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Abstract 
This paper focuses on the estimation of bending strengths in earlywood and latewood 
growth rings of three refractory wood species such as white spruce (Picea glauca), 
eastern hemlock (Tsuga canadensis L.) and soft maple (Acer rubrum) wood samples by 
near infrared (NIR) spectroscopy. Wood samples were heat thermally treated in the deep 
fryer with vegetable oil at 220oC during 120 minutes. For earlywood zones, calibration 
R2 achieved 0.44 and 0.63 in Spruce and Hemlock, respectively. The root mean square 
error (RMSE) ranging from 9.25 to 12.90MPa for all the species and relative percent 
difference (RPD) ranging from 1.0 to 1.6 in Spruce, Hemlock and Maple. For latewood 
zones, validation statistics R2 achieved 0.27 and 0.32 in Spruce and Hemlock, 
respectively. RMSE ranging from 10.177 to 18.27MPa for all the three wood species, 
and RPD ranging from 1.2 to 1.5 for all the species. The NIR prediction results confirm 
that chemical reactions in wood sites resulting from the heat treatment account for the 
maximum amount of flexure stress that were related to main peaks of spectra data using 
1100-2200nm region of the three wood species, while the oil absorbed by wood reduces 
the sensitivity of NIR reflectance. 

1. Introduction 

Earlywood (Ew) and latewood (Lw) tracheids are principal components of wood 
structure that involved mechanical properties of all wood fibers in the basic cell 
morphology (Mott et al. 2002; Via et al. 2003 and 2005; Carneiro et al. 2010). 
Mechanical properties of individual fibers are known to be reduced proportionally with 
the hygroscopicity after a thermal treatment of wood, however, many other properties of 
the wood enhances significantly as for example the resistance against non-biotic agents 
(UV, Oxidation…) and biotic agents of wood-degradation (biological attack…) 
(Tjeerdsma et al. 1998; Sailer et al. 2000; Lyon et al. 2007; Gérardin et al. 2008; 
Mounanga 2008; Salman et al. 2014). Among the existing thermal modification of wood, 
the oil-thermally treatment has one of the best heat transfer media as well as a good 
potential carriers for other substances (Jamsa and Viitaniemi, 2001; Militz and  
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Tjeerdsma, 2001; Poaty et al. 2010). In order to further 
enhance the benefits of this treatment, we focus on the 
thermal treatments using one type of hot oil in this project, 
with a variance of the original idea from oil-heat treatment in 
Germany (OHT-Process)(Shin and Lee, 2000; Rapp and 
Sailer, 2001; Militz 2002). Thermally treated wood is also 
used to defects in service that is especially attractive for 
refractory wood species like spruce (Picea) and fir (Abies) 
which are difficult to penetrate with wood preservatives or 
chemical modification agents (Hein et al. 2011; Wang and 
Copper, 2005; Mohebby et al. 2014; Mounanga 2015). A 
good understanding of relationship between mechanical 
properties and radiance absorption of wood-oil-thermally 
treated is comparatively new concept including while the 
influence of chemical reactions in the wood sites with regard 
to contribution of defects to variation in fiber properties, 
which are not well documented and less understood 
(Hoffmeyer and Pedersen, 1995; Mott et al. 1996; Kohan et 
al. 2012). The potential of near infrared spectroscopy (NIRS) 
as a method to rapid non-destructive analysis and to predict 
wood chemical composition based on the spectral absorption 
properties of chemical components on the wood surface is 
also of interest (Bailleres et al. 2002; Watanabe et al. 2011; 
Mounanga et al. 2008; Leblon et al. 2013). NIRS has been 
used to predict and estimate wood physical and mechanical 
properties, moisture content, surface colour, contact angle, 
adhesive bond strengths in loblolly pine (Pinus taeda) wood 
products, trembling aspen (Populus tremuloides Michx.) 
stands, Eastern black spruce (Picea mariana var. mariana) 
wood products, European larch and radiate pine (Pinus 

radiate) wood products (Meder et al. 2002; Gindl et al. 2004; 
Kelley et al. 2004; Tsuchikawa et al. 2005, Koumbi-Mounanga 
et al. 2015b,c). 

This study provides informations on the prediction of 
bending strengths of oil thermal treatment of white spruce 
(Picea glauca), eastern hemlock (Tsuga canadensis L.) and 
soft maple (Acer rubrum) wood samples by near-infrared 
(NIR) spectroscopy. We related the NIR reflectance spectra 
date collect from earlywood and latewood growth rings of 
three wood species to multivariable analysis through partial 
least square (PLS) regression method and sample specific 
standard error of prediction, which may serve to prevent and 
improve the durability of wood thermal treatments for 
suitable indoor and outdoor applications. 

2. Materials and Methods 

2.1. Sample Preparation for Oil-Heat 

Treatment 

Wood samples used in this investigation were white spruce 
(Picea glauca), eastern hemlock (Tsuga canadensis L.) and 
soft maple (Acer rubrum) wood samples, acquired green 
from a local lumbers supplier and then cut in true 
radial/tangential orientation with dimensions of 25mm (radial) 
x 25 mm (tangential) x 10mm (longitudinal), which were a 

relative humidity (RH) > 2% prior to heat treatment in 
commercial soy oil (from Brunge Canada) at 220oC for 2h, in 
an oil bath (Fisher HiTemp Bath Model 160). Some wood 
samples were left as untreated control samples and the entire 
sample sets (treated and untreated) were kept as conditioned 
in a chamber at 103oC for 24h, and then at 26oC for the 
duration of the experiment in order to remain around their 
equilibrium moisture content with constant weights as 
described in Stamm (1969). 

2.2. Mechanical Testing 

The bending tests were conducted on the wood samples 
using a Zwick-Roell load frame equipped with 10 kN load 
cell and computer-controlled screwdriver crosshead over 
three-point setup with a loading rate of 4.0mm/min, and 
support separation of 75 mm in EW/LW spots as described 
by Biblis (1969). 

2.3. Spectral Measurements 

NIR spectral data were manually acquired from each wood 
wafers (RH=0-2%) with an Ocean optics Inc. Labspec® 

256-HL-2000 NIR spectrophotometer (Ocean optics Inc., 830 

Douglas Ave, Dunedin, FL34698 USA) equipped with an 
optical probe positioned on the top of the sample in 2 mm 
diameter beam. The instrument has a spectral resolution of 2 
nm and was calibrated manually for white/dark after every 
triplicate measurement. Each wood sample was scanned both 
faces three times at successively various EW/LW zones on a 
flat surface (bark-side up and bark-side down) as described in 
Mounanga et al (2012). 

2.4. Data Processing 

The data processing was done using the Unscrambler® 9.8 

(CAMO software. Inc., 1 North Cir., Woodbrige, NJ 

07095-2105, USA). All the reflectance spectra acquired over 
the whole wavelength range (1100-2400nm) were smoothed 
by applying a second derivative 13pt Savitzky-Golay 
transformation and then were related to bending strengths by 
the partition to latent structures-PLS regression method and 
sample specific standard error of prediction (Geladi and 
Kowalski, 1986; Esbensen et al. 2002; Faber et al. 2003). 

3. Results and Discussion 

3.1. NIR Spectra 

Figure 1 shows the visible-NIR reflectance spectral 
comparison in earlywood and latewood tissues of 
oil-thermally wood and control samples for white spruce 
(Picea glauca), eastern hemlock (Tsuga canadensis L.) and 
soft maple (Acer rubrum). The global trend could be 
interpreted as a decreasing of NIR reflectance of Spruce, 
Hemlock and Maple, whereas, earlywood/latewood untreated 
and treated sample zones were differently affected. The main 
areas of absorption were clearly identified the fundamental 
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(first, second and third overtones) stretching absorptions and 
the combination bands of vibrational transitions in infrared 
region, mainly C-H (hydrocarbons…), C=O (cellulose, 
hemicelluloses…); O-H (water, alcohol, phenol…) and N-H 
(lignin…) functional groups (Oye and Okayama, 1989; 
Cozzolino and Murray, 2003; González-Martı́n et al. 2003; 
Schwanninger et al. 2011). These series of overtones were 
generated by the hot treatment, which reduced the reflectance 
gradually from 95 to 55%. The heights of the main peaks 
decreased with oil absorption resulted from heat treatment 
and cooling duration for all the species as was described for 
measuring (earlywood/latewood) contact angles of 
Douglas-fir (Pseudotsuga menziesii var. menziesii) and 
trembling aspen (Populus tremuloides Michx.) veneers by 
Koumbi-Mounanga et al (2013, 2015a). The effect on NIR 
reflectance spectra was more evident by applying a second 
derivative Savitzky-Golay transformation represented in 

Figure 2. The overlapping overtones of transformed NIR 
spectral were also generated by the hot treatment that 
revealed some singular areas of absorption, mainly at 
1320-1350nm and 1720-1750nm wavelength regions for 
spruce; 1330-1360nm and 1620-1650nm region for hemlock, 
and 1520-1550nm and 1625-1655nm regions for maple; thus 
differenced earlywood/latewood untreated to treated as well 
as identified one specie to each other. The decreased 
absorption previously mentioned might be induced by the 
degradation of the wood chemical components such as lignin 
and hemicelluloses including carbohydrates and 
deacetylation reactions of polyoses. In fact, the wood had 
reached over 200oC during the hot treatment; above this 
temperature is conditioned to change the wood properties 
with regard to the degradation of its components (Beall and 
Eickner, 1970; Lee and Luner, 1972; Mitsui et al. 2008; 
Sidorova 2008; Bachle et al. 2010). 

 

Figure 1. visible-NIR spectra for white spruce (Picea glauca), eastern hemlock (Tsuga canadensis L.) and soft maple (Acer rubrum) wood samples in the 

earlywood (EW)/latewood (LW), which were oil thermally treated/untreated. Each spectrum represents an average of 6 spectra. 
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Figure 2. NIR spectra after 2nd derivative transformation (d2A/dλ2) of white spruce (Picea glauca), eastern hemlock (Tsuga canadensis L.) and soft maple 

(Acer rubrum) wood samples in the earlywood (EW)/latewood (LW), which were oil thermally treated/untreated. Each spectrum represents an average of 6 

spectra. 

3.2. PLS Regressions and Bending Strengths 

Figure 3 shows the bending stress estimation to 
earlywood/latewood zones of Spruce, Hemlock and Maple. 
Regardless of the impossibility to isolate and test separately 
in bending strengths (BS) of earlywood (EW) and latewood 
(LW) from those individual species, especially for Spruce 
latewood, the scans conducted at different LW/EW zones 
were related to average BS values from the wood wafers at 
the EW/LW zones as represented in some data which might 
suggest that hypothesis. This should also explain the fact that 
the latewood BS values were not much higher than for 
earlywood as expected. 

The thermal treatment affect equitably the wood tissues by 
reducing all bending strengths measured in 
earlywood/latewood when comparing the treated and 
untreated wood samples of all the three species. 

Although oil-treated wood samples are not advised for 
mechanical properties usage, it was possible to make some 
general observations with the combined (treated/untreated) 
and earlywood/latewood tissues of three wood species (Gindl 

et al. 2001; Via et al. 2009). 
Figure 4 presents the PLS regression models for earlywood 

(EW) zones of Spruce, Hemlock and Maple, that were built 
using the averaged (6 spectra) and normalized (1 to 100%) 
reflectance data acquired in the 1100-2400nm region. The 
statistics are shown in Table 1. In the same context, Figure 5 
shows the PLS models for latewood (LW) zones of the three 
wood species. The related statistics are shown in Table 2. The 
regression models built in EW were quite different than those 
conducted in LW. All the PLS models in EW were able to 
provide good correlation (r) ranging from 0.42 to 0.79 
between the measured and predicted bending stress for 
validation and calibration. Except the correlation on Maple 
were not significant r=-0.009 (p-value>0.9977) for validation 
(Figure 5). The relative percent difference ranging from 1.0 
to 1.6 for all the wood species. Only the prediction performed 
in calibration (EW/LW treated/untreated) for eastern hemlock 
(Tsuga canadensis L.) wood samples were very statistically 
significant (p-value> 0.0022 and 0.0083 in EW/LW, 
respectively). Kohan et al (2012) found significant results on 
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the prediction of bending strengths of wood strands with R2 
ranging from 0.35 to 0.76, and SE ranging from 0.62 to 
13.9MPa. They related that fact to the flexure properties from 
differences in anisotropic and non-homogenous of wood 
tracheids within juvenile aspect. This was defined closely the 

weakest zones of the wood thermally treated in reducing 
mechanical properties of the entire wood material (Salim et 
al. 2010; Thumm and Meder, 2011; Hein and Brancheriau, 
2011). 

 

Figure 3. Distribution of the bending strengths (B.S. in MPa) of earlywood (EW) and latewood (LW) for white spruce (Picea glauca), eastern hemlock (Tsuga 

canadensis L.) and soft maple (Acer rubrum) wood samples. For each probe, values sharing the same letter (α, β, γ, δ, ε, λ, µ) are not significantly different at 

the 5% level of confidence. 
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(c) Earlywood Maple 

Figure 4. Partial least square (PLS) regression model of earlywood (EW) 

for white spruce (Picea glauca), eastern hemlock (Tsuga canadensis L.) and 

soft maple (Acer rubrum) wood samples. Each dot represents an average of 

6 spectra for calibration and validation set. The related statistics are 

presented in Table 1. 

 

(a) Latewood Hemlock 

 

(b) Latewood Spruce 

 

(c) Latewood Maple 

Figure 5. Partial least square (PLS) regression model of latewood (LW) for 

white spruce (Picea glauca), eastern hemlock (Tsuga canadensis L.) and soft 

maple (Acer rubrum) wood samples. Each dot represents an average of 6 

spectra for calibration and validation set. The related statistics are 

presented in Table 2. 

Table 1. Statistic parameters of the linear relationship of Figure 4, over PLS regression (calibration & validation) model for earlywood of white spruce (Picea 

glauca), eastern hemlock (Tsuga canadensis L.) and soft maple (Acer rubrum) wood samples: (a) Spruce, (b) Hemlock and (c) Maple. n represents the number 

of pairs that correspond to the average of 6 spectral scans. 

Species Slope Intercept RMSE (%) SE (%) Bias (%) R2 RPD p-value n 

Calibration 
a) 0.44 53.58 12.90 13.94 -1.09e-06 0.44 1.3 0.2753 7 
b) 0.63 21.07 9.26 9.50 6.10e-06 0.63 1.6 0.0022 20 
c) 0.24 104.18 10.51 11.07 7.63e-07 0.24 1.1 0.4772 10 
Validation 
a) 0.40 59.37 18.09 19.70 1.49 0.18 1.1 0.6697 7 
b) 0.46 31.20 13.12 13.45 0.60 0.31 1.2 0.1714 20 
c) 0.034 131.84 13.37 14.08 -0.39 0.001 1.0 0.9977 10 
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Table 2. Statistic parameters of the linear relationship of Figure 5, over PLS regression (calibration & validation) model for latewood of white spruce (Picea 

glauca), eastern hemlock (Tsuga canadensis L.) and soft maple (Acer rubrum) wood samples: (a) Spruce, (b) eastern hemlock and (c) soft maple. n represents 

the number of pairs that correspond to the average of 6 spectral scans. 

Species Slope Intercept RMSE (%) SE (%) Bias (%) R2 RPD p-value n 

Calibration 

a) 0.45 63.01 12.83 13.86 -1.09e-06 0.45 1.3 0.2632 7 

b) 0.56 25.45 10.18 10.44 -5.72e-06 0.56 1.5 0.0083 20 

c) 0.18 112.58 10.92 11.51 7.63e-07 0.18 1.1 0.5964 10 

Validation 

a) 0.36 61.76 17.19 18.55 0.84 0.27 1.2 0.5178 7 

b) 0.41 33.83 13.25 13.59 0.29 0.32 1.2 0.1573 20 

c) 0.05 143.09 14.24 14.99 -0.60 - - - 10 

 

3.3. Sample-Specific Standard Errors of 

Prediction 

Sample-specific standard errors of bending strengths 
prediction were shown in Figure 6. Average standard 
deviation values were in a similar range for all the three 
wood species; they were: 23.62 and 24.26 in Spruce (EW/LW 
treated/untreated), respectively; 23.64 and 19.86 in Hemlock 
(EW/LW treated/untreated), respectively; and 15.59 and 
15.83 in Maple (EW/LW treated/untreated), respectively. 
Whereas, the related maximum bending strengths prediction 
values were: 115.28MPa (EW treated) and 123.21MPa (EW 
untreated), 107.9MPa (LW treated) and 123.21MPa (LW 
untreated) for Spruce; 93.01MPa (EW treated) and 86.55MPa 
(EW untreated), 86.93MPa (LW treated) and 86.55MPa (LW 
untreated) for Hemlock; 135.19MPa (EW treated) and 
153.52MPa (EW untreated), 144.4MPa (LW treated) and 
153.52MPa (LW untreated) for Maple. 

The sample-standard errors of prediction of bending stress 
in all the three samples trended to underestimate the 
prediction in EW/LW similarly for treated and untreated 
wood samples. In EW/LW for Hemlock were again 
over-estimated. These prediction results were performed 
lower than the observations found by Faber and Bro (2001) 
and Koumbi-Mounanga et al (2015b), which were assessed a 
standard deviation of Gaussian peaks ranging from 3 to 5. 

 

(a) Latewood 

 

(b) Earlywood 

Figure 6. Sample-specific standard error of prediction for white spruce 

(Picea glauca), eastern hemlock (Tsuga canadensis L.) and soft maple (Acer 

rubrum) wood samples. Each dot represents an average of 6 spectra and the 

error bars are calculated by incorporating the standard deviation of 

measurement error into the predicted data values. 

4. Conclusions 

Near-infrared (NIR) spectroscopy has the potential to 
estimate bending stress from wood components [in 
earlywood (EW)/latewood (LW)] after a hot oil treatment 
using the wavelength of 1100 to 2200nm region. The oil 
absorbed by the wood samples benefits the performance of 
NIR measurement in reduced the reflectance from 95 to 55%. 
Validation R2 ranged from 0.18 to 0.31 for all the scans 
conducted in the EW zones that were underestimated than 
those in LW zones, whereas, validation R2 ranged from 0.27 
to 0.32 for Spruce and Hemlock. The Maple encountered a 
non linear regression that has been used as an active control 
in the present study. The investigation suggests that further 
work has to be developed as physics-based models to explain 
model influences with thermal treatment of wood material to 
the spectra. Also, we only tested the method to one 
commercially vegetal oil and further investigations on other 
varieties of oils as well as wood transformation samples are 
needed. 
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