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Abstract: Entropy is used to describe the uniform distribution of any kind of energy in space. The more uniform the energy 

distribution, the higher the entropy. When the energy of a system is uniformly distributed, the entropy of the system reaches its 

maximum. Most complex systems can be described to network model, which includes a large number of nodes and complex 

connection relationships, Large number of networks show seemingly unrelated, but exist many striking similarities. According to 

different degree distribution, the network is divided into four kinds: regular network, random network, small-world network, 

scale-free network. Entropy is also a very important indicator which describes the heterogeneity of the networks. The scale-free 

network shows a non-homogeneous nature and a kind of sequence the complex network emerges. There have been some 

researches on using entropy to study complex networks. In the paper, we quantify the scale-free properties of the complex 

network by using the entropy theory and maximum likelihood estimation (MLE). We first review two kinds of entropy and prove 

their consistency; then we investigate the relationship of the parameter estimation among MLE, the moment estimator and the 

entropy of fitness scale-free network; finally, we gain the entropy of random network, which provides theoretical support for the 

practical application of entropy. 
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1. Introduction 

Almost all complex systems can be described to network 

model, which includes a large number of nodes and complex 

connection relationships [1-3], such as various networks in the 

life sciences(cellular networks, protein networks, neural 

networks, ecological networks), Internet network, social 

networks, scientific collaboration networks. Large number of 

networks show seemingly unrelated, but exist many striking 

similarities. According to different degree distribution, the 

network is divided into four kinds: regular network, random 

network, small-world network, scale-free network. In the 

work, we briefly review random network and scale-free 

network. For the network of random equal probability, the 

node degree distribution follows Poisson distribution [4], 

namely,
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= . Afterwards, A. L. Barabasistudied 

the topology structure of WWW network [5] and find its 

properties is more complex than the random network, it turned 

out to be a continuously decreasing curve following the power 

law. It shows there are many web sites which have a small 

links, small number of web sites which have moderate number 

of links and several sites(hubs) which have a large number of 

links. Namely, the structure of WWW network is dominated 

by several sites which have many links [6]. A. L. Barabasi 

called the network to scalefree networks, which degree 

distribution follows 
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ik is the degree 

of the node i  in complex network, γ is the parameter 

measuring network connection. Subsequently, the 

investigation showed the property is not unique to WWW 

network and there is universal significance, such as internet 

router connections [2], journal paper reference networks [7], 

and even sexual contact networks [8]. More recently, people 

generalized the scale-free network and get the fitness 

scale-free network, which degree distribution follows 
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ik ,γ  are similar to those of the scale-free network. 

The scale-free network shows a non-homogeneous nature 

and a kind of sequence the complex network emerges. It is not 

uniform, which degree distribution curve is continuously 

decreasing and the probability connected to other k nodes is 

proportional to 
γ−k . γ characterizes non-homogeneity to 

some extent, γ increases, the decreasing speed of the degree 

distribution curve increases, then the non-homogeneity of 

networks is clearer. 

In addition, the entropy is also used to measure the 

non-homogeneous nature of the network. Shannon [9] first 

introduced the thermodynamic entropy into the information 

theory and see the entropy as the uncertainty of a random 

event and a measure of the amount of information. 

Specifically, if the value of the random variable X  is
ix ,

ni ,...,2,1= ,and }{ ixx = are pairwise incompatible, the 

probability of
ix is

ip , ni ,...,2,1= , 1
1

=∑
=

n

i

ip , Shannon 

proved ∑
=

−=
n

i

ii ppcXH
1
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function satisfied the following conditions: 

(i) H  is the continuous function of
nppp ,...,, 21

, 

(ii) H  get the maximum if and only if 

nppp === ...21
; 

(iii) )()()(
Y

XHYHXH += , where, )(XfY = ,

)(
Y

XH  is conditional entropy of X under the condition we 

know Y. 

At the point, )(XH  is called the entropy of X. Let 1=c , 

people called ∑
=

−=
n
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ii ppXH
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)log()(  to the traditional 

entropy. 

If the distribution of random variable X is continuous, 

which distribution density function is )(xf , the entropy of X 

is defined as follows: ∫−=
R

xfxfXH ))(log()()( , where, 

R is the definition domain of )(xf . 

Since the entropy is introduced, as a measure of the system 

stability [10, 11], it has become an important tool for studying 

the complex system and been extensively studied. For 

example, Cai [12] introduced a Caveman network and its 

evolution rules, the theoretical analysis and simulation 

experiments indicated that the Caveman network can 

effectively evaluated the sensitivity of different structure 

entropies on evolution process of the network and reflected 

the difference of ability to identify the properties of network 

complex of entropy indices. Shen [13] first took the 

micro-blog transmission network evolution as an example and 

applied the macro indicators in the study of the network’s 

micro evolution based on the standard network structure 

entropy as a measurement index of ordering. Li [14] 

introduced four hybrid ratios into the unified hybrid network 

model, which were more in line with the randomness, the 

uncertainty and the variable growing in the real world network. 

Yan [15] proposed a new method for identifying key nodes in 

a complex network by means of combining the idea of the 

entropy weight method into the AHP algorithm. Cai [16] 

considered the difference between “node” and “edge” to 

define a new network structure entropy, and made theoretical 

analyses and the simulation experiments on regular network, 

random network and scale-free network. Zhao [17] proposed 

criteria stability entropy index based on the number of 

nonoverlapping paths for describing the invulnerability 

variation with nonoverlapping paths’ number between nodes. 

Xu [18] proposed a virtual network mapping algorithm based 

on the entropy weight method. Long [19] explored a kind of 

network interaction mechanics process by taking advantage of 

entropy, built the network diffusion’s system complexity of 

finite volume model and discussed the influence of local 

topology and routing capacity on the complexity. Liu [20] 

aligned clauses for Shi Ji ancient and modern parallel corpora 

using maximum entropy model and Back Propagation neural 

network model. He [21] proposed the uncertainty and 

complexity calculation method for network organization 

structure using entropy theory. Li [22] presented a evaluation 

method that can evaluate the switch performance in smart grid 

based on AHP-Entropy method and fuzzy-comprehensive 

evaluation theory. Zhu [23] proposed a computation model for 

network evolution based on entropy theory through 

summarizing the recent study of cooperation network 

evolution and provided more research perspectives for further 

analysis. Cheng [24] studied a novel network attack strategy 

evaluation method based on the conditional Shannon entropy 

and variable precision rough set. According to the diversity of 

micro grid’s topology, through analyzing the theories of 

wavelet transform, singular value decomposition and 

extended shannon-entropy, the wavelet singular entropy could 

measure the fault signal, a fault diagnosis methods for the 

micro grid system was proposed by integrating the wavelet 

singular entropy with the self organizing feature map neural 

network [25]. Because the real-time modeling is difficult on 

thermal system and the model precision is not high and the 

convergence rate of neural network decreases dramatically 

when there are too many inputs, the BP NN modeling method 

based on information entropy was proposed in which the 

attribute reduction based on the model of approximation 

decision entropy was used [26]. The precision of user 

identification is low since the subjective weighting algorithms 

ignore the special meanings and effects of attributes in 

applications, to solve the problem, an information entropy 

based multiple social networks user identification algorithm 

was proposed [27]. Pan [28] developed an adaptive traffic 

classification using entropy-based detection and incremental 

ensemble learning, assisted with embedded feature selection; 

in order to update the classifier timely and effectively, the 

entropy-based detection utilizes sliding window technique to 

measure the statistical difference between the previous and 
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current traffic samples by counting and comparing all 

instances with respect to their feature stream membership. 

Wang [29] studied the entropy theory of distributed energy 

for internet of things.  

In the paper, we study the properties of the complex 

networks by way of entropy. First, we prove the consistency 

between the traditional entropy and the entropy with history 

information in section 2. Then we study the parameter 

estimation of the fitness scale-free network by methods of 

MLE, the moment estimation, the entropy and find the 

relationships among them in section 3. At last, we get the 

traditional entropy of the random network. 

2. Comparison of Entropy 

In order to seek the relationship between the traditional 

entropy and the entropy with history information, we first 

prove the equivalence of solutions of linear transformation 

before and after. 

Theorem 2.1 The solutions of the objective functions which 

satisfies equality constrained linear transformation, namely, 

max aF(x) b st : ag(x) 0

max F(x) st : g(x) 0(i 1,2, ,m)

+ =
⇔ = = ⋯
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Construct Lagrange function for the objective functions
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This is the same as Lagrange partial derivative equation of 

the primary target function. So they have the same solution, 

the equivalence is proved. 

Subsequently, we prove the consistency between the 

traditional entropy and the entropy with history information of 

the complex networks using theorem 2.1. We suppose that the 

historical degree distribution )( ikq is uniform distribution, 

namely, 
N

kq i

1
)( = , where, N is the number of node in the 

complex network. 
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Using the result of theorem 2.1, the theorem is proved. 

From theorem 2.2, we find when the connection probability 

of all nodes in the history information is equal, the entropy 

model with historical information and the traditional entropy 

model are equivalent. Since each network varies, the entropy 

model with historical information shows its superiority. We 

see the historical information )( ikq  as a weight vector, the 

weight vector reflects the connection of different nodes, then 

different explanations for the weight vector produce different 

degree distribution model. The choice of the weight value is 

worth further study. 

3. The Parameter Estimation of 

Fitness Model 

The scale-free network and its generalized model with a 

power-law distribution are important models of studying 

complex systems. The determination of the power-law 

exponent also becomes a focus point both in theory and 

application studies. The linear fitting of empirical data is often 

used for solving the exponent of scale-free distribution, but it 

is not accurate. The following work shows the parameter 

estimation of the scale-free fitness model based on MLE, the 

moment estimation and the entropy. 

TMLE is based on the assumption that what has happened is 

the event originally to occur with the maximum probability. 

MLE of the exponent is the estimation of klog . The 

log-likelihood function of the fitness scale-free model is given 

by 
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Where, )|( kl γ  is the likelihood function ofγ giving the 

observed data Nikk i ≤≤= 1, , and )|( kl γ  is a 

log-likelihood function. The maximum can be obtained by 

finding the zero of the derivative of the log-likelihood 

function. Let 

0
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  (3) 

Then ))|(,( kl γγ  satisfied “Eq. (2)”and “Eq. (3)”is the 

maxima. 

To get the relation between the moment estimator and MLE, 

we let 

YEYkY == ),log(  

And 
Nkkk ,...,, 21

be the observed values of k  in the 

moment estimator, then we have 
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which is equivalent to the result of MLE. 

The above parameter estimate has very limited meaning 

without the analysis and assessment of its goodness of fit. 

Since the entropy obtained by Shannon is finite, we give the 

entropy of fitness model as follows: 
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From the entropy and MLE of the fitness scale-free network, 

we notice that likelihood function L get the maxima, entropy 

H gain the minimal value. On the contrary, when likelihood 

function L get the minimal value, entropy H  gain the 

maxima. 

It is important to notice the relation between the value of 

random variable and the entropy of the distribution. The 

former is a measure of the variation, while the entropy is the 

measure of uncertainty of the probability distribution. The 

entropy is only dependent on the probability distribution and 

has no relation with the random variable value. The two 

concepts are not equivalent except one of them taking the 

value of zero. 

At last, we give the entropy of the random network. During 

the process of calculation, we use the stirling factorial formula 

xxxx −= log!log . In the random network, the degree 

distribution obeys the following probability distribution: 
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We can quantitatively analyze the parameter of random 

network in order to understand the random network better, 

which needs be further studied by methods of the entropy. 

4. Conclusions 

In the paper, we study the traditional entropy and the 

entropy with history information of the complex network and 

get their consistence. Then we compare different ways of 

parameter estimation and find MLE and the moment estimator 

have the same result, but, MLE and the entropy is converse, 

which provides theoretical support for our future study of 

complex systems. We'll continue to study entropy and the 

relationship between different kinds of entropy in the future. 
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