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Abstract: The purpose of this paper is to investigate the nonlinear partial differential equation, known as potential 
Korteweg-de Vries (p-KdV) equation. We have implemented the Harrison technique that makes use of differential forms and 
Lie derivatives as tools to find the point symmetry algebra for the p-KdV equation. This approach allows us to obtain five 
infinitesimal generators of point symmetries. Fixing each generator of symmetries that we have found, we construct a complete 
set of functionally independent invariants, corresponding to the new independent and dependent variables. Using these new 
variables, called “similarity variables”, the reduced equations have been constructed systematically, which leads to exact 
solutions that are group-invariant solutions for the p-KdV equation. The obtained solutions are of two types. The reduced 
equations from the generator of space and time translation groups are the first and the third order ordinary differential 
equations respectively and lead to the Travelling-invariant solutions. Then, the reduced equation from the generator of the 
Galilean boosts is the first order ordinary differential equation and leads to Galilean-invariant solutions. Under the generator of 
scaling symmetries, the potential KdV equation reduces to the third order ordinary differential equation, which does not admit 
symmetries. And then, there are no functionally independent invariants for that last equation, its solutions are essentially new 
functions not expressible in terms of standard special functions. 
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1. Introduction 

Lie symmetries of differential equations are one of the 
important concepts in the theory of differential equations and 
physics. Among others methods, Lie method is a firm one for 
finding symmetries of differential equations. This method 
was first applied to determine point symmetries (see [8] and 
[12]). In 1969-1970, B. Kent Harrison and Frank Estabrook 
devised a method to calculate symmetries of differential 
equations using differential forms and Cartan’s formulation 
of differential equations [2]. They were simply trying to 
understand how the symmetries of Maxwell’s equations 
could be found from the differential form version of those 
equations. Once they realized that the key to symmetries was 
the use of the Lie derivative, B. Kent Harrison applied the 

method to several others equations such as the one 
dimensional heat equation, the Short wave gas dynamic 
equation and the nonlinear Poisson equation (see [3] and [4]). 
Here we apply this method to the potential KdV equation, 
given as follows 

���� + �(��)� + �� = 0,                          (1) 

where u(x,t) is a function of space x and time variable t; 
subscripts denoted partial derivatives; a is a real constant, 
with a is no vanishing. 

The p-KdV equation is widely used in various branches of 
physics [1]. Exact travelling wave solutions to nonlinear 
evolution equations, particularly which appear in many 
physical structures in solitary wave theory such as solitons, 
kinks, peakons, and cuspons [14], draw considerable interest 
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in recent years in revealing the mechanism of the 
complicated physical phenomena and dynamical processes 
modeled by these nonlinear evolution equations [7]. There 
has been an enormous interest on the study of soliton 
structures that propagate in nonlinear media without 
changing their profile by reason of their potential application 
in many physics areas. Their existence is a result of a delicate 
balance between linear dispersion and nonlinearity. The KdV 
equation has been the subject of extensive studies (see [1], 
[5-7] and [9, 10, 13, 14]). 

The objective of this paper is to apply the differential form 
technique to investigate point symmetries of the p-KdV 
equation, which symmetries will be used to construct 
invariant solutions for the equation. 

Note that in 2008, Mehdi Nadjafikhah and Seyed-Reza 
Hejazi applied the differential form approach to the standard 
KdV equation of the form uxxx + uux + ut = 0 (see [11]). 

The remainder of this work is organized as follows. In 
section 2, we first determine the point symmetries of the 
potential KdV equation by using the Harrison approach. Our 
tools in this method are differential forms and Lie 
derivatives. In section 3, we recall the method to construct 
invariant solutions of a given system of differential 
equations. And finally, we provide invariant solutions of the 
equation (1) in section 4. 

2. The Harrison Method Applied to 

the Potential Korteweg-De Vries 

Equation 

The method proceeds as follow. We consider a set of 
partial differential equations, defined on a differential 
manifold M of n independent variables x = (x1,...,xn) ∈ Rn

 and 
m dependent variables u = (u1

,...,u
m) ∈ Rm

 (n = 2 and m = 1 in 
our special case.) Let X = R2, be the space representing the 
independent variables, and let U = R, representing the space 
of dependent variable. We define the partial derivatives of the 
dependent variable as new variables (prolongation) in 
sufficient number to write the equation as second order 
equation, thus prolonging the manifold M to a manifold N = 
M(2) of the 2nd jet-space X ×U

(2) of the manifold X ×U. The 
independent variables (x,t) ∈ X; the dependent variable u∈U 

and u
(2) = 	(u, �� , �� , ���, ���, ���) ∈U

(2), thus (x,t,u
(2)) = 

(t, x, u, �� , ��, ��� , ���, ���) ∈ X × U(2). The space M(2) is the 
corresponding 2nd

 prolongation of the subspace M ⊂ X × U. 
Then we can construct a set of differential forms. We speak 
of the set of forms, representing the equations, as an ideal I. 

It is to be closed. Then for determining the invariance of the 
differential equations, we may construct the Lie derivative of 
the forms in the ideal I. Lie derivative of geometrical object, 
like tensors, are associated with symmetries of those objects. 
If the Lie derivative vanishes, then the vector V represents 
the direction of an infinitesimal symmetry transformation in 
the manifold. Here the Lie derivative will be denoted by L 
and the forms are our tensors. It is now simple to treat the 
invariance of a set of differential equations. A set of 
equations is invariant if a transformation leaves the equations 
still satisfied, provided that the original equations are 
satisfied. In the formalism we have introduced, this is easily 
stated: the Lie derivative of forms in the ideal must lie in the 
ideal: LV I ⊂ I. Then if the basis forms in the ideal are 
annulled, the transformed equations are also annulled. And 
this should therefore represent symmetries. In practice, this 
means simply that the Lie derivative of each of the (basis) 
forms in I is a linear combination of the forms in I. For 
further details on the method see ([2-4] and [11]). 

In the sequel, we utilize this method to find the Lie point 
symmetries for the p-KdV equation of the form (1). First, 
write the equation (1) as a second order equation by defining 
a new variable w = ux. Thus Eq.(1) becomes 

w�� + ��� + �� = 0                            (2) 

Then, we construct a set of 1-forms on the manifold N as 
follow 

Lemma 2.1. For Eq. (2), the required 1-forms are 

�� = �� − ���� − ���� 

�� = ��� − ����� − ����� 

�� = ��� − ����� − ����� 

Proof. We consider the 8-dimensional manifold 
corresponding to the equation (2), with the coordinates 
( t, x, u, �� , ��, ��� , ���, ��� ). Considering this equation, we 
have the following contact conditions 

�� = ���� + ��	��, 

��� = ����� + �����, 
��� = ����� + �����, 

which lead to the contact 1-forms of Lemma 2.1. 
Then, we have to construct the forms of the ideal I by the 

following 
Lemma 2.2. The ideal I consists of the following 2-forms: 

γ� = (����� − �����)��ᴧ�� + �����ᴧ�� − ����ᴧ��� + �����ᴧ�� − ����ᴧ�� + ��ᴧ��;                             (3) 

γ� = (����� − �����)��ᴧdt+�����ᴧdu-����ᴧ�� + �����ᴧ�� − ����ᴧ�� + ��ᴧ��;                                (4) 

γ� = ((���)� − ������)��ᴧdt+�����ᴧd��-�����ᴧ�� + �����ᴧ��� − �����ᴧ�� + ���ᴧ��;                            (5) 

γ� = ��ᴧd��+��ᴧd��	;                                                                                 (6) 

γ� = ��ᴧd���+��ᴧd���	;                                                                               (7) 

γ = ��ᴧd���+��ᴧd���	;                                                                               (8) 
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γ! = �����ᴧdu-��ᴧdu+	��ᴧd���	.                                                                 (9) 

Proof. The proof of this lemma is straightforward. The forms γ1
,γ

2
,γ

3
,γ

4
,γ

5 and γ6 are obtained from 
Lemma 2.1 as follows: 

γ1 = β1 ∧ β2, γ2 = β1 ∧ β3, γ3 = β2 ∧ β3, γ4 = dβ1, γ5 = dβ2, γ6 = dβ3,                                            (10) 

where ∧ is the wedge product. And form γ7 is obtained from Eq. (1) by noting that 

���� = #$%%
#� , �� = #$

#� , �� =
#$
#� .                                                         (11) 

Now, let 

& = '( )
)� + '* )

)� + '+ )
)$,                                                                     (12) 

be a symmetry generator of the potential KdV equation (1), defined on the (t,x,u) space. The second prolongation of X is the 
vector field 

' = '( )
)� + '* )

)� + '+ )
)$ + '$, )

)$,
+ '$% )

)$%
+ '$,, )

)$,,
+ '$,% )

)$,%
+ '$%% )

)$%%
                   (13) 

that acts on the manifold N, with the coordinates (t, x, u, �� , ��, ��� , ���, ���), where the V 
i
 (i = 1,2,...,8) are smooth functions 

to be determined in N. Write the Lie derivatives of forms in I as linear combinations of themselves as follow: 

-./0 = ∑ 23/3!
34� 	                                                                           (14) 

where the	γ0 	are the forms of Lemma 2.2 and the	23 	are 0-forms (functions), for j = 1, 2, … , 7 
Proposition 2.1. Corresponding to the 2-form γ

1
, the identity 

	-./� = ∑ 23/3!
34� 	                                                                         (15) 

is equivalent to the following system of partial differential equations: 

'$%��� + ��',�$ − ��',�$,  

− λ1 ((����� −�����)) − λ2 ((����� − �����)) − λ3 (���� + ������) − '$,��� 

−��'$,% + (����� − �����)',�� − (����� − �����)',�� +���',�$ = 0 

(����� − �����)',$� +',$,%$ + ���',�� + ���',$$ − ��',$$, + ���',�� − 2���� − 2���� + 2! = 0 

',�$ − (����� −�����)',$� +���',�� + ���',�� + ���',$$ −��',$$, −',�$, − 2���� − 2���� − 2!�� = 0 

(����� − �����)',$,� − '$% + ���',$,$ − ��',�� − ��',$,
$, −��',�� +',�$ + 2��� + 2���� = 0 

−(����� − �����)',$,� −��',�� +���',$,$ − '$, − ��',��−��',$,
$, +',�$ + 2��� − 2���� − 2� = 0 

−(����� −�����)',$%� + ���',$,$ − ��',$%
$, + 2��� + 2���� = 0 

−���',$,� −��',$�−���',$,� −��',$� +',$$ +',$,
$, − 2� = 0 

−���',$%� −���',$%� +',$%
$, − 2� = 0 

(����� −�����)',$,,� +���',$,,$ − ��',$,,
$, = 0 

(����� −�����)',$%� + ���',$%$ − ��',$%
$, + 2��� + 2���� − 2� = 0 
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(����� − �����)',$,%� + ���',$,%$ − ��',$,%
$, − 2� = 0 

(����� −�����)',$%%� +���',$%%$ − ��',$%%
$, − 2 = 0 

−(����� − �����)',$,,� + ���',$,,$ − ��',$,,
$, − 2� = 0 

−(����� −�����)',$,%� + ���',$,%$ − ��',$,%
$, − 2 = 0 

−(����� − �����)',$%%� + ���',$%%$ − ��',$%%
$, + 2! = 0 

−���',$,,� − ���',$,,� +',$,,
$, = 0 

	−���',$,%� − ���',$,%� +',$,%
$, = 0 

−���',$%%� − ���',$%%� +',$%%
$, = 0 

��',$%� + ��',$%� −',$%$ − 2� = 0 

��',$,%� + ��',$,%� −',$,%$ = 0 

��',$,,� + ��',$,,� −',$,,$ = 0 

��',$%%� +��',$%%� −',$%%$ = 0 

Proof. First, expand the left-hand-side of (15) by using some simple features of Lie derivatives of differential forms: 

-.�0 = '0 , -. :ω �ᴧω �; = -. :ω �; ᴧω � + ω �ᴧ-.(ω �),	-.��0 = �(-.�0) = �'0	                      (16) 

Where	�0 	is a coordinate of N and '0 	is a component of V. Expanding the	d'0 	in the resulting expression of -./0 	by the 
usual chain rule (since the '0	are functions in N), using all eight variables, some terms drop out. This is due to the fact that 
��ᴧ�� = 0, ��ᴧ�� = 0, etc., by the antisymmetry of 1-forms and leads to: 

L./� = ('$%��� + ��',��$ − '$,��� − ��'$,% + (����� − �����)',�� + �����)��ᴧ�� 

−�����',���� ∧ �� + (���',�$ − ��',�$, −���',�$ + ��',�$,)�� ∧ �� 

+((����� − �����))',$� +',$,%$ )	�� ∧ �� + (���',�� + ���',$$ −��',$$,)�� ∧ �� 

+(���',�� −',�$,%)�� ∧ �� + (',�$ − (����� − �����)',$� + ���',��)�� ∧ �� 

+(���',�� − ���',$$ − ��',$$, −',�$,)�� ∧ �� + (����� −�����)',$,,� �� ∧ ��� 

−('�� + ���',$%$ −��',�� −��',$,
$, − ��',�� +',�$)�� ∧ ��� + �����',$%� �� ∧ ��� 

+(−�����',$%� + ���',$%$ −��',$%
$,)	�� ∧ ��� − (����� − �����)',$,� �� ∧ ��� 

+(−��',�� +���',$,$ −'$, − ����',�� − ��',$,
$, +',�$)	�� ∧ ��� − �����',$%� 	�� ∧ ��� 

+(�����',$%� + ���',$%$ − ��',$%
$,)	�� ∧ ��� + (−���',$,� − ��',$� − ���',$,� )�� ∧ ��� 
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+(−��',$� +',$$ +',$,
$,)	�� ∧ ��� + (−���',$%� − ���',$%� +',$%

$,)�� ∧ ��� 

+:(����� − �����)',$,,� + ���',$,,$ −��',$,,
$, ;�� ∧ ���� + ��',$,%� �� ∧ ���� 

+>−�����',$,%� +−���',$,%$ − ��',$,%
$, ?�� ∧ ���� + (����� − �����)',$%%� 	�� ∧ ���� 

+(���',$%%$ − ��',$%%
$, )	�� ∧ ����+(−(����� − �����)',$,,� + ���',$,,$ )	�� ∧ ���� 

−��',$,,
$, 	�� ∧ ���� + (−(����� −�����)',$,%� + ���',$,%$ − ��',$,%

$, )	�� ∧ ���� 

+>−(����� −�����)',$%%� + ���',$%%$ − ��',$%%
$, ?�� ∧ ���� − ���',$,,� �� ∧ ���� 

+(−���',$,,� +',$,,
$, )	�� ∧ ���� + (−���',$,%� − ���',$,%� +',$,%

$, )	�� ∧ ���� 

+(−���',$%%� − ���',$%%� +',$%%
$, )�� ∧ ���� + (��',$%� + ��',$%� −',$%$ )��� ∧ ��� 

+(��',$,%� +��',$,%� −',$,%$ )	��� ∧ ���� + (��',$,,� + ��',$,,� −',$,,$ )��� ∧ ���� 
+(��',$%%� +��',$%%� −',$%%$ )	��� ∧ ����.                                     (17) 

And the right-hand-side of (15) is of the form 

∑ 23/3!
34� = (λ1 (����� −�����) + 2�(����� −�����) + 2�(���2 −������))�� ∧ �� 

+(2���� + 2���� − 2!)�� ∧ �� + 2���� + 2���� + 2!��)�� ∧ ��                             (18) 

+(−2��� + 2����)�� ∧ ��� + (−2���−2���� + 2�)�� ∧ ���+(−2��� + 2���� + 2�)�� ∧ ���   
+(−2��� − 2����)�� ∧ ��� + 2��� ∧ ��� + 2��� ∧ ��� + 2��� ∧ ���� 

+2 �� ∧ ���� + 2��� ∧ ���� + 2 �� ∧ ���� − 2!�� ∧ ���� + 2���� ∧ ��� 

Equating the coefficients of basis 2-forms (dx∧dt, dx ∧ du, dt∧du, du∧dut, dut ∧dux, etc.) in both right and left-hand-side of 
System (15), we get the system of Proposition (2.1).  

The (point) symmetries of the potential KdV equation are provided by the theorem billow: 
Theorem 2.1. The symmetry Lie algebra of the potential KdV equation (2) is generated by the five vector fields 

&� = )
)� , &� =

)
)� , &� =

)
)$,  

&� = � )
)� +

�
�@ �

)
)$ , &� =

�
��

)
)� + � )

)�                                             (19) 

−1
3�

B
B� , � ∈ C∗ 

Proof. Here, the reduced equation writes 

w�� + ��� + �� = 0, � ∈ C∗ 

Corresponding to this equation, the forms of the ideal I become 

ϕ
�
= /�,	ϕ

�
= /�,	ϕ

�
= /�,	ϕ

�
= /�	,			ϕ

�
= /�,	/ = ϕ

 
,	ϕ

!
= /!, 

where	/�,	/�,	/�,	/�,	/�,	/ 	and	/!	are given by the Lemma (2.2). And the symmetry condition (14) for the potential KdV 

equation (1) reads 

/0 = 20/0,                                                                      (20) 

This leads to the system of partial differential equations of the form 

−���',$,
$, − ���',$%

$, +⋯− ���',$%
$% − ���',�$% = 0 
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					���'$% − ���'$, −	…	+ (����� − �����)(',�� + '��) = 0 

... 

',$$%% − ���'$% +	…− '�� = 0 

���',�� − ��',$$, −⋯− ���',$,
$, − ���',$%

$, , 

where commas indicate differentiation. From here onwards the calculations proceed in the standard way we arrive at the 
following solution of the system: 

'( = F�� + F�	, '* = �
� �F� + F�� + F�, '+ = �

��F� +
GH
�@ � + F�, 

'$, = −4
3��F� − ��F�, '$% = −2

3��F� +
F�
2�, 

'$,, = −7
3���F� − 2���F�, '$,% = −5

3���F� − ���F�, '$%% = −F���� ,	 

for � ∈ C∗, where C1, C2, C3, C4 and C5 are arbitrary constants, which gives the five vector fields 

'� =
B
B� , '� =

B
B� , '� =

B
B�,	 

'� = � BB� +
1
2� �

B
B� +

1
2�

B
B��

− ��
B
B��

− 2���
B

B���
− ���

B
B���

, '� =
1
3�

B
B� + � BB� 

−1
3�

B
B� −

2��
3 	 BB��

− 4
3	��

B
B��

−	73	���
B

B���
−	53	���

B
B���

−	���
B

B���
. 

Now, it is easy to see that the Lie bracket	['0 , '3]	of vector fields lies in the vector space constructed by {V1,V2,V3,V4,V5}. We 
have 

['�, '�] = �
�@ '�, ['�, '�] =

�
�'�, ['�, '�] = '�, ['�, '�] = '�, ['�, '�] = − �

�'�,  

['�, '�] = − �
�'�,   ( ['�, '�], ['�, '�] , 	['�, '�]	 and 	['�, '�] ) 

are the vanishing brackets. This means that the set of the 
vector fields 	{'� , 	'� , 	'� , 	'�, '�}	 makes a Lie algebra 
construction. The point parts of these vector fields 
correspond to the vector fields of the theorem 2.1. And it is 
easy to check that the third prolongations of these vectors 
vanish the potential KdV equation (1). Hence, {'�} makes a 
set of five parameter symmetry group for the potential KdV 
equation (1). And the theorem 2.1 follows. � 

3. Invariant Solutions 

In this section, we recall the general procedure for 
determining invariant solutions for any system of partial 
differential equations. To begin, let us consider an arbitrary 
system of l (nonlinear) partial differential equations (PDEs) 
of order k 

P: ℛ ν(x,u(k)) = 0,ν = 1,...,l,                  (21) 

involving n independent variables x = (x1,...,xn), m dependent 
variables u = (u1

,...,u
m) and their partial derivatives of order 

up to k w.r.t the independent variables, and ℛ = (ℛ 1,...,	ℛ l) 
is some mapping 

ℛ:S(T) ⟶ℝW , (�, �(T)) ⟼ ℛ(�, �(T)),                         (22) 

where M
(k) is the k-jet space of a space M ⊂ X × U of the 

variables (x,u). 
Let us write the Lie group of transformations associated to 

this system in the form 

�Y = Z(�, �, [), �Y = /(�, �, [)                           (23) 

and suppose the general form of infinitesimal generator V of 
the group (19) be 

' = ∑ \0(�, �) )
)�]

^
04� +∑ _`(�, �) )

)$
a
`4� .             (24) 

The function u = f(x), with components u
α
 = f

α(x) (α = 
1,...,m), is said to be an invariant solution (see [12]) of (21) if 
u

α
 = fα(x) is an invariant surface of (19), and is a solution of 

(26), i.e., a solution is invariant if and only if: 

V>�` − c`(�)? = 0, for	u` = c`(�), (d = 1,… ,e)	 (25) 

R>x, �(T)? = 0	                      (26) 

The equations (21), called invariant surface conditions, 
have the form 
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\�(�, �) )$
g

)�h
+⋯\^(�, �) )$

g

)�i
= _`(�, �), d = 1,… ,e   (27) 

and are solved by introducing the corresponding 
characteristic equations: 

#�h
jh(�,$) = ⋯ = #�i

ji(�,$) =
#$h

kh(�,$)
= ⋯ = #$l

kl(�,$).                  (28) 

This allows to express the solution u = f(x) (that may be 
given in implicit form if some of the infinitesimals ξi

 depend 
on u) as 

uα = Ψα(J1(x,u),...,Jn−1(x,u)), α = 1,...,m.            (29) 

By substituting (29) into (26), a reduced system of 
differential equations involving n−1 independent variables 
(called similarity variables) is obtained (See [8] and [12]) for 
more details. 

4. Invariant Solutions of Equation (1) 

The potential KdV equation is invariant under the five 
point symmetries presented in Theorem 2.1. For each one-
parameter subgroup of the full symmetry group there will be 
a corresponding class of group-invariant solutions which will 
be determined from a reduced ordinary differential equation. 

1) Reduction under X1: 

The vector X�  
x∂

∂=  generates the space translation 

group, with infinitesimals ξ = 1,τ = 0,η = o. To obtain 
invariant solutions of equation (1) from this group, we have 
to solve the system of characteristic equations (28), which 
writes in the form 

#�
n = #�

� = #$
n .                                 (30) 

The integration of (31) leads to the similarity variables 

r = x, s = t, y(s) = u.                          (31) 

Taking u = y(s), the equation (1) reduced to the following 
first ordinary differential equation 

op = 0,                                          (32) 

which leads to the solution 

y(s) = k,                                         (33) 

for k arbitrary constant. In terms of original variables, we 
find that 

u(x,t) = k,                                  (34) 

with k arbitrary constant. Thus, the global invariant solution 
of the potential KdV equation under X1 is an constant. 

2) Reduction under X2. 

Here, equation (1) is invariant under the time translation 
group with infinitesimals ξ = 0, τ = 1, η = 0. Corresponding 
to the system (28), we have to solve the equations 

#�
n = #�

� = #$
n ,                              (35) 

which leads to the following global invariants 

q = �, � = �, ℎ(�) = �                    (36) 

substituting the function u = h(w) in (1), the potential KdV 
equation reduces to the following nonlinear third ordinary 
differential equation 

	ℎps + ℎppp = 0	                           (37) 

This reduced equation is invariant under the group 
generated by the vector 

' = )
)t − ℎ )

)u,                              (38) 

with infinitesimals ξ = 1, η = h. Corresponding to these 
infinitesimals, the system (28) reads 

#t
� = − #u

u .                                     (39) 

Global invariants in terms of w and h are 

z = ln|�|, z = �ℎ, that is   � = {|}, ℎ = |	~
�� , 		  for    � ≠ 0.                                               (40) 

Substituting these expressions in to (37) we find the 
algebraic equation for the potential KdV equation to be 

e−4zφ (z) (φ (z) − 6) = 0                     (41) 

Substituting back according to (36), we find that the 
symmetry X2 yields to the travelling wave solutions for the 
equation (1) that are trivial solution u(x,t) = 0 for all (x,t) ∈ R2 

and depend only on x,	�(�, �) =  
�	for all (x,t) ∈ R2, with	� ≠ 0. 

3) Reduction under X4. 

The infinitesimals for &� are \ = �,			� = 0, _ = �
�@ . 

Integrating the characteristic equations 

#�
� = #�

n = #$
%
s�

,                             (42) 

obtains the similarity variables as follows 

d = �
� ,				� = �, � = 	 �

s

�@� , �ℎ��		��	� = d�, ���		� = `s�
�@ + �(�).                                            (43) 

The reduced equation is simply 

�p = 0,                                                (44) 

which leads to the solution �(β) = C, for C arbitrary constant. 
In terms of the original variables, the general Galilean-

invariant solutions to (1) is provided to be 
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�(�, �� 	 �
�@

�s
� � F,		for � � 0	���		� � 0                  (45) 

4) Reduction under X5 

Let us now deal with the symmetry generator X5 which has 

infinitesimals of the form . The 
caracteristic equations write 

#�%H 	 #�
( 	 #$

|�		H ,                            (46) 

and the corresponding scale-invariant are 

��
�
��q 	 3 ln|�|, / 	 ��3 ,��	/� 	 ��,�r��	��

� 	 {�, � 	 {�H, � 	 ����
��H .

	              (47) 

The reduced equation is the following nonlinear third 
ordinary differential equation 

�ppp 	 � �
� �pp � @

�� �p� � :�@���s � ���
�!�s � �

�!�H; �p � @
�!�H �� � �

��H �                               (48) 

Where	�	is a real-valued constant. Note that Eq. (48) has 
infinitesimals that are all zero 

\��, �� 	 0, _��, �� 	 0	                  (49) 

showing that this ordinary differential equation has no point 
symmetries and hence, no group-invariant solutions. The 
corresponding solutions of the p-KdV equation take the 
general form 

� 	 u� ,%H�� , for    � � 0,                          (50) 

5. Conclusion 

We see that differential forms offer, in some ways, a more 
natural way of calculating symmetries of differential 
equations. With this technique we need only calculate 
prolongation coefficients up to second order and hence, 
obtain the prolongation of the generator X. This leads 
naturally to the point symmetry algebra in investigation. 
Using functionally independent invariants from the 
symmetries that we have found, the reduced equations have 
been constructed for each of generators of these symmetries. 
Exact solutions have been obtained for the p-KdV equation 
that are travelling-invariants and Galilean-invariants. 
Reduction under the generator of the scale-symmetry has not 
been completed because the infinitesimals of the 
corresponding reduced third ordinary differential equation 
are all zero. 
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