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Abstract 
In the present work, the Van Leer flux vector splitting scheme is implemented to solve the 

two-dimensional Favre-averaged Navier-Stokes equations. The Wilcox and Rubesin, 

Wilcox, Jacon and Knight, and Zhou, Davidson and Olsson two-equation models are used 

in order to close the problem. The physical problem under study is the “cold gas” 

hypersonic flow around a reentry capsule configuration. The results have demonstrated 

that the aerodynamic coefficient of lift is better predicted by the Wilcox and Rubesin 

turbulence model; However, the stagnation pressure ahead of the reentry capsule 

configuration is better predicted by the Wilcox turbulence model. 

1. Introduction 

Conventional non-upwind algorithms have been used extensively to solve a wide 

variety of problems ([1]). Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every different case in the same class of 

problems) artificial dissipation terms must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks and steep compression and expansion 

gradients may defy solution altogether. 

First order upwind schemes are in general more robust but are also more involved in 

their derivation and application. Some upwind schemes that have been applied to the Euler 

equations are, for example, [2-3]. Some comments about these methods are reported 

below: 

[2] suggested an upwind scheme based on the flux vector splitting concept. This scheme 

considered the fact that the convective flux vector components could be written as flow 

Mach number polynomial functions, as main characteristic. Such polynomials presented 

the particularity of having the minor possible degree and the scheme had to satisfy seven 

basic properties to form such polynomials. This scheme was presented to the Euler 

equations in Cartesian coordinates and three-dimensions. 

[3] emphasized that the [4] scheme had low computational complexity and low 

numerical diffusion when compared to other methods. They also mentioned that the 

original method had several deficiencies. It yielded pressure oscillations in the proximity 

of shock waves. Problems with adverse mesh and with flow alignment were also reported. 

[3] proposed a hybrid flux vector splitting approach which alternated between the [4] 

scheme and the [2] scheme, at the shock-wave regions. This strategy assured that strength 

shock resolution was clearly and well defined. 

There is a practical necessity in the aeronautical industry and in other fields of the 

capability of calculating separated turbulent compressible flows. With the available 

numerical methods, researches seem able to analyze several separated flows,  
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three-dimensional in general, if an appropriated turbulence 

model is employed. Simple methods as the algebraic 

turbulence models of [5-6] supply satisfactory results with low 

computational cost and allow that the main features of the 

turbulent flow be detected. 

Several studies concerning two-equation models have been 

developed by the CFD (“Computational Fluid Dynamics”) 

community. [7] have programmed a k-ω2
 turbulence model 

that used the definition of the turbulent Reynolds number and 

a damping factor to define the turbulent viscosity. [8] has 

presented a more compact and elegant form of the k-ω 

two-equation model, popularized until now. [9] have 

developed an unstructured algorithm to solve the 

Reynolds-averaged Navier-Stokes equations in 

two-dimensions. The turbulence effects were modeled with 

the standard k-ε model of [8]. [10] have defined a viscous and 

temperature lengths to construct a variable Prandtl number. 

This work describes four turbulence models applied to 

hypersonic flows in two-dimensions. The [2] scheme, in its 

first-order version, is implemented to accomplish the 

numerical simulations. The Favre-averaged Navier-Stokes 

equations, on a finite volume context and employing 

structured spatial discretization, are applied to solve the “cold 

gas” hypersonic flow around a reentry capsule in 

two-dimensions. Turbulence models are applied to close the 

system, namely: [7-10]. The convergence process is 

accelerated to the steady state condition through a spatially 

variable time step procedure, which has proved effective gains 

in terms of computational acceleration (see [11-12]). The 

results have shown that the [7] scheme yields the best results 

in terms of the prediction of the lift aerodynamic coefficient; 

however, the [8] turbulence model predicts the best value of 

the stagnation pressure. Moreover, the [8] scheme also 

predicted the most severe pressure field. 

2. Navier-Stokes Equations 

The two-dimensional flow is modeled by the Navier-Stokes 

equations, which express the conservation of mass and energy 

as well as the momentum variation of a viscous, heat 

conducting and compressible media, in the absence of external 

forces. The Navier-Stokes equations are presented in their 

two-equation turbulence model formulation. The integral form 

of these equations may be represented by: 

( ) ( )[ ] 0GdVdSnFFnEEQdVt
VS

yvexve
V

=+−+−+∂∂ ∫∫∫ , (1) 

where Q is written for a Cartesian system, V is the cell volume, 

nx and ny are components of the unity vector normal to the cell 

boundary, S is the flux area, Ee and Fe are the components of 

the convective, or Euler, flux vector, Ev and Fv are the 

components of the viscous, or diffusive, flux vector and G is 

the source term of the two-equation models. The vectors Q, Ee, 

Fe, Ev and Fv are, incorporating a k-s formulation, represented 

by: 
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where the components of the viscous stress tensor are defined 

as: 

( )[ ]  Reyvxu32xu2t MMxx ∂∂+∂∂µ−∂∂µ= ;      (3a) 

( ) Rexvyut Mxy ∂∂+∂∂µ= ; 

( ) ( )[ ]  Reyvxu32yv2t MMyy ∂∂+∂∂µ−∂∂µ= .   (3b) 

The components of the turbulent stress tensor (Reynolds 

stress tensor) are described by the following expressions: 

( )
( )

( )

xx T T

xy T

yy T T

2 u x 2 3 u x v y Re 2 3 k;

u y v x Re;

2 v y 2 3 u x v y Re 2 3 k.

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ − ρ  

τ = µ ∂ ∂ + ∂ ∂

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ − ρ  

 (4) 

Expressions to fx and fy are given bellow: 

( ) ( )
( ) ( )

x xx xx xy xy x

y xy xy yy yy y

f t u t v q ,

f t u t v q ,

= + τ + + τ −

= + τ + + τ −
             (5) 

where qx and qy are the Fourier heat flux components and are 

given by: 

( )
( )

x M L T T i

y M L T T i

q Re Pr Pr e x ,

q Re Pr Pr e y.

= − γ µ + µ ∂ ∂

= − γ µ + µ ∂ ∂
          (6) 

The diffusion terms related to the k-s equations are given 

by: 

( )
( )

x M T k

y M T k

1 Re k x ,

1 Re k y;

α = µ + µ σ ∂ ∂

α = µ + µ σ ∂ ∂
             (7) 
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( )
( )

x M T s

y M T s

1 Re s x ,

1 Re s y.

β = µ + µ σ ∂ ∂

β = µ + µ σ ∂ ∂
                  (8) 

In the above equations, ρ is the fluid density; u and v are 

Cartesian components of the velocity vector in the x and y 

directions, respectively; e is the total energy per unit volume; 

p is the static pressure; k is the turbulence kinetic energy; s is 

the second turbulent variable, which is the rate of dissipation 

of the turbulence kinetic energy (k-ε model), the turbulent 

vorticity (k-ω model) or the square of the turbulent vorticity 

(k-ω2
 model); the t’s are viscous stress components; τ’s are the 

Reynolds stress components; the q’s are the Fourier heat flux 

components; Gk takes into account the production and the 

dissipation terms of k; Gs takes into account the production 

and the dissipation terms of s; µM and µT are the molecular and 

the turbulent viscosities, respectively; PrL and PrT are the 

laminar and the turbulent Prandtl numbers, respectively; σk 

and σs are turbulence coefficients; γ is the ratio of specific 

heats; Re is the laminar Reynolds number, defined by: 

MREFREFlVRe µρ= ,                          (9) 

where VREF is a characteristic flow velocity and lREF is a 

configuration characteristic length. The internal energy of the 

fluid, ei, is defined as: 

( )22
i vu5.0ρee +−= .                     (10) 

The molecular viscosity is estimated by the empiric 

Sutherland formula: 

( )TS1bT 21
M +=µ ,                      (11) 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions ([13]). 

The Navier-Stokes equations are dimensionless in relation 

to the freestream density, ρ∞, the freestream speed of sound, a∞, 

and the freestream molecular viscosity, µ∞. The system is 

closed by the state equation for a perfect gas: 

( )[ ]ρkvu0.5ρe1)(γp 22 −+−−= ,             (12) 

considering the ideal gas hypothesis. The total enthalpy is 

given by ( ) ρ+= peH . 

3. Van Leer Algorithm 

The space approximation of the integral Equation (1) yields 

an ordinary differential equation system given by: 

j,ij,ij,i RdtdQV −= ,                      (13) 

with Ri,j representing the net flux (residual) of the 

conservation of mass, conservation of momentum and 

conservation of energy in the volume Vi,j. The residual is 

calculated as: 

j,2/1i2/1j,ij,2/1i2/1j,ij,i RRRRR −++− +++= ,   (14) 

with d
j,2/1i

c
j,2/1ij,2/1i RRR +++ −= , where the superscripts “c” 

and “d” are related to convective and diffusive contributions, 

respectively. The cell volume is given by: 

( ) ( ) ( ) ( ) ( ) ( )i, j i, j i 1,j i 1,j 1 i 1,j i 1,j 1 i,j i 1,j 1 i,j i 1,j i,j i 1,j 1 i,j 1 i 1,j 1 i,j 1 i,j i, j 1 i,j i 1,j 1
V 0.5 x x y x x y x x y 0.5 x x y x x y x x y+ + + + + + + + + + + + + + + + + += − + − + − + − + − + − .   (15) 

The convective discrete flux calculated by the AUSM 

scheme (Advection Upstream Splitting Method) can be 

understood as a sum of the arithmetical average between the 

right (R) and left (L) states of the cell face (i+½,j), involving 

volumes (i+1,j) and (i,j), respectively, multiplied by the 

interface Mach number, plus a scalar dissipative term, as 

shown in [4]. Hence, 

i 1/2, j i 1/2, j i 1/2, ji 1/2, j

L R R

a a a a

au au au au

av av av av1 1
R S M

aH aH aH aH2 2

ak ak ak ak
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+ + ++
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L i 1/2, j

0

S p
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,

0

0

as 0 +

    
    
    
    

  +   
    
    
            

                  (16) 

where [ ] t

j,2/1iyxj,2/1i SSS
++ =  defines the normal area 

vector for the surface (i+½,j). The normal area components Sx 

and Sy to each flux interface are given in Tab. 1. Figure 1 

exhibits the computational cell adopted for the simulations, as 

well its respective nodes and flux interfaces. 

 

 

Table 1. Values of Sx and Sy. 

Surface Sx Sy 

i,j-1/2 ( )j,ij,1i yy −+
 

( )j,1ij,i xx +−
 

i+1/2,j ( )j,1i1j,1i yy +++ −
 

( )1j,1ij,1i xx +++ −
 

i,j+1/2 ( )1j,1i1j,i yy +++ −
 

( )1j,i1j,1i xx +++ −
 

i-1/2,j ( )1j,ij,i yy +−
 

( )j,i1j,i xx −+
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Figure 1. Computational Cell. 

The quantity “a” represents the speed of sound, which is 

defined as: 

( ) 5.0
kpa −ργ= .                   (17) 

Mi+½,j defines the advective Mach number at the (i+½,j) 

face, which is calculated according to [4]: 

−+
+ += RLj,2/1i MMM ,                  (18) 

where the separated Mach numbers are defined by [2]: 

( ) ;1

;1Mif,0

M  if,         1M25.0

;1MifM,

M
2 <









−≤
+

≥
=+

  and   ( ) ;1

.1Mif,M

Mif,1M25.0

;1Mif,0

M
2 <









−≤
−−

≥
=−

           (19) 

ML and MR represent the Mach numbers associated with the left and the right states, respectively. The advection Mach number 

is defined by: 

( ) ( )SavSuSM yx += .                                         (20) 

The pressure at the face (i+½,j), related to the cell (i,j), is calculated by a similar formula: 

−+
+ += RLj,2/1i ppp ,                                          (21) 

with p
+/-

 denoting the pressure separation and due to [2]: 

( ) ( )








−≤
<−+

≥
=+

;1Mif,0

1Mif,M21Mp25.0

;1Mif,p

p
2

;  and   ( ) ( )








−≤
<+−

≥
=−

.1Mif,p

1Mif,M21Mp25.0

;1Mif,0

p
2

;            (22) 

The definition of a dissipative term φ determines the particular formulation of the convective fluxes. The following choice 

corresponds to the [2] scheme, according to [3]: 

( )
( )









≤<−++

<≤−+

≥

=φ=φ

++

++

++

++

.0M1if,1M5.0M

;1M0if,1M5.0M
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j,2/1i
2
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2
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VL
j,2/1ij,2/1i                         (23) 

The above equations clearly show that to a supersonic cell 

face Mach number, the [2] scheme represents a discretization 

purely upwind, using either the left state or the right state to 

the convective terms and to the pressure, depending of the 

Mach number signal. This [2] scheme is first order accurate in 

space. The time integration is performed using an explicit 

Runge-Kutta method of five stages, second order accurate, 

and can be represented in generalized form by: 

( ) ( )[ ]
)k(

j,i
)1n(

j,i

)1k(
j,ij,i

)1k(
j,ij,ik

)0(
j,i

)k(
j,i

)n(
j,i

)0(
j,i

QQ

,QGVQRtQQ

QQ

=

+∆α−=

=

+

−−
  (24) 

with k = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2 and α5 = 

1. The gradients of the primitive variables are calculated using 

the Green theorem, which considers that the gradient of a 

primitive variable is constant at the volume and that the 

volume integral which defines the gradient is replaced by a 

surface integral ([14]). To the xu ∂∂  gradient, for example, 

it is possible to write: 

( ) ≅=•=
∂
∂=

∂
∂

∫∫∫
xS

x

S

x

V

udS
V

1
Sdnu

V

1
dV

x

u

V

1

x

u �

�

      (25a) 

( ) ( ) ( ) ( )
i , j 1/2 i 1/2, j i , j 1/2 i 1/2 , ji, j i, j 1 x i, j i 1, j x i, j i, j 1 x i, j i 1, j x

1
0.5 u u S 0.5 u u S 0.5 u u S 0.5 u u S

V − + + −− + + −
 + + + + + + +  .       (25b) 



 Engineering and Technology 2015; 2(5): 312-323  316 

 

 

4. Turbulence Models 

4.1. Wilcox and Rubesin Turbulence Model 

In the [7] turbulence model, s = ω2
. To define the turbulent 

viscosity, or eddy viscosity, it is necessary to define the 

turbulent Reynolds number: 

( )ων= MT kRe ,   with: ρµ=ν MM .        (26) 

It is also necessary to determine the D damping factor: 

[ ]TRe
e1D

−α−= .                   (27) 

The turbulent viscosity is expressed in terms of k and ω as: 

ωρ=µ kDReT .                   (28) 

The source term denoted by G in the governing equation 

contains the production and dissipation terms of k and ω2
. To 

the [7] model, the Gk and G
ω
2  terms have the following 

expressions: 

kkk DPG −−=    and   222 DPG ωωω −−= ,      (29) 

where: 

*

k k2

u v u DP 2 u v
P , P k Re; D k Re;

3 x yy x y

    ∂ ∂ ∂ ∂ ∂ = + = ρω = − + ω −β ρω      ∂ ∂ω∂ ∂ ∂       
               (30) 

2 2

2

2

3 3

2

d kEP 2 u v 2
P Re; D Re,

3 x y dy

∞
∞ω ω

ω

    ω γ ∂ ∂   = ρω = − γ + ω− β + ρω       ∂ ∂ σω         

           (31) 

with the second damping factor E defined as: 
( )T0.5Re

E 1 e
−= − α . The closure coefficients adopted for the [7] 

model assume the following values: 0.2k =σ ; 0.22 =σω ; 

09.0* =β ; 15.0=β ; 99174.0=α ; 9.0=γ∞ ; PrdL = 0.72; 

PrdT = 0.9. 

4.2. Wilcox Turbulence Model 

In the [8] turbulence model, s = ω. The turbulent viscosity is 

expressed in terms of k and ω as: 

ωρ=µ kReT .                (32) 

In this model, the quantities kσ  and ωσ  have the values 

*1 σ and σ1 , respectively, where *σ and σ are model 

constants. To the [8] model, the Gk and Gω terms have the 

following expressions: 

kkk DPG +−=    and   ωωω +−= DPG ,          (33) 

where: 

Re
y

u

x

v

y

u
P Tk

∂

∂














∂

∂
+

∂

∂
µ=   and  RekD *

k ωρβ= ; 

kP
k

P 






 αω
=ω   and  ReD 2ωβρ=ω ,        (34) 

where the closure coefficients adopted for the [8] model are: 

09.0* =β ; 403=β ; 5.0* =σ ; 5.0=σ ; 95=α ; PrdL = 

0.72; PrdT = 0.9. 

4.3. Jacon and Knight Turbulence Model 

In the [9] turbulence model, it is necessary to define the 

dissipation rate, which is decomposed as follows: 

ds ε+ε=ε ,                         (35) 

where εd is the dissipation of the dilatation of the turbulent 

kinetic energy. The Sarkar model is employed to take into 

account the compressibility effects: 

s
2
td M ε=ε   and  22

t ak2M = ,           (36) 

with Mt being the turbulent Mach number. The turbulent 

viscosity is expressed in terms of k and ε as: 

ερ=µ µ
2

T kCRe .                   (37) 

The source term denoted by G in the flow equations has the 

production and dissipation terms of k and ε. To the model of 

[9], the terms Gk and Gε have the following expressions: 

kkk DPG +=   and  εεε += DPG ,          (38) 

where: 

( )k xx xy yy k

2

1 k 2 s

P u x u y v x v y; D ;

P C P k; D C k.ε ε ε ε

= −τ ∂ ∂ − τ ∂ ∂ + ∂ ∂ − τ ∂ ∂ = ρε

= ε = ρε
                        (39) 

The closure coefficients of the [9] model assume the 

following values: 44.1C 1 =ε , 92.1C 2 =ε , 09.0C =µ , 

0.1k =σ , 3.1=σε , 72.0PrL =  and 89.0PrT = . 
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4.4. Zhou, Davidson and Olsson Turbulence 

Model 

To the [10] turbulence model, s = ε. Before define the 

turbulent viscosity, it is necessary to define some parameters. 

The coefficient Cl is defined as 

75.0
l CC −

µκ= .                      (40) 

The characteristic viscous length is expressed as 

( )




 −= ν−

µ
µ mANk

l e1NCl ,               (41) 

where N is the normal distance of a cell from the wall. The 

turbulent viscosity is defined as 

µµρ=µ lkCReT .                   (42) 

The characteristic temperature length is expressed as 

( )




 −= ν− m4CNk

3t e1NCl .               (43) 

The variable turbulent Prandtl number, to be inserted in Eq. 

(6), is defined as 

tvar,T llPr µ= .                     (44) 

The Gk and Gε terms have the following expressions: 

kkk DPG +−=   and  εεε +−= DPG ,       (45) 

where: 

Re
x

v

y

u
Txy 














∂

∂
+

∂

∂
µ=τ , 

y

u
P xyk

∂

∂
τ= ; ReDk ρε= ; (46) 

k1 PC
k

P εε
ε

= , ReC
k

D 2 ρε
ε

= εε .            (47) 

The closure coefficients assume the following values: 

44.1C1 =ε , 92.1C2 =ε , 12.3C3 = , 0.92C4 = , 40.0=κ , 

0.70A =µ , 09.0C =µ , 0.1k =σ , 3.1=σε  and 

72.0PrL = . 

5. Spatially Variable Time Step 

The basic idea of this procedure consists in keeping a 

constant CFL number in all calculation domain; thus allowing 

that appropriated time steps to each specific mesh region 

could be used during the convergence process. Hence, to a 

viscous simulation and according to the [15] work, it is 

possible to write: 

( )
j,ivc

vc
j,i

tt

ttCFL
t 









∆+∆
∆∆

=∆ ,                      (48) 

with ∆tc being the convective time step and ∆tv being the 

viscous time step. These quantities are defined as: 

( ) ( ) ( ) ( )

( ) ( )

i, j max max max max

c c i, j 1/2 i 1/2, j i, j 1/2 i 1/2, ji, j i, j

c i, j

max

int x int y int intint

V
t , max , , , ;

u n v n a S ,

− + + −∆ = λ = λ λ λ λ
λ

λ = + +
                              (49) 

( ) ( ) ( ) ( )

( )

( ) ( )

3/2
i, j

v vi, j i, j

v L i, ji, j

i, j 1/2 i 1/ 2, j i, j 1/2 i 1/ 2, j2 2 2 2

i, j 1/ 2 i 1/2, j i, j 1/2 i 1/2, ji, j

i, j 1/2 i 1/2, j i, j 1/2 i 1/2, j

v i, j i, j

V M
t K , p1 ;

Re Pr d V

p2 S S S S ;

p1 p2 ,

∞

− + + −
− + + −

− + + −

γ
∆ = =

λ

µ µ µ µ
= + + +

ρ ρ ρ ρ

λ = ×

                        (50) 

where interface properties are calculated by arithmetical 

average, M∞ is the freestream Mach number, µ is the fluid 

molecular viscosity and Kv is equal to 0.25, as recommended 

by [15]. The initial and boundary conditions are reported in 

[16-17] and the interested reader is recommended to read 

these references to become aware of the numerical 

implementation. 

6. Results 

Tests were performed in a Dual Core processor of 2.3GHz 

and 2.0Gbytes of RAM microcomputer. Three orders of 

reduction of the maximum residual in the field were 

considered to obtain a converged solution. The residual was 

defined as the value of the discretized conservation equation. 

The entrance or attack angle was adopted equal to zero. The 

ratio of specific heats, γ, assumed the value 1.4. 

Figure 2 shows the reentry capsule configuration. It is 

composed of 5,040 rectangular cells and 5,185 nodes, which is 

equivalent to a mesh of 85x61 nodes on a finite difference 

context. The exponential stretching is of 7.5%. 

Detail of this mesh is shown in Fig. 3. The initial condition 

is defined in Tab. 2. The Reynolds number was estimated 

based on [13]. 

Table 2. Initial Conditions. 

M∞ θθθθ Altitude L∞ Re 

7.0 0.0o 40,000m 3.0m 1.66x106 
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Figure 2. Reentry capsule configuration. 

 

Figure 3. Reentry capsule viscous mesh. 

6.1. Wilcox and Rubesin Results 

Figure 4 exhibits the pressure contours obtained by the [2] 

scheme as using the [7] turbulence model. The shock is well 

captured and good symmetry properties are observed. The 

pressure peak reaches 43.62 unities. Figure 5 presents the 

Mach number contours obtained by the [2] scheme as using 

the [7] turbulence model. The Mach number contours are 

symmetrical and not pre-shock oscillations appear, as 

expected. The maximum Mach number value is 7.55, slightly 

superior to the freestream Mach number. Figure 6 shows the 

temperature contours obtained by the [2] scheme. The 

temperature field presents a maximum at the leading and at the 

trailing edge regions. The field presents good symmetry 

properties. The shock is well captured. The maximum 

temperature value reaches 2,772.12 K. Figure 7 exhibits the 

turbulent kinetic energy contours generated by the [2] scheme 

as using the [7] turbulence model. The plot presents good 

symmetry properties and the values of the turbulent kinetic 

energy are coherent. 

 

Figure 4. Pressure contours (WR). 

 

Figure 5. Mach number contours (WR). 

 

Figure 6. Temperature contours (WR). 
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Figure 7. Turbulent kinetic energy contours (WR). 

6.2. Wilcox Results 

 

Figure 8. Pressure contours (W). 

 

Figure 9. Mach number contours (W). 

Figure 8 presents the pressure contours obtained by the [2] 

scheme as the [8] turbulence model is employed. The contours 

are symmetrical and homogeneous. No pre-shock oscillations 

are observed. The pressure peak is equal to 43.70 unities. 

Figure 9 shows the Mach number contours obtained by the 

[2] scheme as using the [8] turbulence model. The Mach 

number peak is equal to 7.55, slightly superior to the 

freestream Mach number. The contours are symmetrical and 

homogeneous. The subsonic region is well captured at the 

leading edge region. 

 

Figure 10. Temperature contours (W). 

Figure 10 exhibits the temperature contours in the field 

obtained by the [2] scheme as using the [8] turbulence model. 

The temperature peak is close to 2,777.32 K and appears at the 

trailing edge. The contours are symmetrical and homogeneous. 

Figure 11 presents the turbulent kinetic energy contours 

obtained by the [2] scheme as using the [8] turbulence model. 

The contours are symmetrical, but differs from the same 

contours of the [7] turbulence model. This turbulent kinetic 

energy contours are more strength than the [7] ones. 

 

Figure 11. Turbulent kinetic energy contours (W). 

6.3. Jacon and Knight Results 

Figure 12 shows the pressure contours obtained by the [2] 



 Engineering and Technology 2015; 2(5): 312-323  320 

 

scheme as using the [9] turbulence model. As can be seen, the 

pressure contours are bad resolved. The contours are 

symmetrical, but the field seems not developed. The pressure 

peak is 3.97, well below the pressure peak of the [7] and [8] 

models. It seems that the k-ε model is very sensitive to the 

freestream Mach number, or, in other words, very sensitive to 

the hypersonic flow regime. Figure 13 exhibits the Mach 

number contours obtained by the [2] scheme as using the [9] 

turbulence model. The contours are again not developed. The 

Mach number peak is 6.97. The contours are symmetrical, but 

bad resolved. 

 

Figure 12. Pressure contours (JK). 

Figure 14 presents the temperature contours obtained by the 

[2] scheme as using the [9] turbulence model. The temperature 

peak is under-predicted in relation to the [7] and [8] results. 

The flow is symmetrical, but is not developed. Figure 15 

presents the turbulent kinetic energy contours obtained by the 

[2] scheme as using the [9] turbulence model. The maximum 

“k” appears at a short region near the trailing edge. The field is 

bad developed. It confirms the idea of the bad behavior of the 

k-ε model in the hypersonic regime. 

 

Figure 13. Mach number contours (JK). 

 

Figure 14. Temperature contours (JK). 

 

Figure 15. Turbulent kinetic energy contours (JK). 

6.4. Zhou, Davidson and Olsson Results 

 

Figure 16. Pressure contours (ZDO). 
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Figure 17. Mach number contours (ZDO). 

 

Figure 18. Temperature contours (ZDO). 

 

Figure 19. Turbulent kinetic energy contours (ZDO). 

Figure 16 shows the pressure contours obtained by the [2] 

scheme as using the [10] turbulence model. The contours are 

symmetrical, but they seem not developed. The pressure peak 

is 3.95, distant from the results of [7] and [8]. Figure 17 shows 

the Mach number contours obtained by the [2] scheme as 

using the [10] turbulence model. Again, the contours seem not 

developed. The Mach number peak is 7.22, which is 

acceptable. 

Figure 18 exhibits the temperature contours obtained by the 

[2] scheme as using the [10] turbulence model. The contours 

are symmetrical, but the temperature field is not developed. 

The maximum temperature is close to 1,566.21 K, distant 

from the respective maximum obtained by [7] and [8]. Figure 

19 exhibits the turbulent kinetic energy contours. The 

maximum peak occurs at the trailing edge. The field is not 

developed. 

6.5. –Cp Distributions 

Figure 20 shows the –Cp distributions obtained by the [2] 

scheme as using the four turbulence models. As can be seen, 

the [9] and [10] distributions are wrong and confirm the idea 

of the bad response of the k-ε models to the hypersonic regime. 

[7] and [8] distributions are correct and are coincident, what 

indicate that the two solutions are very close. 

 

Figure 20. –Cp distributions. 

6.6. Quantitative Analysis 

Table 3 shows the lift and drag aerodynamic coefficients 

calculated by the [2] scheme in the turbulent cases. As the 

geometry is symmetrical and an attack angle of zero value was 

adopted in the simulations, the lift coefficient should have a 

zero value. The most correct value to the lift coefficient is due 

to the [7] turbulence model once that the [9] and [10] 

turbulence models present wrong solutions. 

Table 3. Aerodynamic coefficients of lift and drag. 

Turbulence Model: cL: cD: 

[7] turbulence model 7.82x10-9 2.27 

[8] turbulence model -2.32x10-8 2.27 

[9] turbulence model 1.73x10-7 0.05 

[10] turbulence model -9.64x10-10 0.05 

Another possibility to quantitative comparison of the 



 Engineering and Technology 2015; 2(5): 312-323  322 

 

turbulent case is the determination of the stagnation pressure 

ahead of the configuration. [18] presents a table of normal 

shock wave properties in its B Appendix. This table permits 

the determination of some shock wave properties as function 

of the freestream Mach number. In front of the reentry capsule 

configuration, the shock wave presents a normal shock 

behavior, which permits the determination of the stagnation 

pressure, behind the shock wave, from the tables encountered 

in [18]. So it is possible to determine the ratio ∞prpr0  from 

[18], where pr0 is the stagnation pressure in front of the 

configuration and pr∞ is the freestream pressure (equals to 1/γ 

to the present dimensionless). 

Hence, to this problem, M∞ = 7.0 corresponds to ∞prpr0 = 

63.55 and remembering that pr∞ = 0.714, it is possible to 

conclude that pr0 = 45.37. Values of the stagnation pressure to 

the turbulent cases and respective percentage errors are shown 

in Tab. 4. They are obtained from Figures 4, 8, 12, and 16. As 

can be observed, the [8] turbulence model has presented the 

best result, with a percentage error of 3.68%. 

Table 4. Values of the stagnation pressure and respective percentage errors. 

Turbulence Model: pr0: Error (%): 

[7] turbulence model 43.62 3.86 

[8] turbulence model 43.70 3.68 

[9] turbulence model 3.97 91.25 

[10] turbulence model 3.95 91.29 

Table 5. Computational data. 

Turbulence Model: CFL: Iterations: 

[7] turbulence model 0.10 11,124 

[8] turbulence model 0.10 5,987 

[9] turbulence model 0.10 1,052 

[10] turbulence model 0.10 1,124 

Finally, Table 5 exhibits the computational data of the 

present simulations. It can be noted that the most efficient 

scheme is the [2] one with the [8] turbulence model, 

considering that the [9] and [10] turbulence models have 

presented wrong solutions. 

As final conclusion of this study, the [8] turbulence model 

was the best when comparing these four turbulence models: 

[7-10]. This choice is based on the second best estimative of 

the lift aerodynamic coefficient, considering the right results, 

and the best estimative to the stagnation pressure. 

7. Conclusion 

This work describes four turbulence models applied to 

hypersonic flows in two-dimensions. The [2] scheme, in its 

first-order version, is implemented to accomplish the 

numerical simulations. The Favre-averaged Navier-Stokes 

equations, on a finite volume context and employing 

structured spatial discretization, are applied to solve the “cold 

gas” hypersonic flow around a reentry capsule in 

two-dimensions. Turbulence models are applied to close the 

system, namely: [7-10]. The convergence process is 

accelerated to the steady state condition through a spatially 

variable time step procedure, which has proved effective gains 

in terms of computational acceleration (see [11-12]). The 

results have shown that the [7] scheme yields the best results 

in terms of the prediction of the lift aerodynamic coefficient; 

however, the [8] turbulence model predicts the best value of 

the stagnation pressure. Moreover, the [8] scheme also 

predicted the most severe pressure field. As final conclusion, 

the [8] turbulence model is the best in this work. 

An important conclusion of this work was the deficiency of 

the k-ε models to simulate hypersonic flows. Good results of 

these models are obtained until the supersonic regime 

considering the first author’s experience. Some results of the 

k-ε models to supersonic flows are detailed in [16-17; 19-20]. 

The reader is encouraged to read these references to see the 

positive features of these models. 
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