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Abstract 
In the present work, the Van Leer flux vector splitting scheme is implemented to solve the 

two-dimensional Favre-averaged Navier-Stokes equations. The Baldwin and Lomax, 

Wilcox, Menter and Rumsey, and Kergaravat and Knight turbulence models are used in 

order to close the problem. The physical problem under study is the supersonic flow along 

a ramp. The results have demonstrated that the Kergaravat and Knight model in its 

Launder and Spalding variant captured the boundary layer detachment with consequent 

detection of circulation bubble formation. The shock angle is better predicted by the 

Kergaravat and Knight model in its Launder and Spalding variant. 

1. Introduction 

The present work consisted in an evaluation of seventeen turbulence models applied to 

aerospace problems in the supersonic flow regime. This work was divided in four parts: 

[1-4], each one composed of four turbulence models, being the last, [4], composed of five 

turbulence models. The Favre-Averaged Navier-Stokes equations, in a conservative and 

integral form, were structured discretized and solved explicitly by the [5] algorithm, which 

performed the numerical experiments. The spatially variable time step was employed to 

accelerate the convergence of both fluid dynamic and turbulence fields. This tool has 

presented excellent performance in accelerating the convergence of numerical schemes, as 

reported in [6-7]. All turbulence models were algebraic, one-equation, or two-equation 

ones, being k-ε or k-ω variants. 

The first paper of this work, [1], has studied the [8-11] turbulence models, applied to the 

problem of the supersonic flow along a simplified version of the VLS (Brazilian “Satellite 

Launcher Vehicle”). The [8] and [11] were algebraic models and [9-10] were two-equation 

models. Excellent results were obtained by the [11] model, highlighting this one as the best 

choice to this group of options. The excellent capture of the normal shock ahead of the 

configuration and excellent estimative of the stagnation pressure at the blunt body nose 

pointed out this turbulence model as the best. 

The second paper, [2], left with the [12-15] turbulence models, applied to the same 

problem aforementioned. The [15] model was algebraic and the others were two-equation 

models. The [14] turbulence model has provided the second best estimative of the lift 

aerodynamic coefficient and the best estimative of the stagnation pressure, resulting in its 

choice as the best of this group of turbulence models. 

The third paper, [3], has analyzed the [16-19] turbulence models, applied to the problem 

of the simplified VLS. The [16] model was one-equation, whereas the others were 

two-equation models. The [18] model was studied in its four variants, as also the [19] 

model. In the former, the Wilcox, two-layer, BSL and SST variants were studied. In the 

latter, the four combinations involving the [20-21] versions were tested. The best  
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performance was due to the [18] model in the BSL variant. 

This version has presented the best estimative of the 

stagnation pressure and the second best estimative of the lift 

aerodynamic coefficient. 

Finally, the fourth paper, [4], has studied the [22-23] models, 

the later in its [21] and [24] variants, and the [25-27] models. 

All turbulence models were two-equation models. The best 

performance was due to the [23] model, in its [24] variant, 

because has presented the best estimative of the stagnation 

pressure and the best estimative of the lift aerodynamic 

coefficient. 

With the result of these four papers, the present work 

consists in the solution of the two-dimensional 

Favre-averaged Navier-Stokes equations using an upwind 

discretization on a structured mesh to determine the best 

turbulence model of this study. The [5] scheme is employed to 

perform the numerical experiments. The [11], [14], [18], and 

[23] turbulence models are used in order to close the problem. 

The [11] model is algebraic, whereas the others are 

two-equation models. The physical problem under study is the 

supersonic flow along a ramp configuration. The implemented 

scheme uses a MUSCL procedure to reach second order 

accuracy in space. The time integration uses a Runge-Kutta 

method of five stages and is second order accurate. The 

algorithm is accelerated to the steady state solution using a 

spatially variable time step. This technique has proved 

excellent gains in terms of convergence rate as reported in [6-7] 

works. The results have demonstrated that the [23] model in 

its LS variant has yielded consistent wall pressure distribution. 

The [23] model in its LS variant also captured the boundary 

layer detachment with consequent detection of circulation 

bubble formation. Finally, the shock angle is better predicted 

by the [23] turbulence model in its LS variant. 

2. Results 

Tests were performed in a Dual Core processor of 2.3GHz 

and 2.0Gbytes of RAM microcomputer. Three orders of 

reduction of the maximum residual in the field were 

considered to obtain a converged solution. The residual was 

defined as the value of the discretized conservation equation. 

The entrance or attack angle was adopted equal to zero. The 

ratio of specific heats, γ, assumed the value 1.4. The Reynolds 

number was estimated based on [28] data. 

Figures 1 shows the ramp configuration, whereas Fig. 2 

shows the ramp mesh. A mesh of 61x60 points or composed of 

3,540 rectangular cells and 3,660 nodes was generated, 

employing an exponential stretching of 10.0% in the η 

direction. The initial data of the simulations are described in 

Tab. 1. 

Table 1. Initial Conditions. 

M∞     θθθθ Altitude L∞ Re 

2.0 0.0o 20,000m 0.0437m 1.61x105 

 

Figure 1. Ramp configuration. 

 

Figure 2. Ramp viscous mesh. 

2.1. Baldwin and Lomax Results 

 

Figure 3. Pressure contours (BL). 

Figure 3 exhibit the pressure contours obtained by the 
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second order [5] scheme as using the [11] turbulence model. 

The contours are uniform and well defined. The oblique shock 

wave at the ramp corner is well captured. A weak shock wave 

is formed upstream the ramp corner. This shock indicates the 

formation of a circulation bubble close to the ramp corner. 

 

Figure 4. Mach number contours (BL). 

This circulation bubble is the result of the boundary layer 

detachment due to viscous effects at the wall. 

Figure 4 exhibits the Mach number contours obtained by 

the high resolution TVD [5] scheme as using the [11] 

turbulence model. The viscous region close to the ramp wall is 

well captured. The boundary layer detachment is verified by 

the intense energy exchange in the corner region. The 

formation of a circulation bubble is well characterized in this 

figure. The solution is free of pre-shock oscillations. 

Due to the boundary layer detachment and the formation of 

a region of intense energy exchange, a circulation bubble is 

formed close to the ramp corner. This is shown in Figure 5, 

where the bubble was appropriately captured by the numerical 

scheme and turbulence model. 

 

Figure 5. Circulation bubble formation (BL). 

 

Figure 6. Wall pressure distribution (BL). 

Figure 6 shows the pressure distribution along the ramp 

wall. The theoretical solution is plotted in conjunction because 

it should be the solution if the viscous effects did not 

predominate. As can be seen, the numerical pressure plateau is 

well below the theoretical pressure plateau, due to viscous 

effects. In all this distribution, no overshoots and undershoots 

are perceptible, even for a second-order scheme. This aspect 

highlights the MUSCL procedure as a good tool to provide 

clean profiles. Such procedure avoids the appearance of Gibbs 

phenomenon, typical of second order schemes, yielding good 

quality solutions. 

2.2. Wilcox Results 

 

Figure 7. Pressure contours (W). 

Figure 7 shows the pressure contours obtained by the [5] 

scheme as using the [14] turbulence model. The shock is well 

defined and homogeneous. As can be seen, there are 

qualitative differences between this plot and the [11] 

corresponding plot. The oblique shock at the corner region is 

captured by both models, but the second shock is not captured 

by the [14] model. The boundary layer detachment is not 

observed in the [14] solution, which implies that the 
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circulation bubble is not formed. 

 

Figure 8. Mach number contours (W). 

From the experience in other works [30-35], the appearance 

of the weak shock wave before the ramp is an undoubtable fact 

and the turbulence model should be able to capture this 

non-linearity. The above result indicates that the [14] 

turbulence model was not able to capture this phenomenon 

and it penalizes its description of the flow field. 

Figure 8 exhibits the Mach number contours obtained by 

the [5] numerical scheme as using the [14] turbulence model. 

The present contours are very distinct of the [11] solution. The 

circulation bubble as a result of the boundary layer 

detachment is not formed. The shock is well characterized, but 

the region of intense energy exchange is not highlighted. 

No regions of circulation bubbles are captured by the [14] 

turbulence model. The detail of the corner region shows an 

attached boundary layer with no circulation bubble formation, 

which is a severe penalization to this turbulence model. This 

separation was captured by the studied turbulence models of 

the [30-35] works, what becomes improbable its inexistence. 

 

Figure 9. Circulation bubble formation (W). 

 

Figure 10. Wall pressure distribution (W). 

Figure 10 presents the pressure distribution at wall of the 

ramp configuration, generated by the [14] turbulence model. 

This curve is coincident enough to the theoretical results and it 

would be an excellent solution whether the boundary layer 

detachment was captured by the turbulence model. The 

appearance of a small first plateau before the ramp, as 

occurred in the [11] solution, characterizing the circulation 

bubble formation, is a typical feature of this type of plot. 

2.3. Menter and Rumsey BSL Results 

Figure 11 shows the pressure contours generated by the [5] 

scheme as using the [18] turbulence model in its BSL variant. 

These contours are similar to the contours of the [14] model. 

The shock is well captured and the solution is not totally 

homogeneous. It did not present pre-shock oscillations. The 

first shock, the weak shock, is not captured by this turbulence 

model and it penalizes it quality solution. As in the [14] 

solution, the [18] solution did not capture the boundary layer 

detachment and not circulation bubble was observed. 

 

Figure 11. Pressure contours (MR-BSL). 
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Figure 12. Mach number contours (MR-BSL). 

Figure 12 exhibits the Mach number contours obtained as 

using the [18] turbulence model in its BSL variant. The 

solution is similar to the [14] solution. It is possible to note 

that this solution presents less dissipation than the [14] 

solution. It is clear that the region of intense energy exchange 

is not formed and this behavior equaled the [14] one. 

 

Figure 13. Circulation bubble formation (MR-BSL). 

Figure 13 corroborates what was observed in the 

aforementioned paragraph. Circulation bubbles formation was 

not observed. Regions of high heating and of generation of 

loss of energy by the bubbles displacement and energy 

exchange due to collisions were not observed. This solution 

agrees with that of the [14] turbulence model. 

Figure 14 exhibits the wall pressure distribution resulting 

from the [18] turbulence model in its BSL variant. The 

distribution is worse than that of the [11] solution, not 

capturing the circulation bubble formation as a result of the 

boundary layer detachment. This solution is closer to the [14] 

solution, presenting a worse behavior at the fan pressure. 

 

Figure 14. Wall pressure distribution (MR-BSL). 

2.4. Kergaravat and Knight LS Results 

Figure 15 shows the pressure contours obtained by the [5] 

algorithm as the [23] turbulence model, in its Launder and 

Spalding variant, is employed. The curves of contours are well 

defined and the solution quality is similar to the [11] solution. 

The weak shock formed ahead of the compression corner is 

captured and a small circulation bubble is formed as resulted 

from the boundary layer detachment. 

 

Figure 15. Pressure contours (KK-LS). 

Figure 16 exhibits the Mach number contours obtained by 

the [23] turbulence model as the LS variant is employed. The 

contours present the same features of the [11] contours, 

detecting the region of intense energy exchange close to the 

ramp corner. The circulation bubble formation is clearly 

captured from the [23] turbulence model in its LS variant. No 

pre-shock oscillations are perceptible. The primary shock is 

more homogeneous than the respective shock of the [11] 

solution. 
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Figure 16. Mach number contours (KK-LS). 

 

Figure 17. Circulation bubble formation (KK-LS). 

 

Figure 18. Wall pressure distribution (KK-LS). 

Figure 17 shows the circulation bubble formation close to 

the ramp’s compression corner. The boundary layer 

detachment causes the appearance of this phenomenon. A 

region of intense energy exchange is established. This 

circulation bubble is smaller than that observed in the [11] 

solution, but it does not degenerate the pressure profile 

enough. 

Figure 18 shows the wall pressure distribution obtained 

with the [23] turbulence model in its LS variant. This pressure 

profile detects the boundary layer detachment and is close to 

the theoretical pressure profile. In other words, the [23] 

turbulence model presents a compromise between capture of 

non-linearity and shock strength features. 

2.5. Quantitative Analysis 

One way to quantitatively verify if the solutions generated 

by each model are satisfactory consists in determining the 

shock angle of the oblique shock wave, β, measured in relation 

to the initial direction of the flow field. [29] (pages 352 and 

353) presents a diagram with values of the shock angle, β, to 

oblique shock waves. The value of this angle is determined as 

function of the freestream Mach number and of the deflection 

angle of the flow after the shock wave, φ. To φ = 20º (ramp 

inclination angle) and to a freestream Mach number equals to 

2.0, it is possible to obtain from this diagram a value to β 

equals to 53.0º. Using a transfer in Figures 3, 7, 11, and 15 it is 

possible to obtain the values of β estimated by each turbulence 

model, as well the respective errors, shown in Tab. 2. It is 

possible to distinguish that the [5] scheme using the [23] 

turbulence model, in its LS variant, yields the best result with 

0.94% of error. Hence, in terms of accuracy the [23] 

turbulence model in its LS variant is the best. 

Table 2. Values of the stagnation pressure and respective percentage errors. 

Turbulence Model: ββββ (o) Error (%): 

[11] turbulence model 51.0 3.77 

[14] turbulence model 52.0 1.89 

[18] turbulence model 51.0 3.77 

[23] turbulence model 53.5 0.94 

Finally, Table 3 exhibits the computational data of the 

present simulations. It can be noted that the most efficient is 

the [18] turbulence model. 

Table 3. Computational data. 

Turbulence Model: CFL: Iterations: 

[11] turbulence model 0.10 32,144 

[14] turbulence model 0.10 2,825 

[18] turbulence model 0.10 2,095 

[23] turbulence model 0.10 6,592 

As final conclusion of this study, the [23] turbulence model 

in its Launder and Spalding variant was the best when 

comparing these four turbulence models: [11, 14, 18, 23]. This 

choice is based on the best behavior in the capture of 

non-linearity like boundary layer detachment with circulation 

bubble formation and in the estimative of shock angle of the 
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oblique shock wave. Considering all seventeen turbulence 

models studied in these five papers, the [23] turbulence model 

in its Launder and Spalding variant is the best. 

3. Conclusions 

The present work consists in the solution of the 

two-dimensional Favre-averaged Navier-Stokes equations 

using an upwind discretization on a structured mesh. The [5] 

scheme is employed to perform the numerical experiments. 

The [11], [14], [18], and [23] turbulence models are used in 

order to close the problem. The [11] model is algebraic, 

whereas the others are two-equation models. The physical 

problem under study is the supersonic flow along a ramp 

configuration. The implemented scheme uses a MUSCL 

procedure to reach second order accuracy in space. The time 

integration uses a Runge-Kutta method of five stages and is 

second order accurate. The algorithm is accelerated to the 

steady state solution using a spatially variable time step. This 

technique has proved excellent gains in terms of convergence 

rate as reported in [6-7] works. The results have demonstrated 

that the [23] model in its LS variant has yielded consistent 

wall pressure distribution. The [23] model in its LS variant 

also captured the boundary layer detachment with consequent 

detection of circulation bubble formation. Finally, the shock 

angle is better predicted by the LS [23] turbulence model. 

This paper finishes our work related to the study of 

seventeen turbulence models applied to the solution of 

aerospace problems in the supersonic flow regime. It was 

applied the [5] TVD scheme to perform the numerical 

experiments. The supersonic flows around a simplified VLS 

configuration and along a ramp were studied. The best 

quantitative results were obtained with the [23] turbulence 

model in its Launder and Spalding variant, highlighting this 

one as the best of all. 
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