
 

Journal of Materials Sciences and Applications 

2018; 4(1): 10-16 
http://www.aascit.org/journal/jmsa  
ISSN: 2381-0998 (Print); ISSN: 2381-1005 (Online) 

 

 

 
 
 
 
Keywords 
XAFS Cumulant,  
Thermal Expansion Coefficient,  
Correlated Einstein Model,  
Hcp Crystals 
 

 

 

Received: January 8, 2018 
Accepted: January 20, 2018 
Published: February 5, 2018 
 

Advances in Theoretical and 
Experimental XAFS Studies of 
Debye-Waller Factor and Thermal 
Expansion Coefficient of Hcp 
Crystals 

Tong Sy Tien
1
, Nguyen Ba Duc

2
, Ha Dang Khoa

3
,  

Nguyen Van Hung
4, *

 

1Department of Basic Sciences, University of Fire Fighting & Prevention, Hanoi, Vietnam 
2Department of Physics, Tan Trao University, Tuyen Quang, Vietnam 
3School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam 
4Department of Physics, VNU Hanoi University of Science, Hanoi, Vietnam 

Email address 
hungnv@vnu.edu.vn (N. V. Hung) 
*Corresponding author 

Citation 
Tong Sy Tien, Nguyen Ba Duc, Ha Dang Khoa, Nguyen Van Hung. Advances in Theoretical and 

Experimental XAFS Studies of Debye-Waller Factor and Thermal Expansion Coefficient of Hcp 

Crystals. Journal of Materials Sciences and Applications. Vol. 4, No. 1, 2018, pp. 10-16. 

Abstract 
Theoretical and experimental Debye-Waller factors presented in terms of cumulant 
expansion and thermal expansion coefficient in X-ray absorption fine structure (XAFS) 
of hcp crystals have been studied. The advances in these studies are shown by a derived 
method using that the calculations and measurements are necessary only for the second 
cumulants from which all the considered XAFS quantities have been provided. It has 
resulted based on the description of XAFS expressions derived using the anharmonic 
correlated Einstein model in terms of second cumulants. The many-body effects included 
in the present one-dimensional model are taken into account based on the first shell near 
neighbor contributions to the vibration between absorber and backscaterer atoms. Morse 
potential is assumed to describe the single-pair atomic interaction included in the 
anharmonic interatomic effective potential. Numerical and experimental results for Zn in 
hcp phase obtained by the present advanced method are found to be in good agreement 
with one another and with those measured at HASYLAB (DESY, Germany). 

1. Introduction 

X-ray Absorption Fine Structure (XAFS) has developed into a powerful technique for 
providing information on the local atomic structure and thermal effects of substances. 
The formalism for including anharmonic effects in XAFS is often based on cumulant 
expansion approach [1] from which the anharmonic XAFS function has resulted as 
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where F(k) is the real atomic backscattering amplitude, k and λ are the wave number and 

mean free path of photoelectron, respectively, Φ  is the net phase shift, R r=  with r  
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being the instantaneous bond length between absorber and 
backscatterer atoms, and σ(n) (n = 1, 2, 3, …) are the 
cumulants describing Debye-Waller factor (DWF). 

Hence, the precise cumulants or DWFs are crucial to 
quantitative treatment of XAFS spectra where the even 
cumulants contribute to the amplitude, the odd ones to the 
phase of XAFS spectra, and for small anharmonicities, it is 
sufficient to keep the third and fourth cumulant terms [2]. 
Consequently, the lack of the precise cumulants has been one 
of the biggest limitations to accurate structural 
determinations (e.g., the coordination numbers and the 
atomic distances) [3] and to specify the other thermodynamic 
properties of substances [3-9] from XAFS experiments. 
Therefore, investigation of XAFS cumulants is of great 
interest. 

The purpose of this work is to study not only the 
theoretical but also the experimental XAFS cumulants and 
thermal expansion coefficients of hcp (hexagonal close 
packed) crystals based the quantum statistically derived 
advanced method using that the calculations and 
measurements are necessary only for the second cumulants or 
mean square relative displacement (MSRD) from which all 
the considered XAFS quantities have been provided. The 
advances of this method have resulted (Section 2) based on 
the description of the analytical expressions for the 
considered XAFS quantities derived using the anharmonic 
correlated Einstein model (ACEM) in terms of second 
cumulants. The many-body effects included in the present 
one-dimensional model have been taken into account based 
on the first shell near neighbor contributions approach 
(FSNNCA). Morse potential is assumed to describe the 
single-pair atomic interaction included in the anharmonic 
interatomic effective potential. The present advanced method 
has also been applied to extracting and valuating the 
experimental XAFS parameters of Zn based on the 
experimental values of its second cumulants measured at the 
Beamline BL8, Synchrotron Light Research Institute (SLRI), 
Thailand. Numerical results for Zn in hcp phase (Section 3) 
are compared to the experimental values extracted by using 
the present advanced method and to those measured at 
HASYLAB (DESY, Germany) [10] which show good 
agreement. The conclusions on the obtained results are 
presented in Section 4. 

2. XAFS Cumulants and Thermal 

Expansion Coefficient of Hcp 

Crystals 

2.1. Theory 

In order to include anharmonic effects, the Hamiltonian of 
system in the present theory includes the anharmonic 
interatomic effective potential expressed as 

( ) 2 3
3 0

1
,

2eff eff effV x k x k x x r r≈ + = − ,                (2) 

where effk is the effective local force constant and 3effk  is 

the cubic anharmonic parameter giving an asymmetry of the 
anharmonic effective potential, r and r0 are the instantaneous 
and equilibrium distances between absorber and 
backscatterer atoms, respectively. 

Using the FSNNCA which was successfully applied to bcc 
(body centered cubic) crystals [8], the anharmonic effective 
potential for hcp crystals has the form 
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where R̂  is unit vector; the sum i is over absorber (i = 1) and 
backscatterer (i = 2), and the sum j is over all their first shell 
near neighbors. 

For hcp structure, each atom is bonded to 12 first shell 
near neighbors so that the anharmonic interatomic effective 
potential given by Eq. (3) contains not only the term V(x) 
describing the vibration between absorber and backscatterer 
atoms but also the other ones describing the projections of 
their pair-interactions with 22 first shell near neighbors along 
the bond direction except the absorber and backscatterer 
atoms themselves whose contributions are included already 
in V(x). Due to this projection as in Eq. (3) the many-body 
effects in the present one-dimensional model have been taken 
into account. 

The Morse potential expanded up to the third order around 
its minimum 

( ) ( ) ( )2 2 2 3 32 1x xV x D e e D x xα α α α− −= − ≈ − + −                                                     (4) 

is assumed to describe the single-pair atomic interaction 
included in the anharmonic effective potential, where α 
describes the width of the potential and D is the dissociation 
energy. Therefore, substituting this Morse potential into Eq. 

(3) and comparing the results to Eq. (2) the values of effk ,

3effk  in terms of Morse parameters for hcp crystals included 

in all XAFS cumulants expressions are determined. 
For deriving the XAFS cumulants we describe the 

anharmonic interatomic effective potential Eq. (3) for hcp 
crystals in terms of Morse potential parameters in the 
summation of the harmonic contribution and a perturbation 

Vδ  due to the weak anharmonicity in XAFS as 

( ) ( )2 2 3
3

1
, 5 , , .

2eff eff effV y k y V y V D ay k y y x a a xδ δ α= + ≅ + = − =                                      (5) 
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The derivation of XAFS cumulants for hcp crystals in this 

work is using the ACEM based on quantum statistical theory 
[11] and the parameters of the anharmonic interatomic 
effective potentials given by Eqs. (3) and (5), as well as an 
averaging procedure using the canonical partition function Z 
and statistical density matrix ρ , e.g., 

( )1
, 1,2,3,⋯

m my Tr y m
Z

ρ= =                 (6) 

Atomic vibrations are quantized in terms of phonons, and 
anharmonicity is the result of phonon-phonon interaction, 
that is why we express y  in terms of the annihilation and 

creation operators, â and â+ , respectively 
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which have the following properties 
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as well as use the harmonic oscillator state n  as the 

eigenstate with the eigenvalue ℏ EnE n ω=  for n being the 

phonon number, ignoring the zero-point energy for 
convenience. 

Due to weak anharmonicity in XAFS, the canonical 
partition function in Eq. (6) can be expressed as 
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Here, the correlated Einstein frequency ωE and 
temperature θE for hcp crystals have the forms 

210
,
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where M is the atomic mass and kB is Boltzmann constant. 
Using the above results for the correlated atomic 

vibration and the procedure depicted by Eqs. (6) - (9), as 
well as the first-order thermodynamic perturbation theory 
[11], the temperature-dependent XAFS cumulants have 
been derived. 

Based on the procedure depicted by Eq. (6) – (10) we 
derived the even moment expressing the second cumulant or 
MSRD 
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and the odd moments expressing the first (m = 1) and third 
(m = 3) cumulants 
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where the operations expressed by Eqs. (6) and (7) have been 
applied to calculate the matrix elements given in Eqs. (11) 
and (12). 

Consequently, the XAFS expressions have resulted for the 
second cumulant or MSRD 
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for the first cumulant or net thermal expansion 
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and for the third cumulant or mean cubic relative 
displacement (MCRD) 
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Moreover, the second cumulant given by Eq. (13) is 
harmonic while the experimental data always include the 
temperature-dependent anharmonic effects. That is why we 
introduce the total second cumulant or MSRD as 

2 2 2( ) ( ) ( )tot AT T Tσ σ σ= + ,                      (16) 

which involves an anharmonic contribution 

2 2 2
0( ) ( ) ( )A AT T Tσ β σ σ = − 

,               (17) 

containing the anharmonic factor 
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derived based on the relative volume change due to thermal 
expansion and also described in terms of second cumulant. 

Futher, using the first cumulant given by Eq. (13), the 
expression for the thermal expansion coefficient has been 
derived and given by 

( )
( )( ) ( ) 300 01

, .
4

2 2
2 2

2

15
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In the above expressions ( ) ( )
00 0, ,1 32σ σ σ  are zero-point 

energy contributions to three first XAFS cumulants σ(1)(T), 

σ2(T), σ(3)(T), respectively, and 0
Tα  is the constant value 

which the thermal expansion coefficient approaches at high-
temperatures. 

Hence, the above derived expressions for the first, third 
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cumulants and thermal expansion coefficient σ(1), σ(3) and 
αT, respectively, as well as the total second cumulant given 
by Eqs. (16) – (18) including anharmonic effects have been 
presented in terms of second cumulant σ2 or MSRD. Such 
description is useful to create the present quantum 
statistical advanced method based on that the calculations 
and measurements are necessary only for the second 
cumulants from which the first, third cumulants, thermal 
expansion coefficient and other XAFS parameters can be 
provided. This is the advantage of the present advanced 
method leading to the effective reduction and simplification 
of XAFS calculations and measurements shown in the next 
sections. 

2.2. Experimental 

The measurements of the values of second cumulants or 
MSRDs of Zn in hcp phase at 300 K, 400 K, 500 K and 600 
K have been performed at the Beamline BL8, SLRI 
(Thailand). It is the routinely operated for X-ray absorption 
spectroscopy (XAS) in an immediate photon energy range 
(1.25 – 10 keV). The experimental set-up conveniently 
facilitates XAS measurements in transmission and 
fluorescence-yield modes at several K-edges of elements 
ranging from Magnesium to Zinc [12]. The experimental 
values of the first, third cumulants and thermal expansion 
coefficients of Zn at 300 K, 400 K, 500 K, 600 K have been 
extracted from the measured values of the second cumulants 
using the present method based on the description of these 
quantities in terms of second cumulant presented in Section 
2.1. The obtained experimental results will be presented in 
Section 3 compared to the calculated results and to those 
measured in HASYLAB (DESY, Germany) at 77 K and 300 
K [10]. 

3. Numerical Results Compared to 

Experiment and Discussions 

Now the expressions derived in the Section 2.1 are applied 
to numerical calculations for Zn in hcp phase using its Morse 
potential parameters [13] D = 0.1700 eV, α = 1.7054 Å-1 
which were obtained using experimental values for the 
energy of sublimation, the compressibility, and the lattice 
constant. 

Figure 1 illustrates good agreement of first cumulant 
σ(1)(T) of Zn calculated using the present theory with the 
experimental values at 300 K, 400 K, 500 K and 600 K 
extracted using the present advanced method and with those 
measured in HASYLAB (DESY, Germany) at 77 K and 
300 K [10]. Note that from this first cumulant we can also 
obtain temperature dependence of the first shell near 
neighbor distance based on the expression R(T) = R(0) + 
σ(1)(T). 

 

Figure 1. Temperature dependence of first cumulant σ(1)(T) of Zn calculated 

using the present theory compared to the experimental values at 300 K, 400 

K, 500 K and 600 K extracted using the present advanced method and with 

those measured in HASYLAB (DESY, Germany) at 77 K and 300 K [10]. 

The good agreement of total and harmonic second 

cumulants 2 ( )tot Tσ , σ2(T), respectively, of Zn calculated 

using the present theory with the experimental values at 300 
K, 400 K, 500 K, 600 K obtained in this work and with those 
measured in HASYLAB (DESY, Germany) at 77 K and 300 

K [10] is presented in Figure 2. Here, 2 ( )tot Tσ  is a little 

different from σ2(T) at temperatures greater than the room 
temperature due to the anharmonic contributions. 

 

Figure 2. Temperature dependence of total and harmonic second cumulants 
2 ( )tot Tσ  and σ2(T), respectively, of Zn calculated using the present theory 

compared to the experimental values at 300 K, 400 K, 500 K and 600 K 
obtained in this work and with those measured in HASYLAB (DESY, 

Germany) at 77 K and 300 K [10]. 

Figure 3 shows good agreement of temperature 
dependence of third cumulant σ(3)(T) of Zn calculated using 
the present theory with the experimental values at 300 K, 400 
K, 500 K and 600 K extracted using the present advanced 
method and with those measured in HASYLAB (DESY, 
Germany) at 77 K and 300 K [10]. 
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Figure 3. Temperature dependence of third cumulant σ(3)(T) of Zn calculated 

using the present theory compared to the experimental values at 300 K, 400 

K, 500 K and 600 K extracted using the present advanced method and to 

those measured in HASYLAB (DESY, Germany) at 77 K and 300 K [10]. 

Moreover, temperature dependence of (Figure 4) 

anharmonic contributions 2 ( )A Tσ  to second cumulant or 

MSRD and (Figure 5) anharmonic factor βA(T) of Zn 
calculated using the present theory agrees well with the 
experimental values at 300 K, 400 K, 500 K, 600 K and with 
those measured in HASYLAB (DESY, Germany) at 77 K 
and 300 K [10]. Here βA(T) characterizes percentage of the 
anharmonic contributions at each temperature. These values 
are normally difficult to be directly measured, but using the 
present advanced method they have been calculated and 
extracted from the calculated and measured second 
cumulants. 

 

Figure 4. Temperature dependence of anharmonic contributions 2 ( )A Tσ  to 

second cumulant of Zn calculated using the present theory compared to the 

experimental values at 300 K, 400 K, 500 K, 600 K extracted using the 
present advanced method and to those measured in HASYLAB (DESY, 

Germany) at 77 K and 300 K [10]. 

 

Figure 5. Temperature dependence of anharmonic factor βA(T) of Zn 

calculated using the present theory compared to the experimental values at 

300 K, 400 K, 500 K, 600 K extracted using the present advanced method 

and to those measured in HASYLAB (DESY, Germany) at 77 K and 300 K 

[10]. 

Temperature dependence of thermal expansion coefficient 
αT(T) of Zn calculated using the present theory (Figure 6) 
agrees well with the experimental values at 300 K, 400 K, 
500 K and 600 K extracted using the present advanced 
method and with those measured in HASYLAB (DESY, 
Germany) at 77 K and 300 K [10]. Here, the theoretical and 
experimental thermal expansion coefficients of Zn approach 
the constant values at high-temperatures as it was obtained 
for the other crystal structures [9]. 

 

Figure 6. Temperature dependence of thermal expansion coefficient αT(T) of 

Zn calculated using the present theory compared to the experimental values 

at 300 K, 400 K, 500 K and 600 K extracted using the present adanced 

method and to those measured in HASYLAB (DESY, Germany) at 77 K and 

300 K [10]. 

Note that in the above obtained results the first cumulant 
(Figure 1) and second cumulant (Figure 2) are linearly 
proportional to the temperature T and the third cumulant 
(Figure 3) to T2 at high-temperatures, and all they contain 
zero-point energy contributions at low-temperatures, a 
quantum effect, as for the other crystal structures [9]. 
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The cumulant ratios αTrTσ2/σ(3) and σ(1)σ2/σ(3) are often 
considered as the standards for cumulant studies [9, 10, 14] 
and to identify the temperature above which the classical 
limit is applicable [9]. Figures 7 and 8 illustrate good 
agreement of temperature dependence of αTrTσ2/σ(3) and 
σ(1)σ2/σ(3), respectively, of Zn calculated using the present 
theory with the experimental values at 300 K, 400 K, 500 K 
and 600 K extracted using the present advanced method and 
with those measured in HASYLAB (DESY, Germany) at 77 
K and 300 K [10]. The theoretical and experimental results of 
these ratios show that above the Einstein temperature (θE = 
206 K calculated using the present theory for Zn) they reach 
the classical value [7, 14] of 1/2 so that the classical limit is 
applicable. 

 

Figure 7. Temperature dependence of cumulant ratio αTrTσ2/σ(3) of Zn 

calculated using the present theory compared to the experimental values at 

300 K, 400 K, 500 K and 600 K extracted using the present advanced 

method and to those measured in HASYLAB (DESY, Germany) at 77 K and 

300 K [10]. 

 

Figure 8. Temperature dependence of cumulant ratio σ(1)σ2/σ(3) of Zn 

calculated using the present theory compared to the experimental values at 

300 K, 400 K, 500 K and 600 K extracted using the present advanced 

method and to those measured in HASYLAB (DESY, Germany) at 77 K and 

300 K [10]. 

The XAFS cumulants parametrize the asymmetric 
distribution of interatomic distances, and can be connected to 
the force constants of a one-dimensional effective pair 
potential [2-10]. In particular, the first three cumulants 
measure the average value, the variance, and the asymmetry 
of the distribution, respectively [16]. Both the first and third 
cumulants have often been considered equally sensitive to 
thermal expansion [17]. This equivalence, which is valid for 
a one-dimensional system, where the average distance is 
solely modified by the asymmetry of the interaction potential, 
was not confirmed by accurate XAFS measurements of 
nearest neighbors distances in several simple crystals [18-20]. 
Actually, the first XAFS cumulant is lager than the distance 
between the centers of the probability distribution functions, 
owing to the effect of atomic vibrations perpendicular to the 
bond direction [21, 22] and its temperature dependence is 
stronger than the thermal expansion measured by Bragg 
diffraction or by macroscopic techniques. The difference 
between XAFS and crystallographic thermal expansion can 
be attributed to the MSRD component perpendicular to the 
bond direction [3, 18]. Unfortunately, based on the good 
agreement XAFS cumulants of Zn calculated using the 
present theory with the experimental values extracted by 
using the present advanced method and with those measured 
in HASYLAB (DESY, Germany) the contribution of the 
perpendicular MSRD to the second cumulant of Zn can be 
considered negligible. 

Consequently, the second cumulant describing MSRD is 
primary a harmonic effect plus small anharmonic 
contributions which appear only at high-temperatures. But 
the first cumulant describing the net thermal expansion or 
lattice disorder, the third cumulant or MCRD describing the 
asymmetry of pair atomic distribution function and the 
thermal expansion coefficient are entirely anharmonic effects 
because they appear due to including the cubic anharmonic 
effective potential parameter. We also used the present 
advanced method and the measured second cumulants of Zn 
at 300 K, 400 K, 500 K and 600 K to reproduce all the 
considered experimental values. The obtained results agree 
well with the measured data at these temperatures presented 
in the above figures. Hence, the obtained theoretical and 
experimental XAFS quantities contribute to the valuation and 
analysis of thermodynamic properties and anharmonic effects 
of Zn in hcp phase. Moreover, based on Eq. (1) the above 
obtained precise cumulants contribute to the accurate 
structural determination of the crystal using its XAFS spectra 
including anharmonic effects and their Fourier transform 
magnitudes [15]. 

4. Conclusions 

In this work, the advances in the theoretical and 
experimental XAFS studies of DWFs presented in terms of 
cumulant expansion up to the third order and thermal 
expansion coefficient of hcp crystals have been performed. 
The obtained results contribute to the valuation and analysis 
of the thermodynamic properties and anharmonic effects, as 
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well as to the accurate structural determination of the 
considered crystal. 

The most advantageous development in this work is the 
present quantum statistically derived advanced method using 
which all the considered theoretical and experimental XAFS 
quantities have been obtained and extracted from the 
calculated and measured second cumulants or MSRDs. It has 
significantly simplified and reduced the XAFS calculations 
and measurements. 

The obtained temperature-dependent theoretical and 
experimental XAFS quantities have been in detail analyzed 
and valuated. They include the evident anharmonic effects 
and satisfy all their fundamental properties, as well as reach 
the classical values at high-temperatures and contain zero-
point energy contributions at low-temperatures, a quantum 
effect. 

The good agreement between the theoretical results 
calculated using the present theory and the experimental data 
extracted using the present advanced method, as well as their 
good agreement with those measured in the other research for 
Zn illustrate the simplicity and efficiency of the present 
derived method in XAFS data analysis and in materials 
studies. 
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