used to calculate the 2

T
εσ  for both projection approaches. As 

the number of basis functions in the model increase, the value 

of 2

T
εσ  for the Gaussian-prior projection remains relatively 

constant while the 2L  projection approach decreases. All of 

the predicted values using the Gaussian-prior projection are 

within 3%. 
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Table 2. True values and estimated values of the variance of the trial data using Gaussian and 2L  projection. 

Case True 2
εσ  True 2

Tεσ  Predicted 2

Tεσ  - Gauss. proj. Predicted 2

Tεσ  - 2L proj. 

a 1/10 1/5 0.2312 0.2294 
b 1/400 1/5 0.2264 0.1854 

c 12
1.5 10

−×  1/5 0.2067 0.1309 

d 1/400 1/200 0.00467 0.00456 

 
To verify that the above identified trends are not particular 

to the trial data vector examined, for 10000 trial data 

realizations an error was computed by comparing a given 

signal, ��, which could be either the trial data vector, the �� 

projection of the trial data, or the Gaussian projection of the 

trial data, to the true signal. For the above described cases, the 

error is defined as 

� � ���� 	 ��
��
����� 	 ��
��
�         (20) 

For the trial data, using the form given by eq. 1, the average 

error is equal to 

���
 � � ��������������,
�

��
 

where ����� is the probability distribution of the noise in the 

data. The analytical value of the average error for the trial 

data with 2
= 1 / 5

T
εσ is 4.4610 and for 2

= 1/ 200
T

εσ is 0.7053. 

The error of the projections, which is shown in Figure 7, is 

normalized with respect to the analytical values of the 

average error in the trial data. The horizontal red and blue 

curves in the figure are the mean value of the normalized 

projection error over the 10000 realizations for the 

Gaussian-prior projection and the 2L  projection, 

respectively. For all cases, both projection processes reduced 

the error. For Gaussian projection, in cases a, b, and c, the 

error was reduced by a factor of 0.17. The reduction in error 

for case d was less because there was less noise in the trial 

data. The Gaussian-prior projection was on average more 

accurate than the 2L  projection. Consistent with the 

differences seen in Figure 6(b) and (c), this difference is 

most significant for the cases with 2
= 1 / 5

T
εσ  using the 

ROMs with a larger numbers of basis functions i.e. cases b 

and c. Comparing the mean Gaussian-prior projection error 

between plots a, b, and c shows that the Gaussian-prior 

projection errors are relatively insensitive to the number of 

basis functions in the model. 

 

 

Figure 7. 2L  norm of the error of Gaussian-prior projections and 2L  projections for 10000 trial realizations.: (a) 2 = 1 / 5
T

εσ , 2 = 1 / 10εσ , (b) 

2 = 1 / 5
T

εσ , 2 = 1 / 400εσ , (c) 2 = 1 / 5
T

εσ , 2 12= 1.5 10εσ −× , (d) 2 = 1 / 200
T

εσ , 2 = 1 / 400εσ . These errors are normalized respect to the analytical values of 

the average error in the trial data. The Gaussian-prior projection errors and the L-2 projection errors are shown as the dash line and the solid black line, 

respectively. The red line represents the average error for Gaussian-prior projection and the blue line represents the average error for 2L  projection. 
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4. Conclusions 

In this work, a probabilistic ROM process was developed 

for stochastic problems. This process allows reduced order 

modeling techniques to be applied to problems where the 

defining parameters are sampled from a probability 

distribution and the measured data has random noise. No 

ad-hoc assumptions are necessary to derive the model and 

apply it to trial data. The process provides a comprehensive 

probabilistic approach for deriving reduced order models of 

stochastic systems. These reduced order models can then be 

used to provide rapid, accurate predictions for stochastic 

problems where repeated analyses of similar scenarios must 

be performed. 

An improved derivation of PPCA was also given that 

relaxes the unnecessary assumption that the variance of the 

latent variable is unity. The new approach provides an 

accurate estimate of this variance and also gives orthonormal 

basis functions. (In standard PPCA, the basis function are 

orthogonal but not orthonormal.) These improvements 

allowed a more intuitive interpretation of the eigenvalues of 

the PPCA and their relation to the noise in the data and the 

variance of the latent variables. 

The information obtained from the improved PPCA was 

used to create a Gaussian prior for the latent variables in the 

on-line part of the ROM process. In the on-line step, Bayesian 

parameter estimation is used to estimate the latent variables 

associated with a data vector from a new scenario with an 

unknown amount of noise. These latent variables are then used 

to reconstruct the noise-free signal. The model problem 

showed that the true (noise-free) signal could be accurately 

reproduced from noisy data using this approach, much more 

so than with a standard 2L  projection especially when the 

noise in the data vector is large and there are many basis 

functions in the model. 
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