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Abstract 
In the present work, the Van Leer flux vector splitting scheme is implemented to solve the 

two-dimensional Favre-averaged Navier-Stokes equations. The Cebeci and Smith and 

Baldwin and Lomax algebraic models and the Jones and Launder and Launder and 

Sharma k-ε two-equation models are used in order to close the problem. The physical 

problem under study is the supersonic flow around a simplified version of the VLS 

(Brazilian “Satellite Launcher Vehice”) configuration. The results have demonstrated that 

the stagnation pressure ahead of the VLS configuration is better predicted by the Baldwin 

and Lomax turbulence model. 

1. Introduction 

Conventional non-upwind algorithms have been used extensively to solve a wide 

variety of problems ([1]). Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every different case in the same class of 

problems) artificial dissipation terms must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks and steep compression and expansion 

gradients may defy solution altogether. 

Upwind schemes are in general more robust but are also more involved in their 

derivation and application. Some upwind schemes that have been applied to the Euler 

equations are: [2-3]. Some comments about these methods are reported below: 

[2] suggested an upwind scheme based on the flux vector splitting concept. This 

scheme considered the fact that the convective flux vector components could be written as 

flow Mach number polynomial functions, as main characteristic. Such polynomials 

presented the particularity of having the minor possible degree and the scheme had to 

satisfy seven basic properties to form such polynomials. This scheme was presented to the 

Euler equations in Cartesian coordinates and three-dimensions. 

[3] emphasized that the [4] scheme had low computational complexity and low 

numerical diffusion when compared to other methods. They also mentioned that the 

original method had several deficiencies. It yielded pressure oscillations in the proximity 

of shock waves. Problems with adverse mesh and with flow alignment were also reported. 

[3] proposed a hybrid flux vector splitting approach which alternated between the [4] 

scheme and the [2] scheme, at the shock-wave regions. This strategy assured that strength 

shock resolution was clearly and well defined. 

In relation to turbulent flow simulations, [5] applied the Navier-Stokes equations to 

transonic flows problems along a convergent-divergent nozzle and around the NACA 

0012 airfoil. The [6] model was used to close the problem. Three algorithms were 

implemented: the [7] explicit scheme, the [8] implicit scheme and the [9] explicit scheme. 

The results have shown that, in general terms, the [7] and the [9] schemes have presented  
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better solutions. 

[10] have performed a study involving three different 

turbulence models. In this paper, the Navier-Stokes equations 

were solved applied to the supersonic flow around a simplified 

configuration of the Brazilian Satellite Launcher, VLS. The 

algebraic models of [11] and of [6] and the one-equation 

model of [12] were used to close the problem. The algorithms 

of [13] and of [3] were compared and presented good results. 

In terms of two-equation models, [14] have presented a 

work that deals with such models applied to the solution of 

supersonic aerospace flow problems. The two-dimensional 

Navier-Stokes equations written in conservative form, 

employing a finite volume formulation and a structured spatial 

discretization were solved. The [2] algorithm, first order 

accurate in space, was used to perform the numerical 

experiments. Turbulence was taken into account using two k-ε 

turbulence models, namely: the [15-16] models. The steady 

state supersonic flow around a simplified version of the 

Brazilian Satellite Launcher, VLS, configuration was studied. 

The results have shown that the pressure field generated by the  

model of [16] was stronger than the respective one obtained 

with the model of [15], although the latter predicts more 

accurate aerodynamic coefficients in this problem. The model 

of [16] predicted less intense turbulence kinetic energy- and 

dissipation-rate profiles than the model of [15], yielding less 

intense turbulence fields. 

In the present work, the [2] flux vector splitting scheme is 

implemented, on a finite-volume context. The 

two-dimensional Favre-averaged Navier-Stokes equations are 

solved using an upwind discretization on a structured mesh. 

The algebraic models of [11] and [6] and the k-ε two-equation 

models of [17] and [18] are used in order to close the problem. 

The physical problem under study is the supersonic flow 

around a simplified version of the VLS configuration. The 

implemented scheme uses a MUSCL procedure to reach 

second order accuracy in space. The time integration uses a 

Runge-Kutta method of five stages and is second order 

accurate. The algorithm is accelerated to the steady state 

solution using a spatially variable time step. This technique 

has proved excellent gains in terms of convergence rate 

([19-20]). 

The results have demonstrated that the model of [6] has 

predicted the best value of the stagnation pressure ahead of the 

VLS configuration. 

2. Navier-Stokes Equations 

The two-dimensional flow is modeled by the Navier-Stokes 

equations, which express the conservation of mass and energy 

as well as the momentum variation of a viscous, heat 

conducting and compressible media, in the absence of external 

forces. The Navier-Stokes equations are presented in their 

two-equation turbulence model formulation. For the algebraic 

models, these two-equations are neglected and the [2] 

algorithm is applied only to the original four conservation 

equations. The integral form of these equations may be 

represented by: 

( ) ( )e v x e v y
V S V

t QdV E E n F F n dS GdV 0 ∂ ∂ + − + − + = ∫ ∫ ∫ ,                                  (1) 

where Q is written for a Cartesian system, V is the cell 

volume, nx and ny are components of the unity vector normal 

to the cell boundary, S is the flux area, Ee and Fe are the 

components of the convective, or Euler, flux vector, Ev and Fv 

are the components of the viscous, or diffusive, flux vector and 

G is the source term of the two-equation models. The vectors 

Q, Ee, Fe, Ev and Fv are, incorporating a k-ε formulation, given 

by: 

( ) ( )

2 xy xy
xx xx

2
yy yyxy xy

e e v v
yx

x y

x y

0ρu ρv 0ρ
t τρuv t τρu ρu p
t τt τρv ρuv ρv p
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+ +       
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      =  
   
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,                          (2) 

where the components of the viscous stress tensor are defined 

as: 

( )
( )

( ) ( )

xx M M

xy M

yy M M

t 2 u x 2 3 u x v y Re  ;

 t u y v x Re;

t 2 v y 2 3 u x v y Re.

= µ ∂ ∂ − µ ∂ ∂ + ∂ ∂  

= µ ∂ ∂ + ∂ ∂

= µ ∂ ∂ − µ ∂ ∂ + ∂ ∂  

    (3) 

The components of the turbulent stress tensor (Reynolds 

stress tensor) are described by the following expressions: 

( )
( )

( )

xx T T

xy T

yy T T

2 u x 2 3 u x v y Re 2 3 k;

u y v x Re;

2 v y 2 3 u x v y Re 2 3 k.

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ − ρ  

τ = µ ∂ ∂ + ∂ ∂

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ − ρ  

 (4) 

Expressions to fx and fy are given below: 

( ) ( )x xx xx xy xy xf t u t v q= + τ + + τ − ;                (5) 
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( ) ( )y xy xy yy yy yf t u t v q= + τ + + τ − ,             (6) 

where qx and qy are the Fourier heat flux components and are 

given by: 

( ) ;xePrPrReq iTTLMx ∂∂µ+µγ−=         (7) 

( ) yePrPrReq iTTLMy ∂∂µ+µγ−= .          (8) 

The diffusion terms related to the k-ε equations are defined 

as: 

( )
( )

x M T k

y M T k

1 Re k x ;

1 Re k y;

α = µ + µ σ ∂ ∂

α = µ + µ σ ∂ ∂
                   (9) 

( )
( )

x M T s

y M T s

1 Re s x ;

1 Re s y.

β = µ + µ σ ∂ ∂

β = µ + µ σ ∂ ∂
                  (10) 

In the above equations, ρ is the fluid density; u and v are 

Cartesian components of the velocity vector in the x and y 

directions, respectively; e is the total energy per unit volume; p 

is the static pressure; k is the turbulence kinetic energy; s is the 

second turbulent variable, which is the rate of dissipation of 

the turbulence kinetic energy (k-ε model) for this work; the t’s 

are viscous stress components; τ’s are the Reynolds stress 

components; the q’s are the Fourier heat flux components; Gk 

takes into account the production and the dissipation terms of 

k; Gs takes into account the production and the dissipation 

terms of s; µM and µT are the molecular and the turbulent 

viscosities, respectively; PrL and PrT are the laminar and the 

turbulent Prandtl numbers, respectively; σk and σs are 

turbulence coefficients; γ is the ratio of specific heats; Re is the 

laminar Reynolds number, defined by: 

MREFREFlVRe µρ= ,                     (11) 

where VREF is a characteristic flow velocity and lREF is a 

configuration characteristic length. The internal energy of the 

fluid, ei, is defined as: 

( )22
i vu5.0ρee +−= .                   (12) 

The molecular viscosity is estimated by the empiric 

Sutherland formula: 

( )TS1bT 21
M +=µ ,                   (13) 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions ([21]). 

The Navier-Stokes equations are dimensionless in relation 

to the freestream density, ρ∞, the freestream speed of sound, 

a∞, and the freestream molecular viscosity, µ∞. The system is 

closed by the state equation for a perfect gas: 

( )[ ]ρkvu0.5ρe1)(γp 22 −+−−= ,            (14) 

considering the ideal gas hypothesis. The total enthalpy is 

given by ( ) ρ+= peH . 

3. Numerical Algorithm – Van Leer 

Scheme 

The space approximation of the integral Equation (1) yields 

an ordinary differential equation system given by: 

j,ij,ij,i RdtdQV −= ,                         (15) 

with Ri,j representing the net flux (residual) of the 

conservation of mass, conservation of momentum and 

conservation of energy in the volume Vi,j. The residual is 

calculated as: 

j,2/1i2/1j,ij,2/1i2/1j,ij,i RRRRR −++− +++= ,      (16) 

with d
j,2/1i

c
j,2/1ij,2/1i RRR +++ −= , where the superscripts “c” 

and “d” are related to convective and diffusive contributions, 

respectively. The cell volume is given by: 

( ) ( ) ( )
( ) ( ) ( )

i,j i,j i 1,j i 1,j 1 i 1,j i 1,j 1 i,j i 1,j 1 i,j i 1,j

i,j i 1,j 1 i,j 1 i 1,j 1 i,j 1 i,j i,j 1 i,j i 1,j 1

V 0.5 x x y x x y x x y

0.5 x x y x x y x x y

+ + + + + + + + +

+ + + + + + + + +

= − + − + − +

− + − + −
(17) 

The convective discrete flux calculated by the AUSM 

scheme (Advection Upstream Splitting Method) can be 

understood as a sum of the arithmetical average between the 

right (R) and the left (L) states of the cell face (i+½,j), 

involving volumes (i+1,j) and (i,j), respectively, multiplied by 

the interface Mach number, plus a scalar dissipative term, as 

shown in [4]. Hence, 

i 1/2, j i 1/2, j i 1/2, ji 1/2, j

L R R

a a a a

au au au au

av av av av1 1
R S M

aH aH aH aH2 2

ak ak ak ak

as as as

+ + ++

  ρ ρ ρ ρ     
       ρ ρ ρ ρ       
       ρ ρ ρ ρ

 = + − ϕ −      ρ ρ ρ ρ      
       ρ ρ ρ ρ
        ρ ρ ρ ρ            

x

y

L i 1/2, j

0

S p

S p
,

0

0

as 0 +

    
    
    
     

  +    
     
     
             

                 (18) 

where [ ] t

j,2/1iyxj,2/1i SSS
++ =  defines the normal area vector for the surface (i+½,j). The normal area components Sx and Sy 

to each flux interface are given in Tab. 1. Figure 1 exhibits the 
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computational cell adopted for the simulations, as well its 

respective nodes and flux interfaces. 

Table 1. Values of Sx and Sy. 

Surface Sx Sy 

i,j-1/2 ( )j,ij,1i yy −+  ( )j,1ij,i xx +−  

i+1/2,j ( )j,1i1j,1i yy +++ −  ( )1j,1ij,1i xx +++ −  

i,j+1/2 ( )1j,1i1j,i yy +++ −  ( )1j,i1j,1i xx +++ −  

i-1/2,j ( )1j,ij,i yy +−  ( )j,i1j,i xx −+  

 

Figure 1. Computational Cell. 

The quantity “a” represents the speed of sound, which is 

defined as: 

( ) 5.0
kpa −ργ= .                          (19) 

Mi+½,j defines the advective Mach number at the (i+½,j) 

face, which is calculated according to [4]: 

−+
+ += RLj,2/1i MMM ,                      (20) 

where the separated Mach numbers are defined by [2]: 

( )

( )

2

2

M, if M 1;

M 0.25 M 1 ,           if M 1;

0, if M 1;

0, if M 1;

M 0.25 M 1 , if M 1;

M, if M 1.

+

−

≥


= + <
 ≤ −

≥


= − − <
 ≤ −

           (21) 

ML and MR represent the Mach numbers associated with the 

left and the right states, respectively. The advection Mach 

number is defined by: 

( ) ( )SavSuSM yx += .                      (22) 

The pressure at the face (i+½,j), related to the cell (i,j), is 

calculated by a similar formula: 

−+
+ += RLj,2/1i ppp ,                     (23) 

with p
+/-

 denoting the pressure separation and due to [2]: 

( ) ( )








−≤
<−+

≥
=+

;1Mif,0

1Mif,M21Mp25.0

;1Mif,p

p
2

;            (24a) 

( ) ( )








−≤
<+−

≥
=−

.1Mif,p

1Mif,M21Mp25.0

;1Mif,0

p
2

;            (24b) 

The definition of a dissipative term φ determines the 

particular formulation of the convective fluxes. The following 

choice corresponds to the [2] scheme, according to [3]: 

( )
( )

i 1/2, j i 1/2, j

2VL
i 1/2, j i 1/2, j i 1/2, j R i 1/2, j

2

i 1/2, j L i 1/2, j

M , if M 1;

M 0.5 M 1 , if 0 M 1;

M 0.5 M 1 , if 1 M 0.

+ +

+ + + +

+ +

 ≥

ϕ = ϕ = + − ≤ <

 + + − < ≤

                              (25) 

The above equations clearly show that to a supersonic cell 

face Mach number, the [2] scheme represents a discretization 

purely upwind, using either the left state or the right state to 

the convective terms and to the pressure, depending of the 

Mach number signal. This [2] scheme is first order accurate in 

space. The time integration is performed using an explicit 

Runge-Kutta method of five stages, second order accurate, 

and can be represented in generalized form by: 

( ) ( )[ ]
)k(

j,i
)1n(

j,i

)1k(
j,ij,i

)1k(
j,ij,ik

)0(
j,i

)k(
j,i

)n(
j,i

)0(
j,i

QQ

,QGVQRtQQ

QQ

=

+∆α−=

=

+

−−
   (26) 

with k = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2 and α5 = 

1. The gradients of the primitive variables are calculated using 

the Green theorem, which considers that the gradient of a 

primitive variable is constant at the volume and that the 

volume integral which defines the gradient is replaced by a 

surface integral ([22]). To the xu ∂∂  gradient, for example, it 

is possible to write: 

( )

( ) ( )
( ) ( )

x

i,j 1/2 i 1/2,j

i,j 1/2 i 1/2,j

x x

V S S

i, j i, j 1 x i, j i 1, j x

i, j i, j 1 x i, j i 1, j x

u 1 u 1 1
dV u n dS udS

x V x V V

1
0.5 u u S 0.5 u u S

V

0.5 u u S 0.5 u u S

− +

+ −

− +

+ −

∂ ∂= = • =
∂ ∂

≅ + + +


+ + + +


∫ ∫ ∫
�

�

.  (27) 
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4. MUSCL Approach 

Second order spatial accuracy can be achieved by 

introducing more upwind points or cells in the schemes. It has 

been noted that the projection stage, whereby the solution is 

projected in each cell face (i-1/2,j; i+1/2,j) on piecewise 

constant states, is the cause of the first order space accuracy of 

the Godunov schemes ([23]). Hence, it is sufficient to modify 

the first projection stage without modifying the Riemann 

solver, in order to generate higher spatial approximations. The 

state variables at the interfaces are thereby obtained from an 

extrapolation between neighboring cell averages. This method 

for the generation of second order upwind schemes based on 

variable extrapolation is often referred to in the literature as 

the MUSCL (Monotone Upstream-centered Schemes for 

Conservation Laws) approach. The use of nonlinear limiters in 

such procedure, with the intention of restricting the amplitude 

of the gradients appearing in the solution, avoiding thus the 

formation of new extrema, allows that first order upwind 

schemes be transformed in TVD high resolution schemes with 

the appropriate definition of such nonlinear limiters, assuring 

monotone preserving and total variation diminishing methods. 

Details of the present implementation of the MUSCL 

procedure are found in [24]. In this work, the minmod 

nonlinear limiter, defined in [23] and in [24], was employed in 

the numerical simulations. 

5. Turbulence Models 

5.1. Cebeci and Smith Turbulence Model 

The problem of the turbulent simulation is in the calculation 

of the Reynolds stress. Expressions involving velocity 

fluctuations, originating from the average process, represent 

six new unknowns. However, the number of equations keeps 

the same and the system is not closed. The modeling function 

is to develop approximations to these correlations. To the 

calculation of the turbulent viscosity according to the model of 

[11], the boundary layer is divided in internal and external. 

Initially, the (νw) kinematic viscosity at wall and the (τxy,w) 

shear stress at wall are calculated. After that, the (δ) boundary 

layer thickness, the (δLM) linear momentum thickness and the 

(VtBL) boundary layer tangential velocity are calculated. So, 

the (N) normal distance from the wall to the studied cell is 

calculated. The N
+
 term is obtained from: 

www,xy NReN νρτ=+
,             (28) 

where ρw is the wall density. The Van Driest damping factor is 

calculated by: 

)AN( wwe1D
++ µµρρ−−= ,                 (29) 

with 26A =+  and wµ  is the wall molecular viscosity. After 

that, the ( dNdVt ) normal to the wall gradient of the 

tangential velocity is calculated and the internal turbulent 

viscosity is given by: 

dNdVt)ND(Re 2
Ti κρ=µ ,                        (30) 

where κ is the von Kárman constant, which has the value 0.4. 

The intermittent function of Klebanoff is calculated to the 

external viscosity by: 

( )[ ] 16
Kleb N5.51)N(g

−
δ+= .                     (31) 

With it, the external turbulent viscosity is calculated by: 

KlebLMBLTe gVt)0168.0Re( δρ=µ .             (32) 

Finally, the turbulent viscosity is chosen from the internal 

and the external viscosities: ),(MIN TeTiT µµ=µ . 

5.2. Baldwin and Lomax Turbulence Model 

To the calculation of the turbulent viscosity according to the 

model of [6], the boundary layer is again divided in internal 

and external. In the internal layer, 

ωρ=µ 2
mixTi l    and   





 −κ=

++− 0AN
mix e1Nl .     (33) 

In the external layer, 

)C/N;N(FFC KlebmaxKlebwakecpTe ρα=µ ,         (34) 

with: 

( )

2
wake max max wk max dif max

max mix
N

F MIN N F ;C N U / F ,

F 1 MAX l

 =  

 = κ ω
  

.      (35) 

Hence, maxN  is the value of N where ωmixl  reached its 

maximum value and lmix is the Prandtl mixture length. The 

constant values are: 4.0=κ , 0168.0=α , 26A0 =+
, 

6.1Ccp = , 3.0CKleb =  and 1Cwk = . KlebF  is the 

intermittent function of Klebanoff given by: 

( )[ ] 16
maxKlebKleb NNC5.51)N(F

−
+= ,            (36) 

ω  is the magnitude of the vortex vector and difU  is the 

maximum velocity value in the boundary layer case. To free 

shear layers, 

maxNN

22

max

22
dif vuvuU

=






 +−






 += .           (37) 

5.3. Jones and Launder Turbulence Model 

In the turbulence model of [17], s = ε. To define the 

turbulent viscosity, or eddy viscosity, it is necessary to define 

the turbulent Reynolds number: 

( )ων= MT kRe ,   with: ρµ=ν MM    and   kε=ω .   (38) 

It is also necessary to determine the D damping factor: 
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( )[ ]2
TRe02.014.3

eD
+−= .                      (39) 

The turbulent viscosity is expressed in terms of k and ω as: 

ωρ=µ µ kDCReT ,                        (40) 

with: Cµ a constant to be defined. 

The source term denoted by G in the governing equation 

contains the production and dissipation terms of k and ε. To 

the model of [17], the Gk and Gε terms have the following 

expressions: 

kkk DPG −−=    and   εεε −−= DPG ,            (41) 

where: 
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∂
∂










∂
∂+

∂
∂= , Rek

DPC
P

2k ρω










ω
= µ

;        (42) 
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= µε
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   ∂ ∂ ∂ = − + ω + ν ω − ρωε    ∂ ∂ ∂    

,                        (45) 

with the second damping factor Ef defined as: 

( )36Re
f

2
Te921E

−−= . The closure coefficients adopted to the 

[17] model assume the following values: 0.1k =σ ; 3.1=σε ; 

09.0C =µ ; 45.1C 1 =ε ; 92.1C 2 =ε ; PrdL = 0.72; PrdT = 0.9. 

5.4. Launder and Sharma Turbulence Model 

The model of [18] also considers s = ε. The turbulent 

viscosity is defined by 

ερ=µ µ
2

T kCRe ,                           (46) 

with: Cµ a constant to be defined. 

To the model of [18], the Gk and Gε terms have the 

following expressions: 

kkk DPG +−=    and   εεε +−= DPG ,            (47) 

where: 

Re
y

u
P xyk ∂

∂τ=    and   ρε=kD ;                 (48) 

kPCP k1ε= εε    and   kCD 2
2ρε= εε .          (49) 

The closure coefficients adopted for the model of [18] are: 

0.1k =σ ; 3.1=σε ; 09.0C =µ ; 44.1C 1 =ε ; 92.1C 2 =ε ; 

PrdL = 0.72; PrdT = 0.9. 

6. Spatially Variable Time Step 

The basic idea of this procedure consists in keeping a 

constant CFL number in all calculation domain; thus allowing 

that appropriated time steps to each specific mesh region could 

be used during the convergence process. Hence, to a viscous 

simulation and according to the [25] work, it is possible to 

write: 

( )
j,ivc

vc
j,i

tt

ttCFL
t 









∆+∆
∆∆

=∆ ,                      (50) 

with ∆tc being the convective time step and ∆tv being the 

viscous time step. These quantities are defined as: 

( ) ( ) ( ) ( )

( ) ( )

i, j max max max max
c c i, j 1/2 i 1/2, j i, j 1/2 i 1/2, ji, j i, j

c i, j
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int x int y int int

int

V
t , max , , , ;

u n v n a S ,

− + + −∆ = λ = λ λ λ λ
λ

λ = + +
                                (51) 
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λ

µ µ µ µ
= + + +

ρ ρ ρ ρ

λ = ×

,                          (52) 

where interface properties are calculated by arithmetical 

average, M∞ is the freestream Mach number, µ is the fluid 

molecular viscosity and Kv is equal to 0.25, as recommended 

by [25]. 
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7. Initial and Boundary Conditions 

The initial and boundary conditions to the [6; 11] turbulence 

models are the same for perfect gas formulation. Details of 

these conditions can be found in [26-27]. For the k-ε, one has: 

7.1. Initial Condition 

Freestream values, at all grid cells, are adopted for all flow 

properties as initial condition, as suggested by [28-29]. 

Therefore, the vector of conserved variables is defined as: 

t

2
i, j 1 2

1
Q 1 M cos M sin 0.5M f K f K

( 1)
∞ ∞ ∞

 
= α α + γ γ − 

,                                  (53) 

where α is the angle of attack, K is the kinetic energy of the 

mean flow and f1 and f2 are fractions. The kinetic energy of the 

mean flow is determined, considering the present 

dimensionless, as 
2M5.0K ∞= . The values adopted for f1 and 

f2 in the present work were 0.005 and 0.2, respectively. 

7.2. Boundary Conditions 

The boundary conditions are basically of four types: solid 

wall, entrance, exit and far field. These conditions are 

implemented with the help of ghost cells. 

(1) Wall condition: At a solid boundary the non-slip 

condition is enforced. Therefore, the tangent velocity 

component of the ghost volume at wall has the same 

magnitude as the respective velocity component of its real 

neighbor cell, but opposite signal. In the same way, the normal 

velocity component of the ghost volume at wall is equal in 

value, but opposite in signal, to the respective velocity 

component of its real neighbor cell. 

The normal pressure gradient of the fluid at the wall is 

assumed to be equal to zero in a boundary-layer like condition. 

The same hypothesis is applied for the normal temperature 

gradient at the wall, assuming an adiabatic wall. The normal 

gradient of the turbulence kinetic energy at the wall is also 

assumed to be equal to zero. 

From the above considerations, density, pressure and 

turbulence kinetic energy at the ghost volume are extrapolated 

from the respective values of its real neighbor volume (zero 

order extrapolation). The total energy is obtained by the 

perfect gas law and the rate of dissipation of the turbulence 

kinetic energy is determined by the following expression, 

considering production-destruction equilibrium: 

( ) ( )n
2/3

w
4/3

ghost d41.0kCµ=ρε ,                (54) 

where kw is the wall turbulence kinetic energy and dn is the 

distance of the first mesh cell to the wall. 

The properties of the first real volumes (j = 1) are necessary 

to be determined, aiming to guarantee that the u profile is 

correctly calculated by the numerical scheme. The u 

component of these cells is determined by the “wall law”. It is 

initially necessary to calculate the wall shear stress, which is 

defined as: 

+
µρ=τ ukuC 5.0

w
25.0

w ,                             (55) 

where u+ is defined as: 

u d , d 5;

u 3.05 5ln d , 5 d 30;

u 5.5 2.5ln d , 30 d 2000,

+ + +

+ + +

+ + +

= <

= − + ≤ <

= + ≤ <

         (56) 

with: Mn
5.0

w
25.0 dkCd µρ= µ

+ . The value of u of the real 

volume at the wall is obtained from: 

ghostMwn udu +µτ= .                       (57) 

The v component is extrapolated from the ghost volume, 

with opposite signal, and the pressure is extrapolated from the 

real volume at j = 2. The turbulence kinetic energy is defined 

by its value at wall and the total energy of this volume is 

determined by the state equation for a perfect gas. The rate of 

dissipation of the turbulence kinetic energy to this volume is 

determined by Eq. (54). 

(2) Entrance condition: 

(2.1) Subsonic flow: Five properties are specified and one 

extrapolated. This approach is based on information 

propagation analysis along characteristic directions in the 

calculation domain ([29]). In other words, for subsonic flow, 

five characteristic propagate information pointing into the 

computational domain. Thus five flow properties must be 

fixed at the inlet plane. Just one characteristic line allows 

information to travel upstream. So, one flow variable must be 

extrapolated from the grid interior to the inlet boundary. The 

pressure was the extrapolated variable from the real neighbor 

volumes, for the studied problem. Density and velocity 

components adopted values of freestream flow. The 

turbulence kinetic energy and the rate of dissipation of the 

turbulence kinetic energy were fixed with the values of the 

initial condition, with the modification of 2u5.0K = . The 

total energy is determined by the state equation of a perfect 

gas. 

(2.2) Supersonic flow: In this case no information travels 

upstream; therefore all variables are fixed with their of 

freestream values. 

(3) Exit condition: 

(3.1) Subsonic flow: Five characteristic propagate 

information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior 

information. The characteristic direction associated to the 

“(qnormal-a)” velocity should be specified because it points 

inward to the computational domain ([29]). In this case, the 

ghost volume pressure is specified from its initial value. 

Density, velocity components, the turbulence kinetic energy, 

and the rate of dissipation of the turbulence kinetic energy are 
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extrapolated. The total energy is obtained from the state 

equation of a perfect gas. 

(3.2) Supersonic flow: All variables are extrapolated from 

interior grid cells, as no flow information can make its way 

upstream. In other words, nothing can be fixed. 

(4) Far field condition: The mean flow kinetic energy is 

assumed to be 
2

u5.0K =  and the turbulence kinetic energy at 

the far field adopts the value kff = 0.005K, or 0.5% of K. The 

turbulence dissipation energy is assumed εff = 0.20K or 20% 

of K. 

8. Results 

Tests were performed in a Dual Core processor of 2.3GHz 

and 2.0Gbytes of RAM microcomputer. Three orders of 

reduction of the maximum residual in the field were 

considered to obtain a converged solution. The residual was 

defined as the value of the discretized conservation equation. 

The entrance or attack angle was adopted equal to zero. The 

ratio of specific heats, γ, assumed the value 1.4. 

 

Figure 2. VLS viscous mesh. 

 

Figure 3. Detail of the satellite compartment. 

Figures 2 shows the entire VLS viscous mesh, whereas Fig. 

3 shows the detail of the VLS close to the satellite 

compartment. A mesh of 253x70 points or composed of 

17,388 rectangular cells and 17.710 nodes was generated, 

employing an exponential stretching of 5% in the η direction. 

The initial data of the simulations was described in Tab. 2. 

Table 2. Initial Conditions. 

M∞     θθθθ Altitude L∞ Re 

3.0 0.0o 40,000m 3.76m 8.93x105 

8.1. Cebeci and Smith Results 

Figure 4 exhibit the pressure contours obtained by the 

second order [2] scheme. The contours are uniform and well 

defined. The normal shock wave at the blunt body nose is well 

captured. Figure 5 exhibits the Mach number contours 

obtained by the high resolution TVD [2] scheme. The viscous 

region close to the VLS walls is well captured; in other words, 

the heat conduction, through the Fourier law, is well captured 

by the turbulence model. The normal shock weave is well 

captured. The solution is free of pre-shock oscillations. 

 

Figure 4. Pressure contours (CS). 

 

Figure 5. Mach number contours (CS). 

Figure 6 presents the translational/rotational temperature 

contours obtained by the [2] scheme. Temperatures above 

776.54 K are obtained. The region downstream the satellite 
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compartment appears with regions of high dissipation, as can 

be noted in the figure. In other words, this means that 

circulation bubbles are formed as consequence of boundary 

layer displacement. These can be seen in Figs. 7 and 8, which 

highlight the circulation bubble formations downstream the 

satellite compartment. 

 

Figure 6. Temperature contours (CS). 

 

Figure 7. Circulation bubble formation (right side-CS). 

 

Figure 8. Circulation bubble formation (left side-CS). 

Figure 9 shows the –Cp distribution along the blunt body 

wall. The Cp suffers a rapid increase at the satellite 

compartment and downstream it keeps horizontal. In all this 

distribution, no overshoots and undershoots are perceptible, 

even for a second-order scheme. This aspect highlights the 

MUSCL procedure as a good tool to provide clean profiles. 

 

Figure 9. –Cp distribution (CS). 

8.2. Baldwin and Lomax Results 

 

Figure 10. Pressure contours (BL). 

Figure 10 shows the pressure contours obtained by the [2] 

scheme as using the turbulence model of [6]. The shock is well 

defined, better than that of the model of [11], as seen in Fig. 4, 

and homogeneous. As can be seen, there are qualitative 

differences between this plot and the corresponding plot of 

[11]. 

Figure 11 shows the Mach number contours obtained by the 

[2] scheme as using the turbulence model of [6]. As can see, 

the viscous region close to the VLS walls is well captured. The 

normal shock weave is also well captured. The solution is free 

of pre-shock oscillations. 

Figure 12 exhibits the temperature field obtained by the [2] 

scheme as using the turbulence model of [6]. Qualitatively, 

this plot has differences in relation to the plot of [11], Fig. 6. 
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Qualitatively in terms of contours lines distribution, in terms 

of the heated region after the cockpit and in terms of the 

viscous layer aspect. Moreover, the regions of high dissipation 

are well spread out and temperatures close to 826.3 K are 

reached. 

 

Figure 11. Mach number contours (BL). 

 

Figure 12. Temperature contours (BL). 

 

Figure 13. Circulation bubble formation (Cockpit-BL). 

 

Figure 14. Circulation bubble formation (Boosters-BL). 

Figures 13 and 14 show details of the cockpit and booster 

regions of the VLS. Both regions present small separation 

regions at the corner (cockpit) and at the ramp (boosters), 

causing the formation of separation bubbles. These figures are 

very interesting because show this flow separation. 

Circulation bubbles are formed as the result of the boundary 

layer detachment, resulted from separation flow. A pair of 

vortices is formed as resulted of the high energy dissipation in 

these regions. 

Figure 15 presents the –Cp distribution at wall of the VLS 

configuration, generated by the turbulence model of [6]. This 

curve presents a reduction of –Cp close to the boosters region 

and after that the pressure coefficient is recovered at the 

boosters’ end. The entire –Cp distribution is more severe than 

the respect of the [11] model, see Fig. 9. 

 

Figure 15. –Cp distribution (BL). 

8.3. Jones and Launder Results 

Figure 16 shows the pressure contours generated by the [2] 

scheme as using the [17] turbulence model. This curve is very 

similar to that obtained as using the model of [6], Fig. 10,  and 

both indicate that the solution of [11], Fig. 4, is more 

dissipative than the formers. The shock is well captured and 

the solution is homogeneous, without pre-shock oscillations. 
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Figure 17 exhibits the Mach number contours obtained as 

using the turbulence model of [17]. The solution is very close 

to the solution of [6], Fig. 11, indicating the good performance 

of this algebraic turbulence model. They are very close in 

terms of contour line distributions and in terms of the subsonic 

regions detected at the end of the cockpit region and at the 

beginning of booster region. Regions of discrete formation of 

separation bubbles are perceptible at the downstream region of 

the satellite compartment and at the booster region. It is 

possible to see in Figs. 19 and 20, where circulation bubbles 

are well formed. 

 

Figure 16. Pressure contours (JL). 

 

Figure 17. Mach number contours (JL). 

Figure 18 presents the translational temperature contours 

originated by the [2] scheme as using the turbulence model of 

[6]. Temperatures near 691.7 K are observed in the field, but 

smaller than the results of [11] and [6], Figs. 6 and 12, 

respectively. Regions of high temperature are observed at the 

blunt body nose, at the satellite compartment end, and at the 

booster beginning. Figures 19 and 20 corroborate what was 

observed in the aforementioned paragraph. Circulation 

bubbles formation is originated at regions of high heating and 

generate loss of energy by the bubbles displacement and 

energy exchange due to collisions. 

 

Figure 18. Temperature contours (JL). 

 

Figure 19. Circulation bubble formation (Cockpit-JL). 

 

Figure 20. Circulation bubble formation (Boosters-JL). 

Figure 21 exhibits the –Cp distribution originated by the 

turbulence model of [17]. The cockpit upstream region 

presents a pressure distribution in steps and also presents the 

reduction of pressure close to the boosters region, with the 

consequent increase of such pressure, obtained in the solution 

of [6]. 
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Figure 21. –Cp distribution (JL). 

The –Cp profile of [17], Fig. 21, is more strength than the –

Cp profile of the turbulence model of [11], Fig. 9, but is 

equivalent in qualitative and quantitative terms in relation to 

the turbulence model of [6], Fig. 15. 

8.4. Launder and Sharma Results 

Figure 22 shows the pressure contours obtained by the [2] 

algorithm as using the turbulence model of [18]. The curves of 

contours are well defined and dissipation is minimum, as is the 

case with the solutions of [6] and [17], Figs. 10 and 16, 

respectively. 

 

Figure 22. Pressure contours (LS). 

No overshoots or undershoots are present. Figure 23 exhibit 

the Mach number contours obtained by the turbulence model 

of [18]. The contours are close to the solutions of [6] and [17], 

11 and 17, respectively. No pre-shock oscillations are 

perceptible. The subsonic region is formed at the blunt nose as 

expected. 

Figure 24 presents the translational temperature contours 

originated from the turbulence model of [18]. The temperature 

peak is observed near to 672.7 K, which is less than the 

captured fields of [6] and [17], Figs 12 and 18, respectively. It 

is not possible to detect regions of great heating near the 

satellite compartment end or at the booster regions. Ratifying 

this observation, no circulation bubble formation was 

observed in these regions. 

 

Figure 23. Mach number contours (LS). 

 

Figure 24. Temperature contours (LS). 

 

Figure 25. –Cp distribution (LS). 

Figure 25 shows the –Cp distribution obtained with the 

turbulence model of [18]. The step profile at the blunt nose 



232 Edisson S. G. Maciel:  Assessment of Several Turbulence Models as Applied to Supersonic Flows in 2D – Part I  

 

region and the hole region at the booster region are again 

observable. This –Cp profile is more strength than the profile 

of [11], Fig. 9. 

As main conclusion of this four turbulence models studied 

herein, the models of [6], [17] and [18] are practically 

identical in qualitative terms. They present similar contour 

line distributions, capture similar zones of subsonic flow at the 

downstream region of the cockpit and at the upstream region 

of the boosters, and the main aspect of the flow field are well 

characterized. They gives more severe –Cp conditions than the 

model of [11], Fig. 9, and they gives less dissipative solutions. 

More severe conditions to –Cp because present higher values 

of –Cp at the VLS nose and capture the hole region close to the 

booster region. They are less dissipative than the model of [11] 

because capture, for example, the hole region at the booster 

region. 

8.5. Quantitative Analysis 

Table 3 shows the lift and drag aerodynamic coefficients 

calculated by the [2] scheme in the turbulent cases. As the 

geometry is symmetrical and an attack angle of zero value was 

adopted in the simulations, the lift coefficient should have a 

zero value. 

Table 3. Aerodynamic coefficients of lift and drag. 

Turbulence Model: cL: cD: 

[11] turbulence model 2.507x10-4 0.075 

[6] turbulence model 1.127x10-6 0.074 

[17] turbulence model 3.288x10-6 0.072 

[18] turbulence model -1.773x10-6 0.072 

The most correct value to the lift coefficient is due to the 

turbulence model of [6]. 

Another possibility to quantitative comparison of the 

laminar and turbulent cases is the determination of the 

stagnation pressure ahead of the configuration. [30] presents a 

table of normal shock wave properties in its B Appendix. This 

table permits the determination of some shock wave properties 

as function of the freestream Mach number. In front of the 

VLS configuration, the shock wave presents a normal shock 

behavior, which permits the determination of the stagnation 

pressure, behind the shock wave, from the tables encountered 

in [30]. So it is possible to determine the ratio ∞prpr0  from 

[30], where pr0 is the stagnation pressure in front of the 

configuration and pr∞ is the freestream pressure (equals to 1/γ 

to the present dimensionless). 

Table 4. Values of the stagnation pressure and respective percentage errors. 

Turbulence Model: pr0: Error (%): 

[11] turbulence model 8.10 5.80 

[6] turbulence model 8.20 4.70 

[17] turbulence model 8.00 7.00 

[18] turbulence model 8.10 5.80 

Hence, to this problem, M∞ = 3.0 corresponds to ∞prpr0 = 

12.06 and remembering that pr∞ = 0.714, it is possible to 

conclude that pr0 = 8.61. Values of the stagnation pressure to 

the turbulent cases and respective percentage errors are shown 

in Tab. 4. They are obtained from Figures 4, 10, 16, and 22. 

The percentage error is defined as: 

100
ValuelTheoretica

ValueNumericalValuelTheoretica
(%)error ×

−
= .                                         (58) 

As can be observed, the turbulence model of [6] presents the 

best result, with a percentage error of 4.70%. 

Finally, Table 5 exhibits the computational data of the 

present simulations. It can be noted that the most efficient is 

the [6] turbulence model. 

Table 5. Computational data. 

Turbulence Model: CFL: Iterations: 

[11] turbulence model 0.10 6,415 

[6] turbulence model 0.10 5,558 

[17] turbulence model 0.10 7,602 

[18] turbulence model 0.05 12,805 

As final conclusion of this study, the turbulence model of [6] 

was the best when comparing these four turbulence models: 

[11], [6], [17] and [18]. It was proved by the good description 

of the flow filed in terms of qualitative aspects and by the good 

numerical results of lift coefficient and of the prediction of the 

stagnation pressure. In a next paper, the present author will 

study more four different turbulent models to this same 

problem trying to identify the best of each group of four and to 

perform a final analysis to found the best one. 

As a final observation, the grid independence was not 

studied because this mesh of 253x70 points is a high density 

mesh and has presented the main aspects that were expected to 

capture in the flow field. Moreover, this mesh with an 

exponential stretching of 5.0% was employed in the study of 

fifteen different turbulence models and similar aspects of the 

flow field as: capture of the boundary layer and viscous layer, 

capture of the shock wave, capture of circulation bubble 

formations, were obtained in all cases. 

9. Conclusions 

In the present work, the [2] flux vector splitting scheme is 

implemented, on a finite-volume context. The 

two-dimensional Favre-averaged Navier-Stokes equations are 

solved using an upwind discretization on a structured mesh. 

The algebraic models of [11] and [6] and the k-ε two-equation 

models of [17] and [18] are used in order to close the problem. 

The physical problem under study is the supersonic flow 

around a simplified version of the VLS configuration. The 

implemented scheme uses a MUSCL procedure to reach 
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second order accuracy in space. The time integration uses a 

Runge-Kutta method of five stages and is second order 

accurate. The algorithm is accelerated to the steady state 

solution using a spatially variable time step. This technique 

has proved excellent gains in terms of convergence rate as 

reported in [19-20]. 

The results have demonstrated that the model of [6] has 

yielded critical pressure fields, so intense than the ones of the 

other models. The stagnation pressure ahead of the VLS 

configuration is better predicted by the turbulence model of [6]. 

In a next paper, the present author will study more four 

different turbulent models to this same problem trying to 

identify the best of each group of four and to perform a final 

analysis to found the best one. 
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