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Abstract 
In the present work, the Van Leer flux vector splitting scheme is implemented to solve the 

two-dimensional Favre-averaged Navier-Stokes equations. The Zhou, Davidson and 

Olsson, Kergaravat and Knight, Yoder, Georgiadids and Orkwis, Coakley, and Rumsey, 

Gatski, Ying and Bertelrud two-equation models are used in order to close the problem. 

The physical problem under study is the supersonic flow around a simplified version of the 

VLS (Brazilian “Satellite Launcher Vehice”) configuration. The results have demonstrated 

that the stagnation pressure ahead of the VLS configuration is better predicted by the 

Kergaravat and Knight turbulence model in its Launder and Spalding variant. 

1. Introduction 

Conventional non-upwind algorithms have been used extensively to solve a wide 

variety of problems ([1]). Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every different case in the same class of 

problems) artificial dissipation terms must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks and steep compression and expansion 

gradients may defy solution altogether. 

Upwind schemes are in general more robust but are also more involved in their 

derivation and application. Some upwind schemes that have been applied to the Euler 

equations are: [2-3]. Some comments about these methods are reported in [4]. The 

interested reader is encouraged to read this reference to become aware of the present study. 

In relation to turbulent flow simulations, [5] applied the Navier-Stokes equations to 

transonic flows problems along a convergent-divergent nozzle and around the NACA 

0012 airfoil. The [6] model was used to close the problem. Three algorithms were 

implemented: the [7] explicit scheme, the [8] implicit scheme and the [9] explicit scheme. 

The results have shown that, in general terms, the [7] and the [9] schemes have presented 

better solutions. 

[10] have performed a study involving three different turbulence models. In this paper, 

the Navier-Stokes equations were solved applied to the supersonic flow around a 

simplified configuration of the Brazilian Satellite Launcher, VLS. The algebraic models of 

[11] and of [6] and the one-equation model of [12] were used to close the problem. The 

algorithms of [13] and of [3] were compared and presented good results. 

In terms of two-equation models, [14] have presented a work that deals with such 

models applied to the solution of supersonic aerospace flow problems. The 

two-dimensional Navier-Stokes equations written in conservative form, employing a finite 

volume formulation and a structured spatial discretization were solved. The [2] algorithm, 

first order accurate in space, was used to perform the numerical experiments. Turbulence  
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was taken into account using two k-ε turbulence models, 

namely: the [15-16] models. The steady state supersonic flow 

around a simplified version of the Brazilian Satellite Launcher, 

VLS, configuration was studied. The results have shown that 

the pressure field generated by the [16] model was stronger 

than the respective one obtained with the [15] model, although 

the latter predicts more accurate aerodynamic coefficients in 

this problem. The [16] model predicted less intense turbulence 

kinetic energy- and dissipation-rate profiles than the [15] 

model, yielding less intense turbulence fields. 

In the present work, the [2] flux vector splitting scheme is 

implemented, on a finite-volume context. The 

two-dimensional Favre-averaged Navier-Stokes equations are 

solved using an upwind discretization on a structured mesh. 

The [16-20] two-equation models are used in order to close the 

problem. The physical problem under study is the supersonic 

flow around a simplified version of the VLS configuration. 

The implemented scheme uses a MUSCL procedure to reach 

second order accuracy in space. The time integration uses a 

Runge-Kutta method of five stages and is second order 

accurate. The algorithm is accelerated to the steady state 

solution using a spatially variable time step. This technique 

has proved excellent gains as reported in [21-22]. 

The results have demonstrated that the [16] model in its 

Launder and Spalding variant has yielded more critical 

pressure field than the others models. The aerodynamic 

coefficient of lift is better predicted by the [16] turbulence 

model in its Launder and Spalding variant. Finally, the 

stagnation pressure ahead of the VLS configuration is better 

predicted by the [16] turbulence model in its Launder and 

Spalding variant. Hence, the best choice corresponds to the 

[16] turbulence model in its LS variant for this study. 

2. Navier-Stokes Equations 

The two-dimensional flow is modeled by the Navier-Stokes 

equations, which express the conservation of mass and energy 

as well as the momentum variation of a viscous, heat 

conducting and compressible media, in the absence of external 

forces. The Navier-Stokes equations are presented in their 

two-equation turbulence model formulation. The integral form 

of these equations may be represented by: 

( ) ( )e v x e v y
V S V

t QdV E E n F F n dS GdV 0 ∂ ∂ + − + − + = ∫ ∫ ∫ ,                   (1) 

where Q is written for a Cartesian system, V is the cell volume, 

nx and ny are components of the unity vector normal to the cell 

boundary, S is the flux area, Ee and Fe are the components of 

the convective, or Euler, flux vector, Ev and Fv are the 

components of the viscous, or diffusive, flux vector and G is 

the source term of the two-equation models. The vectors Q, Ee, 

Fe, Ev and Fv are, incorporating a k-ε or k-ω formulation, 

represented by: 

( ) ( )
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where the components of the viscous stress tensor are defined 

as: 

( )
( )

( ) ( )

xx M M

xy M

yy M M

t 2 u x 2 3 u x v y Re;

t u y v x Re;

t 2 v y 2 3 u x v y Re.

= µ ∂ ∂ − µ ∂ ∂ + ∂ ∂  

= µ ∂ ∂ + ∂ ∂

= µ ∂ ∂ − µ ∂ ∂ + ∂ ∂  

  (3) 

The components of the turbulent stress tensor (Reynolds 

stress tensor) are described by the following expressions: 

( )
( )

( )

xx T T

xy T

yy T T

2 u x 2 3 u x v y Re 2 3 k;

u y v x Re;

2 v y 2 3 u x v y Re 2 3 k.

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ − ρ  

τ = µ ∂ ∂ + ∂ ∂

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ − ρ  

 (4) 

Expressions to fx and fy are given below: 

( ) ( )x xx xx xy xy xf t u t v q= + τ + + τ − ;           (5) 

( ) ( )y xy xy yy yy yf t u t v q= + τ + + τ − ,           (6) 

where qx and qy are the Fourier heat flux components and are 

given by: 

( ) ;xePrPrReq iTTLMx ∂∂µ+µγ−=         (7) 

( ) yePrPrReq iTTLMy ∂∂µ+µγ−= .         (8) 

The diffusion terms related to the k-s equations are defined 

as: 

( )
( )

x M T k

y M T k

1 Re k x;

1 Re k y;

α = µ + µ σ ∂ ∂

α = µ + µ σ ∂ ∂
               (9) 

( )
( )

x M T s

y M T s

1 Re s x ;

1 Re s y.

β = µ + µ σ ∂ ∂

β = µ + µ σ ∂ ∂
              (10) 
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In the above equations, ρ is the fluid density; u and v are 

Cartesian components of the velocity vector in the x and y 

directions, respectively; e is the total energy per unit volume; 

p is the static pressure; k is the turbulence kinetic energy; s is 

the second turbulent variable, which is the rate of dissipation 

of the turbulence kinetic energy (k-ε model) or the flow 

vorticity (k-ω model); the t’s are viscous stress components; 

τ’s are the Reynolds stress components; the q’s are the Fourier 

heat flux components; Gk takes into account the production 

and the dissipation terms of k; Gs takes into account the 

production and the dissipation terms of s; µM and µT are the 

molecular and the turbulent viscosities, respectively; PrL and 

PrT are the laminar and the turbulent Prandtl numbers, 

respectively; σk and σs are turbulence coefficients; γ is the 

ratio of specific heats; Re is the laminar Reynolds number, 

defined by: 

MREFREFlVRe µρ= ,                   (11) 

where VREF is a characteristic flow velocity and lREF is a 

configuration characteristic length. The internal energy of the 

fluid, ei, is defined as: 

( )22
i vu5.0ρee +−= .                 (12) 

The molecular viscosity is estimated by the empirical 

Sutherland formula: 

( )TS1bT 21
M +=µ ,              (13) 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions ([23]). 

The Navier-Stokes equations are dimensionless in relation 

to the freestream density, ρ∞, the freestream speed of sound, a∞, 

and the freestream molecular viscosity, µ∞. The system is 

closed by the state equation for a perfect gas: 

( )[ ]ρkvu0.5ρe1)(γp 22 −+−−= ,            (14) 

considering the ideal gas hypothesis. The total enthalpy is 

given by ( ) ρ+= peH . 

The numerical algorithm is described in [4] and the 

interested reader is encouraged to read this reference to 

become familiar with the solver. Moreover, the MUSCL 

approach used to obtain TVD properties and high resolution is 

also described in [4] and the interested reader is invocated to 

read this reference. The spatially variable time step is detailed 

in [4] and is also recommended to read. 

3. Turbulence Models 

3.1. Zhou, Davidson, and Olsson Turbulence 

Model 

To the [17] turbulence model, s = ε. Before defining the 

turbulent viscosity, it is necessary to define some parameters. 

The coefficient Cl is defined as 

75.0
l CC −

µκ= .                        (15) 

The characteristic viscous length is expressed as 

( )




 −= ν−

µ
µ mANk

l e1NCl ,             (16) 

where N is the normal distance of a cell from the wall. The 

turbulent viscosity is defined as 

µµρ=µ lkCReT .                (17) 

The characteristic temperature length is expressed as 

( )




 −= ν− m4CNk

3t e1NCl .             (18) 

The variable turbulent Prandtl number, to be inserted in Eqs. 

(7-8), is defined as 

tvar,T llPr µ= .                  (19) 

The Gk and Gε terms have the following expressions: 

kkk DPG +−=   and  εεε +−= DPG ,       (20) 

where: 

xy T k xy k

uu v
Re, P ; D Re;

y x y

  ∂∂ ∂τ = µ + = τ = ρε ∂ ∂ ∂ 
 (21) 

1 k 2P C P , D C Re.
k k

ε ε ε ε
ε ε= = ρε           (22) 

The closure coefficients assume the following values: 

1
C 1.44ε = , 

2
C 1.92ε = , 

3
C 3.12= , 

4
C 92.0= , 40.0=κ , 

0.70A =µ , 09.0C =µ , 
k

1.0σ = , 1.3εσ =  and 

L
Pr 0.72= . 

3.2. Kergaravat and Knight Turbulence Model 

To the [16] turbulence model, s = εs. The [16] turbulence 

model presents two formulations to calculate the Gk and Gε 

terms. The first related to [29] and the second due to [26]. In 

the [29] option, the turbulent viscosity is calculated from the 

turbulent Mach number: 

2
t ak2M = ,                   (23) 

where “a” is the speed of sound. The dilatation dissipation is 

defined as 

s
2
tkd MC ε=ε                   (24) 

and the total dissipation is 

ds ε+ε=ε .                  (25) 

The turbulent viscosity is hence defined as 



 Engineering and Technology 2015; 2(5): 297-311  300 

 

ερ=µ µ
2

T kCRe .                  (26) 

On the other hand, the turbulent viscosity calculated by [26] 

employs the dissipation rate equaled to the solenoid 

dissipation: 

sε=ε .                        (27) 

The turbulent viscosity to this formulation is expressed as: 






 −ερ=µ

+−
µ

nC2
T

3e1kCRe ,           (28) 

where: 

( )w*unRen ν=+ , ( ) 5,0
ww*u ρτ=  and ( ) wwMw ρµ=ν , (29) 

with “n” being the normal distance from one cell to the wall, 

νw is the wall cinematic viscosity, τw is the wall tangential 

stress, ρw is the wall fluid density and  (µM)w is the wall 

molecular viscosity. 

The Gk and Gε terms have the following expressions: 

kkk DPG +−=   and  εεε +−= DPG ,           (30) 

where: 

( )k xy k 2

s M

, [29]
P u y; D

2 k n Re , [26]

ρε= τ ∂ ∂ = ρε + µ
;                         (31) 

( ) 4

2

2 s

1 k s C n2 2

2 2 s M s

C k , [29]
P C P k ; D

C f k 1 Re 2 n e , [26]
+

ε
ε ε ε −

ε

 ρε= ε = 
ρε + µ ε

,                 (32) 

with: 

( ) ( )2s
2 )6(kRe

2 e8.14.01f
νε−−=   and  ρµ=ν M .    (33) 

The closure coefficients have their values given in Tab. 1. 

The laminar and turbulent Prandtl numbers have the following 

values: 72.0PrL =  and 9.0PrT = . 

Table 1. Closure coefficients ([16] model). 

Constant [29] [26] 

σk 1.0 1.0 

σε 1.3 1.3 

Cµ 0.09 0.09 

Cε1 1.44 1.35 

Cε2 1.92 1.80 

C3 - 0.0115 

C4 - 0.5 

Ck 1.0 - 

3.3. Yoder, Georgiadids, and Orkwis 

Turbulence Model 

To the [18] model, s = ω. The turbulent Reynolds number is 

specified by: 

( )ωµρ= MT /kRe .                     (34) 

The parameter α* is given by: 

( ) ( )kTkT
*
0

* RRe1RRe ++α=α .          (35) 

The turbulent viscosity is specified by: 

ωρα=µ /kRe *
T .                  (36) 

The source term denoted by G in the governing equations 

contains the production and dissipation terms of k and ω. To 

the [18] model, the Gk and ωG  terms have the following 

expressions: 

kkk DPG +−=    and   ωωω +−= DPG .       (37) 

To define the production and dissipation terms, it is 

necessary to define firstly some parameters. The turbulent 

Mach number is defined as: 

2
T a/k2M = .                (38) 

It is also necessary to specify the function F: 

( )0.0,MMMAXF 2
0,T

2
T −= .           (39) 

The 
*β  parameter is given by: 

( )[ ] ( )[ ]4
ST

4
ST

* R/Re1R/Re18/509.0 ++=β     (40) 

Finally, the production and dissipation terms of Eq. (37) are 

given by 

( )*

k T k k

u v u
P ; D k 1 F / Re;

y x y

 ∂ ∂ ∂= µ + = β ρω + ξ ∂ ∂ ∂ 
  (41) 

kkP/P αω=ω ; and ( ) ReFD *2
ωω ξβ+βρω= ,      (42) 

with: 

( )( ) *
TT0 RRe1RRe9/5 α++α=α ωω .       (43) 

The [18] turbulence model adopts the following closure 

coefficients: Rs = 8.0, Rk = 6.0, Rω = 2.7, ξk = 1.0, ξω = 0.0, β = 

3/40, MT,0 = 0.0, α0 = 0.1, 3/*
0 β=α , 0.2k =σ  and 

0.2=σω . 

3.4. Coakley Turbulence Model 

In the [19] turbulence model, s = ω. The turbulent viscosity 
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is expressed in terms of k and ω as: 

ωρ=µ µ kCReT .                         (44) 

In this model, the quantities kσ  and ωσ  have the values 

*1 σ and σ1 , respectively, where *σ and σ are model 

constants. 

The source term denoted by G in the governing equations 

contains the production and dissipation terms of k and ω. To 

the [19] model, the Gk and ωG  terms have the following 

expressions: 

kkk DPG −−=    and   ωωω −−= DPG .       (45) 

To define the production and dissipation terms, it is 

necessary to define firstly some parameters. The Si,j gradient is 

defined as 










∂
∂+

∂
∂=

x

v

y

u
5.0Sij .                 (46) 

The gradient S is expressed as 

ijijSS2S = .                     (47) 

The η parameter is defined as 

ω=η S .                       (48) 

The divergent and the parameter λ are determined by 

y

v

x

u
D

∂
∂+

∂
∂=    and   

ω
=λ D

.          (49) 

The coefficient αk and αω are defined by 

( )λ+=α µC1
3

2
k    and   kα=α ω .         (50) 

The terms of production and destruction of kinetic energy 

are defined as 

RekCP 2
k ρωη= µ   and  ( ) Rek1D kk ρω+λα−= . (51) 

In relation to the terms of production and destruction of 

vorticity, new terms are defined. The characteristic turbulent 

length is expressed as 

ω= kl .                        (52) 

The coefficients 
kωθ and ωθ  are defined as 

( )ω
∂
ω∂

∂
∂=θ ω k

yy

k
l

2
k   and  2

2

2

y
l ω









∂
ω∂=θω .   (53) 

The turbulent Reynolds number is determined by 

ων
=

m
t

k
R .                     (54) 

Some others parameters are defined 

k

t oR C R R , D TANH(R), ;
D

ω ω
µ ν

ν

θ − θ
= = θ =     (55) 

( ) 2

ii i ii

dp dx
TANH , f , f f ;

k
∆θ = θ − θ = =

ρ ω
        (56) 

( ) ( )4

i if TANH f , w 1 1 D ;ν∆ = α ∆ = − ∆θ −         (57) 

( ) ( ) wf25.035.0w1675.0C i1 ∆∆++∆−= ;       (58) 

2

w 2 1 w k(C C ) C , dw 2 wC .µ µ ωσ = − κ = σ ∆ θ      (59) 

Finally, the production and destruction terms of vorticity 

are defined as 

ReCCP 22
1 ρωη= µω  and  ( ) RedwCCD 2

21 ρω+−λα−= ωω .                  (60) 

The closure coefficients assume the following values: 

09.0C =µ , 833.0C2 = , 5.0α = , 0.1k =σ , 0.5σ = , 

*
0.5σ = , 0.41κ = , 0.10R o = , 72.0PrL =  and 

9.0PrT = . 

3.5. Rumsey, Gatski, Ying, and Bertelrud 

Turbulence Model 

Finally, the k-ω model of [20] is studied, where s = ω. The 

equilibrium eddy-viscosity term employed in the diffusion 

terms is given by 

ωρ=µ µ kcRe **
T ,                   (61) 

where 
*c 0.081.µ =  

The explicit nonlinear constitutive equation that is used to 

close the Reynolds-averaged Navier-Stokes equations is given 

(after regularization) 

( )
' '

t 3 t 2

ij ij t ij kk ij ik kj jk ki ik kj kl kl ij

2 42 1 1
k 2 S S S W S W S S S S

3 3 3

µ α µ α   ρτ = ρ δ − µ − δ − + + − δ   ω ω   
,             (62) 

where 
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













∂
∂

+
∂
∂

=
i

j

j

i
ij

x

u

x

u

2

1
S    and   














∂
∂

−
∂
∂

=
i

j

j

i
ij

x

u

x

u

2

1
W    (63) 

are the mean-rate-of-strain tensor and the mean-vorticity 

tensor, respectively. The turbulent viscosity µT is 

ωρ=µ µ kcReT .                      (64) 

and 

1662222

662

663

)(2.0)1(3
c α

ζ+η+ζ+ζη+η+
ζ+η+η+=µ ;        (65) 

2

1

ijij2 )SS)(/( ωα=η    and   2

1

ijij3 )WW)(/( ωα=ζ ,   (66) 

where: 

α1 = (4/3-C2)(g/2); α2 = (2-C3)(g/2); α3 = (2-C4)(g/2);    (67) 

g = (C1/2+C5-1)-1.                 (68) 

The constants that govern the pressure-strain correlation 

model of [27] are C1 = 6.8, C2 = 0.36, C3 = 1.25, C4 = 0.4 and 

C5 = 1.88. The 
'
Tµ  terms are given by 

ωρ=µ µ kcRe
''

T ,                      (69) 

where 

1662222

2
'

663

)1(3
c α

ζ+η+ζ+ζη+η+
η+=µ .         (70) 

The source term denoted by G in the governing equation 

contains the production and dissipation terms of k and ω. To 

the [20] model, the Gk and ωG  terms have the following 

expressions: 

kkk DPG +−=    and   ωωω +−= DPG ,        (71) 

where: 

k T k

u v u
P , D k Re;

y x y

 ∂ ∂ ∂= ρµ + = ρω ∂ ∂ ∂ 
        (72) 

kkPP ψρω=ω ,  and  ReD
2βρω=ω .         (73) 

The closure coefficients adopted to the [20] model assume 

the following values: 83.0=β ; 41.0=κ ; 4.1k =σ ; 

2.2=σω ; PrdL = 0.72; PrdT = 0.9; 




 σκ−β=ψ µω

*2 c/ . 

4. Initial and Boundary Conditions 

The initial and boundary conditions to the [16-20] 

turbulence models are detailed in [4; 24]. The interested reader 

is encouraged to read these references to become familiar with 

these procedures. 

5. Results 

Tests were performed in a Dual Core processor of 2.3GHz 

and 2.0Gbytes of RAM microcomputer. Three orders of 

reduction of the maximum residual in the field were 

considered to obtain a converged solution. The residual was 

defined as the value of the discretized conservation equation. 

The entrance or attack angle was adopted equal to zero. The 

ratio of specific heats, γ, assumed the value 1.4. 

Figures 1 shows the entire VLS viscous mesh, whereas Fig. 

2 shows the detail of the VLS close to the satellite 

compartment. A mesh of 253x70 points or composed of 

17,388 rectangular cells and 17.710 nodes was generated, 

employing an exponential stretching of 5% in the η direction. 

 

Figure 1. VLS viscous mesh. 

 

Figure 2. Detail of the satellite compartment. 

The initial data of the simulations are described in Tab. 2. 

Table 2. Initial Conditions. 

M∞     θθθθ Altitude L∞ Re 

3.0 0.0o 40,000m 3.76m 8.93x105 
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5.1. Zhou, Davidson, and Olsson Results 

 

Figure 3. Pressure contours (ZDO). 

 

Figure 4. Mach number contours (ZDO). 

 

Figure 5. Temperature contours (ZDO). 

Figure 3 exhibit the pressure contours obtained by the 

second order [2] scheme as using the [17] turbulence model. 

The contours are uniform and well defined. The normal shock 

wave at the blunt body nose is well captured. Figure 4 exhibits 

the Mach number contours obtained by the high resolution 

TVD [2] scheme. The viscous region close to the VLS walls is 

well captured; in other words, the heat conduction, through the 

Fourier law, is well captured by the turbulence model. The 

normal shock weave is well captured. The solution is free of 

pre-shock oscillations. 

 

Figure 6. Circulation bubble formation (Cockpit-ZDO). 

 

Figure 7. Circulation bubble formation (Boosters-ZDO). 

 

Figure 8. –Cp distribution (SA). 

Figure 5 presents the translational/rotational temperature 
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contours obtained by the [2] scheme. Temperatures around 

699.3 K are obtained. The region downstream the satellite 

compartment appears with regions of discrete high 

dissipation, as can be noted in the figure. In other words, this 

means that circulation bubbles are formed as consequence of 

boundary layer detachment. This behavior is also observed at 

the booster region. These can be seen in Figs. 6 and 7, which 

highlight the circulation bubble formations downstream the 

satellite compartment and upstream the booster region. 

These regions are very discrete, but even so the numerical 

scheme was able to capture such phenomenon. 

Figure 8 shows the –Cp distribution along the blunt body 

wall. The –Cp suffers a rapid increase in steps at the satellite 

compartment and downstream it is horizontal. At the booster 

region, a rapid decrease in the –Cp values with a recovery 

pressure at the ramp is observed. In all this distribution, no 

overshoots and undershoots are perceptible, even for a 

second-order scheme. This aspect highlights the MUSCL 

procedure as a good tool to provide clean profiles. Such 

procedure avoids the appearance of Gibbs phenomenon, 

typical of second order schemes, yielding good quality 

solutions. 

5.2. Kergaravat and Knight Results 

Launder and Spalding Option. Figure 9 shows the pressure 

contours obtained by the [2] scheme as using the [16] 

turbulence model in its Launder and Spalding variant. The 

shock is well defined and homogeneous. As can be seen, there 

are qualitative differences between this plot and the [17] 

corresponding plot. The shock at the booster region is 

captured by both models, but in the [16] turbulence model it is 

more spread out. 

 

Figure 9. Pressure contours (KK-LS). 

Figure 10 exhibits the Mach number contours obtained by 

the [2] numerical scheme as using the [16] turbulence model. 

The present contours are similar to the corresponding [17] 

solution. The normal shock at the blunt nose is well captured 

by the scheme. 

 

Figure 10. Mach number contours (KK-LS). 

 

Figure 11. Temperature contours (KK-LS). 

 

Figure 12. –Cp distribution (KK-LS). 

Figure 11 presents the temperature field obtained by the [2] 

scheme as using the [16] turbulence model. Qualitatively, this 

plot has differences in relation to the [17] plot. The [17] 

solution seems more dissipative. Moreover, the regions of 

high dissipation are concentrated at the satellite compartment 

end and at the booster region beginning. Temperatures close to 

673.3 K are reached, less severe than the corresponding [17] 
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temperature field. 

Despite the good results, no regions of circulation bubbles 

are captured by the [16] turbulence model. The satellite 

compartment end and the booster region beginning are free of 

circulation bubble formation, which is a severe penalization to 

this turbulence model. This separation was captured by all 

turbulence models of this work and of [4; 24; 28], what 

becomes improbable its inexistence. 

Figure 12 presents the –Cp distribution at wall of the VLS 

configuration, generated by the [16] turbulence model. This 

curve presents a reduction of –Cp close to the booster region 

and after that the pressure coefficient is recovered at the 

booster end. The –Cp distribution along the VLS central body 

is relative smooth, without oscillations in the solution. 

Chien Option. Figure 13 shows the pressure contours 

obtained by the [2] scheme as using the [16] turbulence model 

in its Chien variant. The shock is well defined and 

homogeneous. As can be seen, there are qualitative 

differences between this plot and the [17] corresponding plot. 

The shock at the booster region is captured by both models, 

but in the [16] turbulence model it is more spread out. 

 

Figure 13. Pressure contours (KK-C). 

 

Figure 14. Mach number contours (KK-C). 

Figure 14 exhibits the Mach number contours obtained by 

the [2] numerical scheme as using the [16] turbulence model. 

The present contours are similar to the corresponding [17] 

solution. The normal shock at the blunt nose is well captured 

by the scheme. 

Figure 15 presents the temperature field obtained by the [2] 

scheme as using the [16] turbulence model. Qualitatively, 

this plot has differences in relation to the [17] plot. The [17] 

solution seems more dissipative. Moreover, the regions of 

high dissipation are concentrated at the satellite 

compartment end and at the booster region beginning. 

Temperatures close to 672.7 K are reached, less severe than 

the corresponding [17] temperature field. 

 

Figure 15. Temperature contours (KK-C). 

As occurred with the Launder and Spalding option of the 

[16] turbulence model, no regions of circulation bubbles are 

captured by this model. The satellite compartment end and the 

booster region beginning are free of circulation bubble 

formation, which is a severe penalization to this turbulence 

model. This separation was captured by all turbulence models 

of this work and of [4; 24; 28], what becomes improbable its 

inexistence. 

 

Figure 16. –Cp distribution (KK-C). 

Figure 16 presents the –Cp distribution at wall of the VLS 

configuration, generated by the [16] turbulence model. This 
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curve presents a reduction of –Cp close to the booster region 

and after that the pressure coefficient is recovered at the 

booster end. The –Cp distribution along the VLS central 

body is relative smooth, without oscillations in the solution. 

The –Cp distribution is in steps at the cockpit region. 

5.3. Yoder, Georgiadids, and Orkwis Results 

Figure 17 shows the pressure contours generated by the [2] 

scheme as using the [18] turbulence model. These contours are 

very similar to the contours of the [17] model. The shock is 

well captured and the solution is homogeneous, without 

pre-shock oscillations. The oblique shock at the ramp is also 

well captured by the turbulence model. 

 

Figure 17. Pressure contours (YGO). 

Figure 18 exhibits the Mach number contours obtained as 

using the [18] turbulence model. The solution is very close to 

the [16] solution, in both variants. It is possible to note that 

this solution presents less dissipation than the [17] solution. 

Regions of discrete formation of separation bubbles are 

perceptible at the downstream region of the satellite 

compartment and at the booster region. It is possible to be seen 

in Figs. 20 and 21 that circulation bubbles are well formed. 

 

Figure 18. Mach number contours (YGO). 

Figure 19 presents the translational temperature contours 

originated by the [2] scheme as using the [18] turbulence 

model. Temperatures near 837.8 K are observed in the field, 

superior to the respective fields in the [17] and [18] results. 

 

Figure 19. Temperature contours (YGO). 

 

Figure 20. Circulation bubble formation (Cockpit-YGO). 

 

Figure 21. Circulation bubble formation (Boosters-YGO). 

Figures 20 and 21 corroborate what was observed in the 

aforementioned paragraph. Circulation bubbles formation is 

originated at regions of high heating and generate loss of 
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energy by the bubbles displacement and energy exchange due 

to collisions. 

 

Figure 22. –Cp distribution (YGO). 

Figure 22 exhibits the –Cp distribution originated by the [18] 

turbulence model. The cockpit upstream region presents a 

pressure distribution in steps and also presents the reduction of 

pressure close to the booster regions, with the subsequent 

increase of such pressure, obtained in all other solutions. The –

Cp profile of the [18] turbulence model is similar to the –Cp 

profile of the [17] turbulence model. 

5.4. Coakley Results 

Figure 23 shows the pressure contours obtained by the [2] 

algorithm as the [19] turbulence model is employed. The 

curves of contours are well defined and the solution quality is 

the same as in the [17] solution. The shock at the booster 

region is well captured. No overshoots or undershoots are 

present, corroborating the idea of this scheme prevents Gibbs 

phenomenon. 

 

Figure 23. Pressure contours (C). 

 

Figure 24. Mach number contours (C). 

 

Figure 25. Temperature contours (C). 

 

Figure 26. Circulation bubble formation (Cockpit-C). 

Figure 24 exhibits the Mach number contours obtained by 

the [19] turbulence model. The contours present the same 

features of the [16, 17, 18] contours. No pre-shock oscillations 

are perceptible. The subsonic region is formed at the blunt 

nose as expected. 

Figure 25 presents the translational temperature contours 

originated from the [19] turbulence model. The temperature 
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peak is observed near to 830.5 K, which is less than the [18] 

temperature field. It is possible to detect regions of great 

heating near the satellite compartment end and at the booster 

regions. Corroborating this observation, circulation bubble 

formations were detected in these regions. Figures 26 and 27 

show these regions. They are discrete, but observable, and 

ratifies the expected behavior. 

 

Figure 27. Circulation bubble formation (Boosters-C). 

 

Figure 28. –Cp distribution (C). 

Figure 28 shows the –Cp distribution obtained with the [19] 

turbulence model. The step profile at the blunt nose region and 

the hole region at the booster region are again observable. The 

pressure recovery at the booster region is typical of all 

solutions in this study. This –Cp profile is so strength than the 

[17] and [18] profiles. 

5.5. Rumsey, Gatski, Ying, and Bertelrud 

Results 

Figure 29 shows the pressure contours obtained by the [2] 

algorithm as the [20] turbulence model is employed. The 

curves of contours are well defined and the solution quality is 

the same as in the [17-19] solutions. The shock at the booster 

region is well captured. No overshoots or undershoots are 

present, corroborating the idea of this scheme prevents Gibbs 

phenomenon. 

Figure 30 exhibits the Mach number contours obtained by 

the [20] turbulence model. The contours present the same 

features than the other corresponding contours. No pre-shock 

oscillations are perceptible. The subsonic region is formed at 

the blunt nose as expected. 

 

Figure 29. Pressure contours (RGYB). 

 

Figure 30. Mach number contours (RGYB). 

 

Figure 31. Temperature contours (RGYB). 
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Figure 32. Circulation bubble formation (Cockpit-RGYB). 

 

Figure 33. Circulation bubble formation (Boosters-RGYB). 

 

Figure 34. –Cp distribution (RGYB). 

Figure 31 presents the translational temperature contours 

originated from the [20] turbulence model. The temperature 

peak is observed near to 836.1 K, which is less than the [18] 

temperature field and superior to the other fields. It is possible 

to detect regions of great heating near the satellite 

compartment end and at the booster regions. Confirming this 

observation, circulation bubble formations were detected in 

these regions. Figures 32 and 33 show these regions. They are 

discrete, but observable, and ratifies the expected behavior. 

Figure 34 shows the –Cp distribution obtained with the [20] 

turbulence model. The step profile at the blunt nose region and 

the hole region at the booster region are again observable. The 

pressure recovery at the booster region is typical of all 

solutions in this study. This –Cp profile is so strength than the 

[17-19] profiles. 

5.6. Quantitative Analysis 

Table 3 shows the lift and drag aerodynamic coefficients 

calculated by the [2] scheme in the turbulent cases. As the 

geometry is symmetrical and an attack angle of zero value was 

adopted in the simulations, the lift coefficient should have a 

zero value. The most correct value to the lift coefficient is due 

to the [16] turbulence model, in its Launder and Spalding 

variant. 

Table 3. Aerodynamic coefficients of lift and drag. 

Turbulence Model: cL: cD: 

[16] turbulence model – LS -1.445x10-6 0.072 

[16] turbulence model – C -4.390x10-6 0.072 

[17] turbulence model -5.567x10-6 0.073 

[18] turbulence model -8.085x10-6 0.074 

[19] turbulence model 4.887x10-6 0.073 

[20] turbulence model -3.052x10-5 0.074 

Another possibility to quantitative comparison of the 

laminar and turbulent cases is the determination of the 

stagnation pressure ahead of the configuration. [25] presents a 

table of normal shock wave properties in its B Appendix. This 

table permits the determination of some shock wave properties 

as function of the freestream Mach number. In front of the 

VLS configuration, the shock wave presents a normal shock 

behavior, which permits the determination of the stagnation 

pressure, behind the shock wave, from the tables encountered 

in [25]. So it is possible to determine the ratio ∞prpr0  from 

[25], where pr0 is the stagnation pressure in front of the 

configuration and pr∞ is the freestream pressure (equals to 1/γ 

to the present dimensionless). 

Hence, to this problem, M∞ = 3.0 corresponds to ∞prpr0 = 

12.06 and remembering that pr∞ = 0.714, it is possible to 

conclude that pr0 = 8.61. Values of the stagnation pressure to 

the turbulent cases and respective percentage errors are shown 

in Tab. 4. They are obtained from Figures 3, 9, 13, 17, 23 and 

29. As can be observed, with the exception of the [17] 

turbulence model, all others presented the best result, with a 

percentage error of 5.80%. 

Table 4. Values of the stagnation pressure and respective percentage errors. 

Turbulence Model: pr0: Error (%): 

[16] turbulence model – LS 8.10 5.80 

[16] turbulence model – C 8.10 5.80 

[17] turbulence model 8.00 7.00 

[18] turbulence model 8.10 5.80 

[19] turbulence model 8.10 5.80 

[20] turbulence model 8.10 5.80 
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Finally, Table 5 exhibits the computational data of the 

present simulations. It can be noted that the most efficient is 

the [18] turbulence model. 

Table 5. Computational data. 

Turbulence Model: CFL: Iterations: 

[16] turbulence model – LS 0.05 11,415 

[16] turbulence model – C 0.05 12,950 

[17] turbulence model 0.10 6,050 

[18] turbulence model 0.10 4,315 

[19] turbulence model 0.10 5,220 

[20] turbulence model 0.10 4,735 

As final conclusion of this study, the [16] turbulence model 

in its Launder and Spalding variant was the best when 

comparing these five turbulence models: [16-20]. This choice 

is based on the best estimative of the aerodynamic coefficients 

and the best estimative to the stagnation pressure. 

6. Conclusion 

In the present work, the [2] flux vector splitting scheme is 

implemented, on a finite-volume context. The 

two-dimensional Favre-averaged Navier-Stokes equations are 

solved using an upwind discretization on a structured mesh. 

The [16-20] two-equation models are used in order to close the 

problem. The physical problem under study is the supersonic 

flow around a simplified version of the VLS configuration. 

The implemented scheme uses a MUSCL procedure to reach 

second order accuracy in space. The time integration uses a 

Runge-Kutta method of five stages and is second order 

accurate. The algorithm is accelerated to the steady state 

solution using a spatially variable time step. This technique 

has proved excellent gains as reported in [21-22]. 

The results have demonstrated that the [16] model in its 

Launder and Spalding variant has yielded more critical 

pressure field than the other models. The aerodynamic 

coefficient of lift is better predicted by the [16] turbulence 

model in its Launder and Spalding variant. Finally, the 

stagnation pressure ahead of the VLS configuration is better 

predicted by the [16] turbulence model in its Launder and 

Spalding variant. Hence, the best choice corresponds to the 

[16] turbulence model in its LS variant for this study. 

Finally, the last paper of this work will treat the [6], [30], 

[31] and [16] turbulence models applied to an aerospace 

problem aiming determine the best turbulence model among 

these ones. 
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