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Abstract: The solving the original dynamical control problem of optimal reorientation from a state of rest to a state of 

rest is investigated. The control function is torque vector. The case, when control is limited and the used functional takes 

into account kinetic rotation energy and time of maneuver, is studied in detail. For designing the optimal control program, 

the quaternion method and the Pontryagin’s maximum principle are used. Analytic solution of the proposed problem is 

presented basing on the differential equation connecting the angular velocity vector and quaternion of spacecraft attitude. 

It is shown that the chosen criterion of quality provides a turn of a spacecraft with rotation energy which do not exceed 

the required value. This property of the proposed control increases safety of flight. All key expressions and equations are 

written in quaternion form which is convenient for onboard realization and implementation. Analytical formulas were 

written for duration of acceleration and braking. For specific cases of spacecraft’s configurations (dynamically 

symmetric and spheric-symmetrical spacecraft as particular cases), complete solution of optimal control problem in 

closed form is given. Numerical example and results of mathematical simulation for spacecraft motion under optimal 

control are demonstrated. This data supplements the made theoretical descriptions, and illustrates reorientation process in 

visual form. 
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1. Introduction 

The optimal control problem of transfering the spacecraft 

into the required angular position was solved. Kinematics of 

motion is described by quaternion models [1]. Many authors 

investigated the optimal solutions to problems of controlling 

a spacecraft’s angular position [1-25]. The solutions which 

correspond to rotation around a motionless axis are known 

[1-6], and rotation maneuvers around the principal central 

axe were studied in detail [3, 4]. Time-optimal maneuvers is 

topical [3, 4, 7-13]. Specific solutions are obtained for axi-

symmetric spacecraft [13-15]. For example, some authors did 

replacement of variables, formulated equivalent boundary-

value problem of maximum principle and reduced an initial 

control problem to reorientation problem for spheric-

symmetrical body [14]; special control regime of rotation 

was studied also [15]. Attitude control of the spacecrafts with 

inertial actuators has specific features [16-19], and the 

patented method is known [20]. An analytical solution to the 

optimal reorientation problem in a closed form, if it were 

found, would be of great practical interest, because it allows 

the finished laws of the programmed control and the optimal 

trajectory of spacecraft motion to be applied onboard of a 

spacecraft [8, 9]. 

Finding and studying the optimal control program for 

spacecraft reorientation (with respect to rotation energy) is 

topic and subject of this research. Principal difference of the 

presented work consists in use of new minimized index 

which combines the duration of maneuver and integral of 

kinetic rotation energy. Minimization of the adopted index of 

quality is very important problem in practice of spacecraft 

flight. The main results are: it was shown that two-impulse 

control is optimum (with one or two switching), and, in many 

cases, spacecraft rotates by inertia between acceleration and 

braking; for optimal solution, estimations of the relative 

growth of the index of quality due to the limited controlling 

moment (with respect to ideal rotation when torque is 

unbounded) were done. 
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2. Statement of Optimization Problem 

Angular motion of the spacecraft as rigid body is described 

by dynamic equations [4]: 
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where Ji are the principal central moments of inertia, Mi are 

projections of torque M onto the axises of the basis E formed 

by the principal central axes of spacecraft’s inertia,  are 

projections of the spacecraft’s absolute angular velocity 

vector  onto the axises of the basis E (i = ). To describe 

spatial motion of a spacecraft, the quaternions are used [1]. 

Angular position of the body coordinate system is defined 

relative to the reference basis I which is inertial coordinate 

system (as we assume). Motion of the basis E relative to the 

reference basis I is determined by the quaternion Λ [1]. 

Therefore, the following kinematic equation is true: 

                                       (2) 

For simplicity, it is assumed that the quaternion Λ 

specifying the current attitude is the normalized quaternion 

(||Λ|| = 1). The spacecraft motion control relative to its center 

of mass is done by change of the torque M (external or 

internal, if attitude control is done with use of inertial 

actuators, i.e. powered gyroscopes). Let us assume that 

region of admissible values for the vector M is described by 

the inequality 

                    (3) 

where u0>0 is some positive value specifying power of 

actuators of spacecraft attitude system. In many practical 

modes of reorientation, initial state satisfies condition  (0) = 

0 and final angular velocity must be absent  (T) = 0 (these 

cases occur very frequently, especially if attitude control is 

done relative to inertial coordinate system). The angular 

positions of the initial and final spacecraft attitude with respect 

to the reference basis I are given by the quaternions Λin and Λf, 

respectively. The boundary conditions are: 

,  (0) = 0                                    (4) 

,  (T) = 0                                    (5) 

where T is the time of ending the reorientation process, and 

the quaternions Λin and Λf which specify the position of 

spacecraft’s axes at the initial and final moments of time have 

arbitrary predefined values satisfying the condition ||Λin|| = 

||Λf|| = 1. For optimization of rotation control, quadratic 

criterion of quality (together with time factor) is used [26]. 

Effectiveness of control is estimated by the index 

              (6) 

where k0>0 is a constant positive coefficient. 

The reorientation optimal control problem is formulated as 

follows: spacecraft must transfer from the state (4) into the 

state (5) according to the equations (1), (2) and restriction (3) 

with minimal value of the functional (6) (time T, when the 

spacecraft reorientation maneuver should end, is not fixed). 

The assumed criterion of quality allows us to determine the 

energetically advantageous angular motion trajectory along 

which the spacecraft will turn from its initial position  

into the required final angular position  and find the 

corresponding control mode. Also, the chosen criterion of 

quality provides turn of a spacecraft with the bounded 

rotation energy. 

3. Solution Procedure of the Optimal 

Control Problem 

It is considered, angular velocity projections  are 

controllable variables (for minimization of index (6)). In 

spite of the fact that value of the functional (6) does not 

explicitly depend on the controlling moment M (expression 

(6) does not contain Mi), the proposed problem of optimal 

control is a dynamic rotation problem [1], where the 

moments Mi serve as control functions. The restriction for 

phase variable Λ is insignificant because it is fulfilled at any 

motion about the center of mass); the norm || || of the 

attitude quaternion Λ is constant due to equation (2), || || = 

const [1]. 

For solving the posed problem (1)- (6), the Pontryagin’s 

maximum principle is used [27]. Let  be the conjugate 

variables that correspond to the angular velocities ωi. Since 

the minimized index (6) does not include the position 

coordinates, the universal variables ri can be used (I = ) 

[21]. The Hamiltonian H for the problem (1)- (6) is: 

H = ϕ1 (М1 + (J2 - J3) ω2 ω3) / J1 + ϕ2 (М2 + (J3 - J1) ω1 ω3) / J2 + ϕ3 (М3 +  

(J1 - J2) ω1 ω2) / J3 +                                        (7) 

where ri are [21] 

, 
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ψj are the conjugate variables that correspond to the 

components of the quaternion λj (j = ). 

The function H does not take into account the constraint 
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||Λ|| = 1 since ||  (0)|| = 1. For the universal variables ri, we 

have [21]: 

, ,       (8) 

Change in vector r formed by the universal variables ri is 

given by the solution of the equation 

 

(the symbol × denotes the vector product of two vectors). 

The vector r is motionless relative to the inertial basis I, and 

|r| = const ≠ 0 [21]. The equations for conjugate variables ϕi 

have the form 

 

Therefore, the conjugate system of equations is 

 

                  (9) 

 

where n1 = (J2 – J3) / J1, n2 = (J3 – J1) / J2, n3 = (J1 – J2) / J3 

are the constant coefficients. 

Thus, the problem of finding an optimal control is reduced 

to solving the system of equations of spacecraft’s angular 

motion (1), (2), and equations (8), (9) under the condition 

that the control itself is chosen by maximizing the 

Hamiltonian. The optimal function r (t) is related with Λ (t) 

by the formula 

, where cE =  = const 

The direction of vector cE depends on the initial and final 

positions. In order for the spacecraft to have the required 

attitude at the right-hand end , the vector r (0) 

should be determined by the corresponding solution of 

equation (2). The system of differential equations (8), (9), 

together with the maximality condition of the Hamiltonian H, 

are necessary conditions of optimality. The maximum 

conditions of the Hamiltonian H determine sought solution M 

(t). Boundary positions Λ (0) and Λ (T) determine the 

solutions  (t) and r (t). The boundary problem of the 

maximum principle is to find the value of the vector r (0) for 

which the solution of system of differential equations (1), (2), 

(8), (9) together with simultaneous maximization of the 

Hamiltonian H, at every current moment of time, satisfies 

reorientation conditions (4), (5). 

To find the control function M (t) (the optimal control 

program) and the optimal vector r, the conditions of 

maximum for Hamiltonian H must be formalized. Let us 

rewrite the function H in the form 

H = ϕ1М1 / J1 + ϕ2М2 / J2 + ϕ3М3 / J3 + Hinv 

where Hinv does not explicitly depend on the control 

functions Mi. Let ϕ be the vector with components . If ϕ ≠ 

0, the maximum of the function H for the controls Мi (t) 

under restriction (3) is achieved when 

Mi =                    (10) 

(the case ϕ = 0, in which the Hamiltonian does not explicitly 

depend on the control M, requires additional consideration). 

Further we will demonstrate that M = 0 if 0 (because ϕ = 

0 if 0). The optimal solution is determined by the closed 

system of equations (1), (2), and (8)- (10) considering the 

conditions (4) and (5). Due to the fact that |r| = const = |r (0)| 

≠ 0, for simplicity, the normalized vector p = r / |r| is used, 

|p| = 1. For the vector p, we have , or 

                               (11) 

where pi are the components of the vector p. Note that ri = |r 

(0)|pi. Solution to the system of equations (1) and (8)- (10) 

(under the requirement ω (0) = ω (Т) = 0) has the form 

                                       (12) 

Jiωi = b pi                                         (13) 

where b is a scalar value; а (t) is scalar function of time with 

≤0 (b≥0 for optimal motion ω (t)). 

After substituting solution (12), (13) into the system (9) 

and considering the equations (11) for the derivatives , we 

obtain the identity expressions if p = (2b – r0) p, where r0 = 

|r (0)|. Therefore, the optimal functions а (t) and b (t) satisfy 

the condition  = 2b – r0 (since |p| ≠ 0), from which two 

features follow:  (0) =  (T) = –r0 and b (0) = b (T) = 0 

(due to the requirement ω (0) = ω (Т) = 0). At initial instant t 

= 0, а (0)>0; otherwise M⋅p<0 and b<0 due to the equations 

(1), (10), (12), and <0, a<0 for any t>0. However, in such a 

scenario (when а (0)≤0), the switching is absent (since b≤0 

and <0); the torque М acts in one direction, accelerating 

the spacecraft until ω→∞. Accordingly, at end of 

reorientation maneuver, the condition M⋅L<0 is necessary 

(and M⋅p<0 also) and а (T)<0. The scalar function a (t) is the 

continuous function of time. Therefore, moment of time 

when a (t) = 0 exists. If  = 0 then a (t) = 0, 0, ϕ = 0 

(otherwise the value a (t) does not change a sign, i.e. a (t)>0 

and M⋅L>0 during interval of control [0, T], but such rotation 

does not satisfy the condition  (T) = 0); L is angular 

momentum of a spacecraft (the symbol ⋅ denotes the scalar 

product of vectors). 

From (1) and (13),  = M⋅p. If a (t)>0, we have 

acceleration process. If a (t)<0, we have braking; >0 for 

acceleration phase [0, t1], <0 for braking [t2, T] (since  = 
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2 ). For functions a (t) and b (t), we have the following 

properties: a (Т-t) = -a (t) and b (Т-t) = b (t). 

The equalities (12), (13) are satisfied together. For spin-up, 

the optimal controlling moment M can be calculated by the 

formula 

               (14) 

Optimal torque M and angular momentum L are parallel 

during acceleration phase. Differentiation of left and right 

parts of the equalities (14) gives the following differential 

equations: 

                        (15) 

(angular accelerations  are taken from dynamic equations 

(1)). Rewrite last equations in vector form 

 

The obtained differential equation means immobility of the 

vector M relative to inertial coordinate system. As 

consequence, |M| = const during acceleration stage. For 

optimal braking, the torque M is 

              (16) 

After differentiation of equalities (16) we obtain differential 

equations (15) from which the property |M| = const appears for 

the entire braking stage. Thus, equality |M| = const is satisfied 

for optimal rotation during acceleration and braking phases 

(direction of vector M is not changed relative to inertial basis 

I); i.e. within acceleration and braking segments, optimal 

torque M is the fixed vector relative to inertial coordinate 

system. If relations (13) are fulfilled, then 

 

To be certain of this, let us differentiate the left-hand part 

of the given equality with respect to time considering the 

equations (11) for pi and dependences (13) for components ωi 

of angular velocity. 

 = ω1p2p3 / J3 - ω1p2p3 / J2 + ω1p2p3 / J2 - ω2p1p3 / J3 + ω2p1p3 / J3 - ω1p2p3 / J3 ≡ 0 

For optimal solution (12), the dependences (10) can be 

rewritten in the form 

Mi =  

Thus, when a (t) ≠ 0 and ϕ ≠ 0, the statement |M| = const ≠ 

0 is true, and, therefore,  = const, as well. The torque M 

satisfies the condition (3). Therefore, we can write the 

following relation 

M = m0signa (t) p, where m0 = u0 / C,  

 

For time interval when a (t) = const = 0, the system (9) is 

transformed to the equations , and the relations 

                                   (17) 

are satisfied. Let us find the controlling moments within time 

interval t1<t<t2, during the rotation with a (t) = const = 0. 

Substitute the functions ωi (t) computed by the expressions 

(17) into dynamic equations (1) with taking into account the 

fact |r| = const ≠ 0. As result, all components Mi are Mi = 0. 

Between acceleration phase and braking M = 0 and b (t) = r0 

/ 2. This follows from the analysis of equations (17) that 

show a relation between angular momentum L and the vector 

r of universal variables. The fact that L = r / 2 and |L| = const, 

keeping in mind the immobility of vector r in the inertial 

basis I, implies that the spacecraft’s angular momentum 

vector is constant relative to inertial coordinate system; 

kinetic energy Ek is constant also (  = 0 because M 

= 0). 

From formula (13), we see that b = |L| and direction of 

angular momentum relative to the inertial coordinate system 

is constant. The equations (13) clearly demonstrate that the 

vector p is the unit vector of the spacecraft’s angular 

momentum vector L. Equations (11), together with equalities 

(13), form a closed system of equations which determine 

unique properties of optimal motion; the optimal 

reorientation (in the sense of minimizing the index (6)) is 

performed along the “trajectory of free motion” (the concept 

of “trajectory of free motion” was described earlier [12]). 

The optimal function b (t) is a non-negative piecewise-linear 

function of time: b (t) = 0 for t = 0 and t = T; at t = t1 and t = 

t2, b (t) = r0 / 2. Duration of maneuver T is equal to T = t2+t1 

(since |M| = m0 for acceleration segment and segment of 

braking, and t1 = r0 / 2m0) Optimal motion is determined by 

the system of equations (11), (13), (2) with the conditions (4), 

(5) for solution Λ (t). 

Let us find the proportion between the angular kinetic 

energy Ek and angular momentum L during optimal 

reorientation. Kinetic energy Ek and the value b are related by 

expression 

 

Therefore, the proportion: 
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 (because |M| = const = m0 if 

a (t) ≠ 0). If a (t) = 0, then M = 0, |L| = const and Ek = const. 

The quantities |L| and Ek are the continuous functions, 

therefore, Ek / |L|2 is continuous function of time, and it is 

constant within all three segments of control, hence, this 

proportion Ek / |L|2 = const within entire interval 0≤t≤T. It is 

key property of optimal motion for the criterion (6). 

The Hamiltonian H is independent of time in explicit form, 

i.e. . Therefore, H = const inside the entire interval 

of control 0≤t≤T [28]. From the formula (7), the equality 

 = const 

is obtained for time interval when ϕ = 0. After substitution 

the values ωi calculated by the equations (17) in this equality 

(taking into account the equalities ri = r0pi), the conditions: 

, and  

are satisfied for the times when a (t) = 0 because |r| = const 

(at the segments of acceleration and braking, the above 

mentioned conditions are satisfied automatically, as it follows 

from the equations (14), (15), (16)). 

Thus, the problem of constructing the optimal control is 

reduced to finding such vector p (0) that as a result of 

spacecraft motion, according to the equations (2), (11), and 

(13) with initial conditions (4), the equalities (5) will be 

satisfied. It is virtually impossible to find a general solution 

of this system of equations. A difficulty is to find the vectors 

p (0) and p (T) which are related by the dependence 

                 (18) 

The time of ending the reorientation process is not fixed, 

therefore H (T) = 0; the Hamiltonian H is independent of 

time in explicit form, hence, H = 0 inside the entire interval 

of control 0≤t≤T [28]. Maximum value of kinetic energy Ek 

and modulus of angular momentum (and values a (0) and r0) 

are determined by condition H = 0. At instant t = 0, angular 

velocity ω is zero, the function H is equal to 

 

Hence, the value a (0) for optimal function a (t) is a (0) = 

k0 / (u0C). Accordingly, a (T) is a (T) = -k0 / (u0C). At instants 

when a (t) = 0, the function H is 

 

and b = r0 / 2 if  = 0 (this follows from (17)). From last 

equation, we find the optimal value . It is 

obvious that modulus of angular momentum |L| has maximal 

value Lmax between acceleration and braking. Thus, Lmax is 

determined unambiguously . The found 

magnitude Lmax corresponds to the maximal kinetic rotation 

energy Emax = k0 / 2. Respectively,  if phase of 

uncontroled motion (when M = 0) is not absent. Note, the 

vectors  and p are related as 

                    (19) 

The task of the onboard control system for realization of 

optimal control is to impart the calculated angular velocity to 

the spacecraft at time moment t = 0 and to suppress kinetic 

energy to zero at time moment t = T, when Λ (t) = Λf (after 

the spacecraft reaches its final position Λf). From the moment 

of reaching the necessary initial angular velocity ωcal and 

until the reorientation is finished, when the spacecraft will be 

in the neighborhood of the required position Λf, there is no 

torque M; the spacecraft performs uncontroled rotation (M = 

0), i.e. free motion. Creating the initial angular velocity and 

damping the final rotation happens in an impulse (as fast as 

the spacecraft’s actuators will allow). Between the impulsive 

imparting of angular momentum and the impulsive 

suppressing of angular momentum 

 = k0 / C
2, 

 = k0                    (20) 

Topicality of the solved problem consists in the fact that by 

minimizing index (6) the energy spent to perform spacecraft 

reorientation from position  into position  is bounded 

and maneuver duration T is minimum. Indeed, if consider the 

function , the integral 

 

is minimum for motion according to the law (11), (13) [23]. 

Narrow-mindedness of rotation energy was proven earlier. 

Since f0 is piecewise-linear function of time, duration of 

optimal maneuver is 

                      (21) 

The first term is duration of so-called kinematic control (or 

ideal maneuver) when u0→∞, t1→0, and the equalities (17) 

are satisfied within entire interval of time 0<t<T. This 

duration is minimum because Q is minimal possible value 

since optimal maneuver (in sense (6)) satisfies equations (11), 

(13). Second term is duration of braking under restriction (3) 

(when u0<∞ and u0 ≠ 0). This time is minimal for control (16) 

[22]. Hence, the value (21) is minimal possible value of 

reorientation's time with restriction (3) and condition Ek≤k0 / 

2 for kinetic energy Ek during turn maneuver. We can show 

that the found control (12), (13) is indeed optimum (since the 

functions ϕi and ωi calculated by the formulas (12), (13) are 
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single solution of the system (1), (9), (10), (11) if ω (0) = ω 

(Т) = 0 and ri = r0pi). 

4. Optimal Program of Spacecraft 

Rotation for Special Cases 

We assume that the control non-limited by any restrictions 

is ideal mode (in this case, u0→∞ and t1→0, the braking is 

momentary process also). In ideal motion optimal with 

respect to criterion (6), the spacecraft’s reorientation is 

carried out with zero controlling moment M = 0. 

Constructing the optimal reorientation regime with minimal 

value (6) is non-trivial task. For the optimal reorientation 

problem (constructing the optimal programmed motion  

(t)), it is crucial to find the initial vector p (0) and the 

corresponding angular velocity  (0+) (the angular velocity 

 (0+) is calculated by formulas (19)). The vector p (0) 

depends on reorientation parameters  and the 

spacecraft characteristics J1, J2, J3. For arbitrary values J1 ≠ 

J2 ≠ J3, it is hard to find the solution of the considered 

problem of spacecraft’s three-dimensional reorientation for 

arbitrary values Λin and Λf because the vectors p (0) and p (T) 

are related by (18). Analytical solution of the system of 

equations (2), (11), and (19) exists for dynamically spherical 

and dynamically symmetric bodies only. 

For a spherically symmetric spacecraft (when J1 = J2 = J3), 

the solution p (t),  (t) have elementary form: p (t) = const 

and  (t) = const, or in detail 

, and  

where  are components of the reorientation 

quaternion . 

For a dynamically symmetric spacecraft (for example, 

when J2 = J3), the optimal control problem can be solved 

completely also. For this distribution of mass, the following 

differential equations 

,  

are satisfied under condition . 

Last system of differential equations describes the 

oscillator (with the parameter ω1 = const), for which ω2 and 

ω3 are harmonic functions of time. Therefore, р1 = const = 

р10 and harmonic oscillations of the functions р2 and р3. In 

this special case, the optimal motion is the simultaneous 

rotation of the spacecraft as a rigid body around its axial axis 

OX and around spacecraft’s angular momentum L which is 

constant in the inertial space and which constitutes a certain 

constant angle  with the spacecraft’s axial axis. Angular 

velocities with respect to OX and p axises have a constant 

ratio (as is shown above, the vectors L and p are parallel). 

The solution of system (2), (11), (19), necessary for solving 

the control problem, is regular precession. For the regular 

precession case 

 

where p0 = p (0); e1 is the unit vector of the spacecraft’s axial 

axis;  is the spacecraft’s rotation angle around its axial axis; 

 is the spacecraft’s rotation angle around the vector p, e is 

the quaternion exponential [1]. It is assumed that | |≤ , 0≤

≤ . 

For a dynamically symmetric spacecraft with moments of 

inertia , the solution p (t) is written as follows: 

, ,                                (22) 

where 

 

In this case, the dependences (22), together with equalities 

(19), form a solution of the system of equations (2), (11) 

under condition (13). At the same time, the vector p also 

generates a cone around the axial axis OX in the body-fixed 

coordinate system. The specific value of р0 is determined 

exclusively by the requirement that, according to equations 

(2), (11), (19), boundary conditions (4) and (5) must be 

satisfied. In this type of control, the spacecraft’s angular 

momentum preserves a constant direction in the inertial 

reference basis I, while the axially symmetric body moves 

along a “conic trajectory”. For moving from position Λin into 

position Λf, a spacecraft rotates simultaneously around the 

vector cE, which is constant relative to the inertial basis I, by 

the angle , and around its own longitudinal axis by the 

angle . Using the mathematical formalism of quaternions 

to describe rotations of rigid body about the center of mass, 

relations reflecting a dependence between the values p0, , 

and  are written. The dependence of parameters p0, , and 

 on the boundary angular positions  and  is given 

by the following system of equations: 

, ,  

,  
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For a known reorientation time T, angular rotation 

velocities around the OX and p axises are equal to , 

and  (for ideal mode ). The magnitude 

of angular momentum during optimal rotation is |L| = J2  / 

T. The programmed values of controllable functions  

(projections of the angular velocity vector ) have the 

following form: 

, 

, 

 

where . 

Notice, optimal values p0, , and  corresponding to 

solution of last system of five transcendent equations and 

which correspond to free motion from position  into 

position  can be determined with using the device [30]. 

For a non-symmetric spacecraft (when J1 ≠ J2 ≠ J3), the 

system (2), (11), (19) can be solved by numerical methods 

only (e.g., using the method of successive approximations or 

iterations methods with consecutive approach to true 

solution). To find the vector p0, it is necessary the solving the 

boundary problem , , taking into 

account the equations (1), (2) imposed upon the motion, in 

which Mi = 0. As a result, the value of the angular velocity 

vector at the initial time moment , for which the 

spacecraft is moved by its free rotation with respect to the 

center of mass (M = 0) from the state ,  (0) = 

 into the state  (T) = , will be found (  (T) is 

arbitrary here). In particular, the method of solving the 

boundary problem and determining the vector p0 was 

described in detail in article [12]. The value of the vector p0 

relates to  as 

 

The known algorithms presented in patent [24] and system 

[25] can be used for finding calculated values  and p0 

also. These algorithms [12, 24, 25] are reliable and provide 

asymptotic approaching for sought value p0. Other 

calculation schemes [31-33] can be useful only in some 

specific cases. 

If the moment M is limited, some non-zero time  is 

required for imparting the required angular momentum to the 

spacecraft and for suppressing the existing angular 

momentum to zero. A restriction on the magnitude of feasible 

controlling moment leads to the appearance of intervals with 

non-zero duration when spacecraft increases and decreases 

its angular velocity. 

5. Constructing the Optimal Program 

of Motion Under Restrictions on 

the Controlling Moment for Main 

Types of Control 

In many practical tasks, reorientation is made in situation 

when initial state satisfies condition  (0) = 0 and final 

angular velocity must be absent  (T) = 0 (these cases occur 

very frequently, especially if attitude control is done relative 

to inertial coordinate system). It is obvious, in moments of 

time t = 0 and t = T, angular velocity calculated according to 

the formula (19), corresponding to nominal program of 

optimal rotation maneuver (when Ek = k0 / 2), is not equal to 

zero. Therefore, segments of acceleration and braking at the 

beginning and the ending of reorientation maneuver are 

inevitable. For the optimal motion, spacecraft reorientation 

from one angular position  to another position  is 

done by impulsive imparting the necessary angular velocity 

(the nominal value of the angular momentum vector) to the 

spacecraft, rotation of the spacecraft with the constant kinetic 

energy and modulus of angular momentum, and short-term 

(impulse) reduction of the rotation energy to zero. For 

reorientation maneuver, very important characteristic is 

integral 

S =                                  (23) 

The value of characteristic S is determined only by the 

rotation conditions , , and the spacecraft’s principal 

central moments of inertia J1, J2, J3. If time of reaching the 

calculated angular velocity which is equal to 

 

and duration of suppressing the angular velocity to zero are 

infinitesimal, then duration of reorientation is T =  

because modulus of angular momentum during uncontroled 

motion (between acceleration and braking) is |L| = , 

where the integral (23) is calculated by formula 

 

where tpr is the predicted time of achieving the condition 

 during free rotation from the position 

 with initial angular velocity  (0) =  ≠ 0 

(according to the equations (2), (1) in which all values Mi = 

0). Note, the value S and the vector p0, which satisfy optimal 

motion, are computed together. Remind 
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dynamically symmetric spacecraft, key characteristics and 

the constants of control law are determined straightforwardly, 

without integration of motion equations (1), (2). For a 

spherically symmetric spacecraft, the integral S is 

 

Optimal modulus of angular momentum during 

uncontroled rotation and kinetic energy are 

,  

For an axially symmetric spacecraft (when J2 = J3), the 

integral S, the optimal modulus of angular momentum and 

kinetic energy during uncontroled rotation are 

, , 

 

For zero boundary conditions ω (0) = ω (Т) = 0, in general 

case, maneuver includes two phases during which magnitude 

of the torque М is maximal possible: acceleration and 

braking, and phase of uncontroled motion at which the 

equations (20) are satisfied. This type of control is called 

control with two points of switching (t1 is moment of time 

when kinetic energy Ek achieves level k0 / 2, and t2 is moment 

of beginning of braking). A detailed analysis of the main 

reorientation stages: acceleration, braking, and uncontroled 

spacecraft rotation with the constant kinetic energy and 

angular momentum (relative to inertial coordinate system), 

shows that all three stages have a common property, namely, 

spacecraft rotates along the “trajectory of free motion” for 

which direction of angular momentum remains constant in 

inertial coordinate system. Taking into account that during 

the entire reorientation (on the entire time interval [0, T]) the 

torque M is parallel to the angular momentum vector L (i.e., 

the controlling moment acts in the same direction as L, or in 

the opposite direction, or is equal to zero), we can conclude 

that M×L = 0, and, therefore, there are no reasons for a 

rotation of the angular momentum L in inertial coordinate 

system. Also, the integral (23) does not depend on the 

character of variation of the function |L (t)| if angular motion 

satisfies the system of equations (11), (13) [23], and S is 

equal to the value (23) for ideal mode (for motion according 

to (11), (17), (20)). 

However, there are such situations (under certain values S, 

u0, k0) when the stage of uncontroled motion is absent and M 

≠ 0 within the entire interval of control 0≤t≤T (braking 

replaces acceleration at once). This type of control is called 

as control with one switching. 

If S>k0 / (u0C), then t2>t1 (t2 ≠ t1), time of optimal 

reorientation is ;  (T / 2) = 0. 

If S = k0 / (u0C), then t2 = t1, time of optimal reorientation 

is ; the derivative  (T / 2) = 0. 

If S<k0 / (u0C), then we have control with one switching 

when maximal energy of rotation Emax<k0 / 2, and duration of 

optimal reorientation is ; point of switching is 

t0 = , maximal energy of rotation is Emax = u0SC / 2, 

maximal modulus of angular momentum is , 

therefore, the derivative  (T / 2)<0 (i.e. <0 on the entire 

interval of time 0≤t≤T). 

For spacecraft reorientation with limited control, key 

property of optimal motion remains valid is independent of 

number of switching, proportion ρ = Ek / |L|
2
 for kinetic 

energy Ek and angular momentum L is constant on the entire 

interval of time 0≤t≤T, independently of duration of 

acceleration and braking (independently of presence or 

absence of the uncontroled stage with M = 0). As 

consequence, modulus of torque M is identical for 

acceleration and braking, and it is equal to same magnitude 

 = u0 / C 

In section 3, it was demonstrated that kinetic energy Ek = 

k0 / 2 if  = 0. It is obvious, Ek<k0 / 2 at acceleration and 

braking. Hence, Ek≤k0 / 2 during the entire interval of time [0, 

T] (if S<k0 / (u0C), then Emax = u0SC / 2<k0 / 2 also). Thus, for 

optimal control (in sense (6)) the property Emax≤k0 / 2 is 

satisfied. 

The optimal control functions Mi and angular velocities ωi 

change according to the following laws: 

Mi = 0.5m0 [sign (t0 –t) + sign (t2– t)] pi        (24) 

Jiωi = 0.5m0 (T-t–t0–t–t2) pi        (25) 

where ; t2 = max ( , 

); Т = t0+t2; t0 is moment of acceleration ending; t2 

is moment of the beginning of braking. 

For the less kinetic energy of rotation, duration of braking 

is less. If t2>t0 (i.e. when S>k0 / (u0C)), then we have control 

with two points of switching when phase of rotation with M 

= 0 (between acceleration and braking) is not absent, t0 = t1 

also. If t0 = t2 (i.e. when S≤k0 / (u0C)), then moments of time 

when M = 0, are absent, we have control with one switching 

(braking follows acceleration at once). 

The condition |M|≤m0 is satisfied within the entire interval 

of control. Optimal torque M is parallel to motionless line 

relative to inertial coordinate system, i.e. M = m (t) p. The 

scalar function m (t) is specified as m (t) = M1p1+M2p2+M3p3. 

Control function m (t) is three-positional relay or two-

positional relay if optimum is control with one switching; m 

(t) can be written in the following form: m (t) = m0 if |L|<Lopt 

and t<T / 2; m (t) = -m0 if ; m (t) = 0 if  

(it is obvious that situation m (t) = 0 is absent if τ = T / 2, 

because the condition  is not satisfied). Here, 

, and Lopt is modulus of angular momentum at 

time moment t = T / 2 (or during free rotation if phase of 

uncontroled motion takes place);  is duration of 

acceleration (braking). Note that spacecraft’s angular 

momentum satisfies the inequality |L|≤Lopt for any time t. 

If optimal control program has two points of switching Lopt 
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= ; if optimum is control with one switching Lopt = 

. For optimal control, spacecraft acceleration 

continues until angular momentum is equal to the target level 

 

Thus, it is proven the following conclusion: spacecraft’s 

reorientation occurs with the minimal value of the index (6) 

if and only if the spacecraft rotates according to the law (11), 

(24), (25). If allow a steplike change of the angular velocity 

vector , then the proposed optimal control problem (the 

kinematic reorientation problem) can be considered solved: 

equations (2), (11), and (19) completely define the necessary 

motion  (t), the main moment of forces is zero (i.e., the 

spacecraft’s rotation is an Euler–Poinsot motion of rigid body 

[29]) within interval 0<t<T in which Ek = k0 / 2. 

If  is much less than , the beginning of 

braking will be determined from the fact that the angular 

momentum magnitude |L (t)| changes linearly when angular 

velocity  is reduced to zero. During braking, the modulus 

of the controlling moment is constant, and the time moment 

from which braking will be started is specified by the 

following condition: 

 

where m0 is the maximal controlling moment magnitude that 

can be provided by the actuators of spacecraft’s attitude 

control system;  are the components of the discrepancy 

quaternion ; К = |L (t)| is the current magnitude of 

the spacecraft’s angular momentum. The said condition for 

finding the start moment of braking phase allows the onboard 

control system to form a signal of angular velocity reduction 

based on the information on the current spacecraft position 

and measurements of angular velocity. Use of this condition 

increases the precision of reorientation into final position Λf. 

The assumed criterion of quality supports motion of a 

spacecraft with the bounded kinetic energy of rotation during 

reorientation maneuver. For case τ<<T, the construction 

“acceleration of rotation, the uncontroled rotation, damping 

of rotation” is optimum for optimal control problem (1)- (6). 

Let us assess the relative growth in functional G due to the 

nonzero time it takes to gain and suppress the angular 

momentum. The value G is compared relative to the value 

Gimp which corresponds to the value (6) for ideal mode of 

reorientation (when t1→0 and τ→0). For spacecraft rotation 

along the “trajectory of free motion” wich satisfies the 

system of equations (11), (13), the value (6) is 

            (26) 

because the modulus of angular momentum changes 

according to the linear law during optimal acceleration and 

braking, where Lmax is the magnitude of angular momentum 

at time moment t = T / 2; Timp = S / Lmax; τ = Lmax / m0. Time 

of reorientation end is T = Timp+τ. 

Optimum is such value of Lmax for which the value G is 

minimal. The condition Т>2τ must be satisfied. Hence, 

τ<Timp, and Lmax satisfies the condition Lmax< . The 

value G is absolute minimum if τ = 0 (this value is Gimp = 

). When τ ≠ 0, the value (26) is minimum when 

Lmax = . Therefore, Lopt =  / C is optimal value 

of the parameter Lmax for program of optimal reorientation if 

τ ≠ 0 (if  / u0<Тimp = SC /  or u0SC>k0). If τ>0, the 

value (6) is 

,  

The relative growths in functional G and duration of 

reorientation Т are 

,                  (27) 

where Gimp and Timp are value (6) and duration T for impulse 

control (when τ→0). 

The time  changes from zero to T / 2. When duration of 

acceleration and braking increases, the functions (27) 

increase everywhere within the range 0≤ <T / 2 (note, 

). The minimal value corresponds to the case 

→0. If τ = 0, we obtain ideal maneuver. For control with one 

switching 

,  

Thus, key results are the following: optimal control 

program of spacecraft reorientation was found; it was 

demonstrated that two-impulse control when spacecraft 

rotates by inertia between acceleration and braking is 

optimum in general case; for optimal solution, estimations of 

the relative growth in the functional of quality due to the 

limited controlling moment were done. Other characteristic 

properties of the obtained optimal motion are determined also. 

For a dynamic symmetric spacecraft, a complete solution of 

the reorientation problem in closed form is presented; 

optimal values of control law parameters can be found by the 

device [30]. The obtained control method is differs from all 

other known solutions. Main difference consists in new form 

of the minimized index which allows to turn a spacecraft 

with the bounded rotation energy (maneuver time is 

minimized also). This useful quality is advantage of the 

presented control mode because it significantly saves the 

controlling resources. 

6. Example and Results of 

Mathematical Modeling 

Let us present a numerical solution of optimal control 
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problem for spacecraft reorientation with minimal value of 

the integral (6). As an example, let us consider spacecraft 

reorientation for 180 degree from initial position Λin, when 

body axes coincide with the axes of reference basis I, into the 

target position Λf. It is assumed that initial and final angular 

velocities are zero,  (0) =  (T) = 0. Values of the 

elements of quaternion  that characterizes the target 

attitude of a spacecraft are: 

λ0 = 0, λ1 = 0.707107, λ2 = 0.59, λ3 = 0.39 

Let us find the optimal control program for angular 

velocity  (t) for transferring the spacecraft from the state Λ 

(0) = Λin,  (0) = 0 to the state Λ (T) = Λf,  (T) = 0. The 

constant u0 which characterizes power of actuators is u0 = 

0.2N kg–1 / 2. The inertial characteristics of a spacecraft have 

the values: 

J1 = 77543.7kg m2, J2 = 228466.1kg m2, J3 = 175682.5kg m2 

 

Figure 1. Changing the angular velocities during optimal reorientation 

maneuver. 

 

Figure 2. Changing the components of orientation quaternion  (t) during 

optimal reorientation. 

 

Figure 3. Changing the components of unit vector p in time under optimal 

control. 

 

Figure 4. Changing the scalar function m (t) for optimal control. 

As a result of solving the kinematic problem of 

spacecraft’s reorientation from position Λ (0) = Λin into 

position Λ (T) = Λf (the optimal reorientation problem in the 

impulse setting), the calculated value of the vector p0 = 

{0.485149; 0.126100; 0.865292} and integral S = 401564 N 

m s2 were obtained. According to these calculated values, the 

initial angular velocity is equal to  = {0.599785 ◦ / s; 

0.052913 ◦ / s; 0.472173 ◦ / s}. Iterations method 

guaranteeing successive approach to true value p0 was used 

[12] (in most cases, this method provides asymptotic 

approaching). The maximal value of the controlling moment 

is m0 = 91 N m. Let us find optimal control program if the 

coefficient k0 is k0 = 20 joules. The obtained values S, p0 (and 

C also), and u0, k0 show that S>k0 / (u0C) and optimal 

program is control with phase of the uncontroled rotation. 

The durations of acceleration and braking are the same and 

equal  = 22 s, the angular momentum magnitude within 

stage of rotation by inertia is Lopt = 2002 N m s. Optimal 

changing the controlling moment M is described by the law 

М = u0 [sign ( ) + sign ( )] Λin  p0 Λ / (2C) 

Results of the mathematical modeling of the reorientation 

process under optimal control are given on Figures 1, 2, 3, 

and 4. The duration of reorientation was T = 240 s. Figure 1 

shows the character of changing the angular velocities in the 

spacecraft-related system of coordinates ω1 (t), ω2 (t), ω3 (t) 

with respect to time. At the stage between acceleration and 

braking, the spacecraft rotates with a constant energy Ek = 10 

joules. The value of functional (6), which characterizes the 

cost-efficiency of the rotation trajectory  (t),  (t) after 

spacecraft’s angular motion from position Λin into position Λf, 

has been equal to G = 8200 J s. Figure 2 shows the graphs of 

changes in the components of quaternion Λ (t) that defines 
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the current spacecraft position in the process of the rotation 

maneuver: λ0 (t), λ1 (t), λ2 (t), λ3 (t). Figure 3 shows the 

dynamics of components p1 (t), p2 (t), p3 (t) of unit vector p in 

time. The variables λj and pi are dimensionless quantities. It 

is characteristic that the change in the projection p1 is very 

small in comparison with changes in the projections p2 and p3 

(the angular velocity component ω1 also changes a lot less on 

the interval of free rotation than angular velocity components 

ω2 and ω3). This confirms the fact that the OX axis is 

longitudinal axis. Unlike variables ωi, variables pi and λj are 

smooth functions of time. Finally, Figure 4 shows the 

behaviour of scalar function m (t). It is well visible, the 

change in the function m (t) has relay character. 

7. Conclusion 

The optimal control problem for spatial reorientation of a 

spacecraft from a position of rest to a position of rest is 

considered. The optimization has been performed for case 

when rotation energy integral should be minimized together 

with turn duration. Finding the optimal mode of spacecraft 

reorientation with a minimal value of energy’s “expenditure” 

is quite topical. An analytic solution of the proposed 

problem is presented, formal equations and computational 

expressions for constructing the optimal reorientation 

program were obtained. To solve the formulated problem, 

the maximum principle is applied basing on universal 

variables [21], and use of quaternions significantly 

simplifies computational procedures and reduces the 

computational costs of control algorithm, which makes it 

suitable for onboard realization. The main characteristic 

properties of optimal motion and the type of trajectory, 

which is optimal with respect to the chosen criterion, were 

determined. The reorientation problem has been solved 

completely in dynamic statement. 

In this research, new control method of spacecraft attitude 

is obtained; the used criterion of quality is new and has 

special form what is principal difference from the known 

works. The designed method of spacecraft’s motion control 

was described in detail. The solved problem is very topical 

since the designed control algorithm of reorientation 

maneuver guarantees a motion with rotation energy not 

exceeding the required value which is determined by 

coefficients of the minimized functional. Importance and 

significance of the executed investigations consist in the fact 

that the chosen criterion of quality bounds energy of rotation 

and minimizes reorientation time under this condition. It is 

proved that two-impulse control when spacecraft rotates by 

inertia between acceleration and braking is optimum in 

general case, and the proposed mode of reorientation is best 

relative to the known solutions. Control with one switching is 

special case of optimal rotation (it is critical variant when 

phase of uncontroled rotation is absent, acceleration and 

braking are the adjoining phases). Presence of ready formulas, 

for synthesis of optimal motion program during a slew 

maneuver, does the carried out research as practically 

significant and suitable for direct use in practice of 

spaceflights. 

It was demonstrated that ideal optimal solution is two-

impulse control when spacecraft rotates by inertia between 

jump-like acceleration and jump-like braking. If the 

controlling torque is limited, analytical formulas were written 

for duration of acceleration and braking, and turn's time also. 

It is shown that direction of spacecraft’s angular momentum 

is constant in the inertial coordinate system within the entire 

reorientation interval, and the spacecraft rotates along the 

“trajectory of free motion”. A procedure for implementing 

the control mode is described. We estimated how the 

duration of gaining and suppression of angular momentum 

influences energy costs and turn's time. Expressions for 

computing the temporal characteristics of the reorientation 

maneuver and the condition for finding the deceleration start 

moment based on factual kinematic motion parameters with 

use of terminal control principles are presented, it leads to 

high orientation precision. Example and results of 

mathematical modeling for spacecraft motion under optimal 

control are given. The obtained results demonstrate that the 

designed control method of spacecraft's three-dimensional 

reorientation is feasible in practice. 

Notice, some particular cases of spacecraft maneuver are 

known in recent publications [34-39]. But rotation energy is 

not taken into account in [34-39]. In [35, 36, 38], time of 

reorientation is minimized, and conical motions were 

considered only, and solution is received only for axially 

symmetric spacecraft [36]. In a paper [37], combination of 

time and norm of angular momentum, instead of rotation 

energy, is minimized; the controlling moment M ≠ 0 and 

the vectors M and L are perpendicular in interval of 

nominal rotation between acceleration and braking (we 

recall that the vector M is parallel to the angular momentum 

L or equal to zero for the proposed control); such maneuver 

[37] is not optimum in energy sense or fuel consumption 

because M ≠ 0 within entire interval of time [0, T]. The 

works [35, 38] consider a relay control of a turn in orbit 

plane when final state is gravitationally stable position. 

Note, the solutions [35, 36, 38] are not applicable for the 

general case of three-dimensional turn of arbitrary 

spacecraft; the work [39] describes synthesis of terminal 

reorientation control only for the spacecraft which moves 

along a circular orbit. But the method designed in present 

article is universal control, it does not depend on a ratio 

(proportion) of moments of inertia or final position of a 

spacecraft. The universality of the designed control method 

is proved by the following factors: it does not depend from 

actuators type; mass and size of a spacecraft; configuration 

and distribution of spacecraft's masses; altitude of working 

orbit (and from others, for example, from periodicity of 

reorientation, angle of a turn). Importance of the proposed 

mode of reorientation consists not only in energy aspects 

but in security sense because rotation with energy not 

exceeding the given value allows us to stop rotation of a 

spacecraft within known duration (it is very topical in 

different critical situations). 
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