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Abstract 
The kinetics of platinum(IV) oxidation of cadaverine (CAD) in perchloric acid 

medium was studied at a constant ionic strength of 2.0 mol dm
-3

 and at 25°C. The 

oxidation reaction was followed spectrophotometrically. The reaction exhibited a first 

order kinetics in [Pt
IV

] and less than unit order dependences with respect to [CAD] and 

[H
+
]. Increasing ionic strength and dielectric constant decreased the oxidation rate. The 

final oxidation products of cadaverine were identified as 5-aminopentanal and 

ammonia. The oxidation mechanism was proposed and the appropriate rate-law 

expression was deduced. The activation parameters of the second order rate constant 

were evaluated and discussed. 

1. Introduction 

Polyamines are widely distributed in living organisms and are known to be essential 

elements for normal growth and development. Cadaverine (1,5-pentanediamine) is a 

foul-smelling toxic diamine compound produced by protein hydrolysis during 

putrefaction of animal tissue [1]. It is produced in small quantities by living beings. It is 

partially responsible for the distinctive odors of urine. The odor commonly associated 

with bacterial vaginosis has been linked to cadaverine and putrescine [2]. 

Platinum(IV) complexes has remarkable anticancer properties [3-6]. They 

appeared attractive because they are usually substitution inert and require reduction 

to Pt
II
 species to act as potential anticancer drugs. The anticancer activity of 

platinum(IV) complexes may be due to effective Pt
IV

 transport into the cell followed 

by reduction to the more reactive platinum(II) compounds. Several kinetic 

investigations on the oxidation of inorganic and organic substrates using 

platinum(IV) complexes in the form of hexachloroplatinate(IV) as an oxidant, were 

performed in the last decades [7-24]. Hexachloroplatinate(IV) may behave as one or 

two electron oxidant, depending upon the substrate and experimental conditions. The 

literature survey reveals that there were no reports on the kinetics of oxidation of 

cadaverine by any oxidant. Hence, we have investigated the title reaction in order to 

understand the complicated biological reactions in living systems and to propose a 

plausible oxidation mechanism. 
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2. Materials and Methods 

2.1. Materials 

All chemicals employed in this work were of reagent grade 

and their solutions were prepared by dissolving the requisite 

amounts of the samples in doubly distilled water. A stock 

solution of cadaverine was prepared by dissolving the sample 

(Merck) in doubly distilled water. Chloroplatinic acid 

solution (Johnson Matthey) was used without further 

purification. Required solution of the oxidant was freshly 

prepared before each experiment by proper dilution of its 

original solution which was standardized 

spectrophotometrically [25]. 

2.2. Kinetic Measurements 

The kinetic runs were carried out under pseudo-first order 

conditions with cadaverine concentration being greater than 

the platinum(IV) concentration. The ionic strength of the 

reaction medium was maintained constant by addition of 

sodium perchlorate as an inert electrolyte. The progress of 

the reaction was followed by measuring the decrease in 

absorbance of platinum(IV), as a function of time, at its 

absorption maximum, 263 nm. The absorption measurements 

were made in a thermostatted Shimadzu UV-VIS-NIR-3600 

double-beam spectrophotometer. The applicability of Beer’s 

law was verified at 263 nm under the reaction conditions that 

molar extinction coefficient was determined (ε = 13133±261 

dm
3
 mol

−1
 cm

−1
) and was found to be in a good agreement 

with that reported previously [25]. 

The kinetic runs were followed for more than 80% 

completion of the reaction. The observed-first order rate 

constant (kobs) was determined from the gradients of 

ln(absorbance) versus time plots, by considering the initial 

straight line region. The rate constants were reproducible to 

within ±3% and were the average of atleast two independent 

kinetic runs.  The reaction orders with respect to the reactants 

were determined from the slopes of log kobs versus log(Conc.) 

 

Figure 1. Spectral changes in the oxidation of cadaverine by platinum(IV) in 

perchloric acid medium. [CAD] = 6.0 x10-3, [PtIV] = 8.0 x10-5, [H+] = 1.0 

and I = 2.0 mol dm-3 at 25 °C. Scan time interval = 2.0 min. 

plots by varying the concentrations of cadaverine and 

perchloric acid, in turn, while keeping other conditions 

constant. The spectral changes during oxidation of 

cadaverine by platinum (IV) in perchloric acid medium are 

shown in Fig. 1. The figure shows a gradual decrease in 

platinum (IV) absorbance at its absorption maximum with 

time as a result of its reduction to platinum (II) by 

cadaverine. 

3. Result and Discussion 

3.1. Stoichiometry and Products Analysis 

Various ratios of the reaction mixtures containing 

cadaverine and platinum (IV) were mixed at constant acidity 

and ionic strength, then equilibrated for 24 h in an inert 

atmosphere. Estimation of the unconsumed [Pt
IV

] was carried 

out spectrophotometrically. The results showed that one mole 

of platinum(IV) consumed one mole of cadaverine according 

to the following stoichiometric equation, 

H2N(CH2)5NH2 + [PtCl6]
2- + H2O 

→ H2N(CH2)4CHO + NH3 + [PtCl4]
2- + 2Cl- + 2H+     (1) 

where H2N(CH2)5NH2 and H2N(CH2)4CHO are cadaverine 

and its corresponding aldehyde (5-aminopentanal), 

respectively. The product aldehyde was identified by liquid 

chromatography (HPLC) and by spot test [26], and was also 

estimated quantitatively as its 2,4-dinitrophenylhydrazone 

derivative [27], and ammonia was identified by Nessler’s 

reagent [27]. 

3.2. Reaction Rate Dependence on [PtIV] 

To examine the effect of platinum (IV) oxidant on the 

reaction rate, the concentration of platinum (IV) was varied 

in the range of (4.0 – 14.0) x 10
-5

 mol dm
−3

 at constant 

[CAD], [H
+
], ionic strength and temperature. The non-

variation in the observed-first order rate constant at various 

concentrations of platinum (IV) (Table 1) indicates that the 

order with respect to the oxidant is confirmed to be one. 

3.3. Reaction Rate Dependence on [CAD] 

The observed-first order rate constant was determined at 

different initial concentrations of the reductant cadaverine 

while keeping all other conditions constant. The results 

showed that the observed rate constant increased with 

increasing concentration of cadaverine as listed in Table 1. A 

plot of the observed rate constant versus [CAD] was linear 

with a positive intercept confirming less than unit order 

dependence with respect to cadaverine (Fig. 2). 

3.4. Reaction Rate Dependence on [H+] 

The oxidation rate was measured at constant [CAD], 

[Pt
IV

], ionic strength and temperature but with various [H
+
] 

(0.4 – 1.9 mol dm
-3

). The oxidation rate was found to 

increase as [H
+
] increased with less than unit order 
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dependence as the slope of log kobs versus log [H
+
] plot (slope 

= 0.71), Fig. 3. 

 

Figure 2. Plot of the observed-first order rate constant (kobs) versus [CAD] 

in the oxidation of cadaverine by platinum(IV) in perchloric acid medium. 

[PtIV] = 8.0 x 10-5, [H+] = 1.0 and I = 2.0 mol dm-3 at 25°C. 

Table 1. Effect of variation of [PtIV], [CAD], [H+] and ionic strength, I, on 

the observed-first order rate constant (kobs) in the oxidation of cadaverine by 

platinum(IV) in perchloric acid medium at 25°C. 

 

105 [PtIV] 

(mol dm-3) 

103 [CAD] 

(mol dm-3) 

[H+]  

(mol dm-3) 

I  

(mol dm-3) 

105kobs  

(s-1) 

4.0 6.0 1.0 2.0 41.6 

6.0 6.0 1.0 2.0 40.9 

8.0 6.0 1.0 2.0 42.1 

10.0 6.0 1.0 2.0 43.6 

12.0 6.0 1.0 2.0 42.3 

14.0 6.0 1.0 2.0 42.8 

8.0 2.0 1.0 2.0 16.9 

8.0 4.0 1.0 2.0 30.2 

8.0 6.0 1.0 2.0 42.1 

8.0 8.0 1.0 2.0 52.0 

8.0 10.0 1.0 2.0 62.3 

8.0 12.0 1.0 2.0 71.8 

8.0 6.0 0.4 2.0 22.0 

8.0 6.0 0.7 2.0 33.2 

8.0 6.0 1.0 2.0 42.1 

8.0 6.0 1.3 2.0 49.9 

8.0 6.0 1.6 2.0 59.0 

8.0 6.0 1.9 2.0 67.6 

8.0 6.0 1.0 2.0 42.1 

8.0 6.0 1.0 2.5 39.2 

8.0 6.0 1.0 3.0 37.1 

8.0 6.0 1.0 3.5 34.3 

8.0 6.0 1.0 4.0 30.7 

8.0 6.0 1.0 4.5 28.5 

Experimental Error ± 3% 

 

Figure 3. Plot of log kobs versus log [H+] in the oxidation of cadaverine by 

platinum(IV) in perchloric acid medium.[CAD]= 6.0 x 10-3, [PtIV] = 8.0 x 

10-5 and I = 2.0 mol dm-3 at 25°C. 

3.5. Effect of Ionic Strength and Dielectric 

Constant 

The effect of ionic strength on the oxidation rate was 

investigated by varying the concentration of sodium 

perchlorate in the reaction medium at constant concentrations 

of cadaverine and platinum(IV), and at constant pH and 

temperature. It was found that the observed-first order rate 

constants decreased with increase in the ionic strength of the 

medium, and the Debye-Hückel plot was linear with a 

negative slope (Fig. 4). Furthermore, the effect dielectric 

constant (D) was studied by varying the acetic acid – water 

content (0 - 40%) in the reaction mixture with all other 

conditions being constant. The results revealed that the 

oxidation rate decreased with increasing dielectric constant 

of the reaction medium and the plot of log kobs versus 1/D 

was linear with a positive slope as shown in Figure 5. 

 

Figure 4. Debye–Hückel plot in the oxidation of cadaverine by platinum(IV) 

in perchloric acid medium. [CAD]= 6.0 x 10-3,[PtIV] = 8.0 x 10-5, [H+] = 1.0 

and I = 2.0 mol dm-3 at 25°C. 
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Figure 5. Plot of log kobs versus 1/D for the oxidation of cadaverine by 

platinum(IV) in perchloric acid medium.[CAD]= 6.0 x 10-3, [PtIV] = 8.0 x 

10-5, [H+] = 1.0 and I = 2.0 mol dm-3 at 25°C. 

3.6. Effect of Temperature 

In order to determine the activation parameters, the 

oxidation reaction was investigated at five different 

temperatures in the range of 15 – 35 °C. The oxidation rate 

was found to increase with raising temperature. The 

activation parameters of the second order rate constants (k2) 

were calculated using Arrhenius and Eyring plots and 

were listed in Table 2. 

Table 2. Activation parameters of the second order rate constants k2 in the 

oxidation of cadaverine by platinum(IV) in perchloric acid medium. [CAD] 

= 6.0 x 10-3, [PtIV] = 8.0 x 10-5, [H+] = 1.0 and I = 2.0 mol dm-3. 

∆S≠, J mol-1K-1 ∆H≠, kJ mol-1 ∆G≠
293, kJ mol-1 Ea

≠, kJ mol-1 

-97.08 37.43 66.36 39.78 

3.7. Polymerization Test 

The intervention of free radicals during the oxidation 

reaction was investigated by polymerization test. The 

reaction mixture to which a known quantity of acrylonitrile 

scavenger was initially added and was kept for 24 h in an 

inert atmosphere. On diluting the mixtures with methanol, no 

white precipitate was formed thus confirming the absence of 

free radical intervention in the reaction. 

3.8. Reaction Mechanism 

It was reported [28] that platinum(IV) species exist as 

[PtCl6]
2-

 in acid medium, which assumed to be the principal 

reactive oxidant. Reduction of [PtCl6]
2-

 generally proceeds 

according to the equation: [PtCl6]
2-

 + 2e
-
 = [PtCl4]

2-
 + 2Cl

-
. 

In this redox process, octahedral Pt
IV

 is reduced to square 

planner Pt
II
 with release of two Cl

-
 ions. Therefore, this 

reaction is better classified as reductive-elimination reaction 

[29]. There are two suggested alternative reaction 

mechanisms for the oxidation by hexachloroplatinate (IV). 

The first mechanism involves a simultaneous two-electron 

transfer in a single step. The second one involves two 

successive one-electron transfer steps. If the transition states 

of reductant and/or oxidant are unstable, a simultaneous two-

electron transfer mechanism may be suggested such as that in 

the case of oxidation of uranium (IV) by [PtCl6]
2-

 [30]. In the 

present study, addition of acrylonitrile monomer to the 

reaction mixture failed to give polymerized products. It may 

be that the free radical like Pt
III

 species is too short-lived to 

interact with acrylonitrile to give the polymerized product 

under our experimental conditions. Consequently, the two-

electron transfer mechanism seems plausible. 

The present reaction between cadaverine and platinum(IV) 

in perchloric acid medium has a stoichiometry of 1:1. The 

reaction exhibited a first order kinetics on [Pt
IV

], less than 

unit order dependences with respect to [CAD] and [H
+
]. The 

observed enhancement of the oxidation rate upon increasing 

acid concentration with less than unit order dependence 

suggests that the protonated form of cadaverine substrate 

(CAD
+
) may be considered as the kinetically reactive species 

in the rate-determining step, which play the main role in the 

reaction kinetics. The less than unit order dependences with 

respect to cadaverine concentrations suggests formation of an 

intermediate complex between cadaverine and platinum(IV) 

prior to the slow step. Complex formation was proved 

kinetically [31] by the non-zero intercept of the plot of 1/kobs 

versus 1/[CAD] (Fig. 6). Also, decreasing the oxidation rate 

with increasing ionic strength and dielectric constant of the 

reaction medium confirms that the reaction in the rate-

determining step occurred between two ions with unlike 

charge [32, 33], i.e. between [PtCl6]
2-

 and CAD
+
. The failure 

of the spectrophotometric detection of such intermediate 

complex (Fig. 1) may be interpreted by either lower 

concentration of the reactants used and, hence, the expected 

lower absorbitivity of the formed complex and/or the fast 

subsequent decomposition of the intermediate in comparison 

to its formation. 

Owing to the experimental results and the above-

mentioned arguments, the suggested oxidation mechanism 

involves protonation of cadaverine in the first step followed 

by combination of protonated cadaverine (CAD
+
) with the 

kinetically active species of platinum(IV), [PtCl6]
2-

, to form 

an intermediate complex (C). Such complex slowly 

decomposes to give rise to the oxidation product of 

cadaverine as depicted by the following equations, 

H2N(CH2)5NH2 + H+ K1  H3N
+(CH2)5NH2      (CAD+)                                                  (2) 

H3N
+(CH2)5NH2  +  [PtCl6]

2- K2  [H3N(CH2)5NH2. PtCl6]
-      (C)                                         (3) 

[H3N(CH2)5NH2. PtCl6]
-  +  H2O  

��

����
��	  H2N(CH2)4CHO + NH3 + [PtCl4]

2- + 2Cl- + 2H+                           (4) 

The suggested mechanism leads to the following rate-law expression, 

12 14 16 18 20
-3.40

-3.35

-3.30

-3.25

lo
g
 k

o
b

s

10
3
 (1/D)
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Rate = 
dt

d ]PtCl[
-2

6−
 = 

])H][CAD[1])(H][PtCl[]H[1(

 ]][CAD][HPtCl[

21

-2

6211

-2

6211

+++

+

+++ KKKKK

KKk
                                      (5) 

In view of low concentration of [PtCl6]
2-

 used, the term 

K1K2[PtCl6
2-

][H
+
] in the denominator of Eq. (5) can be 

neglected. Therefore, Eq. (5) becomes 

Rate = 
])H][CAD[1])(H[1(

 ]][CAD][HPtCl[

211

-2

6211

++

+

++ KKK

KKk             (6) 

The rate law is consistent with all the observed orders with 

respect to different species. 

Under pseudo-first order condition 

Rate = 
dt

d ]PtCl[
-2

6− = kobs[PtCl6
2-

]                    (7) 

Comparing Eqs. (6) and (7) and rearrangement, we obtain, 

C
KKk

K

k
+







 += +

+

[CAD]

1

]H[

][H11

211

1

obs

                      (8) 

where C = (1+K1[H
+
])/k1. 

According to Eq. (8), the plot of 1/kobs versus 1/[CAD], at 

constant [H
+
], and 1/kobs versus 1/[H

+
], at constant [CAD], 

should be linear with positive intercepts on the 1/kobs axes as 

were observed experimentally as shown in Figures 6 and 7, 

respectively. 

On the other hand, the obtained negative value of ∆S
≠
 

indicates that there is a decrease in the randomness during the 

oxidation process. This leads to the formation of compacted 

intermediate complex and such activated complex is more 

ordered than the reactants due to loss of degree of freedom 

[34]. Again, the negative values of both ∆H
≠
 and ∆G

≠
 

indicate the exothermic formation of the intermediate and its 

spontaneity, respectively. 

 

Figure 6. Plot of 1/kobs versus 1/[CAD] in the oxidation of cadaverine by 

platinum(IV) in perchloric acid medium. [PtIV] = 8.0 x 10-5, [H+] = 1.0 and I 

= 2.0 mol dm-3 at 25°C. 

 

Figure 7. Plot of 1/kobs versus 1/[H+] in the oxidation of cadaverine by 

platinum(IV) in perchloric acid medium. [CAD] = 6.0 x 10-3, [PtIV] = 8.0 x 

10-5 and I = 2.0 mol dm-3 at 25°C. 

4. Conclusion 

The kinetics of oxidation of cadaverine by platinum(IV) in 

perchloric acid medium was studied spectrophotometrically. 

The final oxidation products of cadaverine were identified as 

5-aminopentanal and ammonia. The oxidation mechanism 

was proposed and the appropriate rate-law expression was 

deduced. The activation parameters of the second order rate 

constant were evaluated and discussed. 
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