

American Journal of ComputaAmerican Journal of ComputaAmerican Journal of ComputaAmerican Journal of Computation, Communication and Controltion, Communication and Controltion, Communication and Controltion, Communication and Control
2014; 1(1): 8-17
Published online April 10, 2014 (http://www.aascit.org/journal/ajccc)

Keywords
Cloud,
Datacenter,
Throughput,
Web,
Service,
Load,
Access Layer,
Simulation

Received: March 06, 2014
Revised: March 28, 2014
Accepted: March 29, 2014

Gateway load balancing service
in cloud data centre
environments using throughput
metric index

K. C Okafor
1
, Ugwoke, F. N

2
, Udeze, C. C

3
,

Okezie, C. C

3
,

O. U Oparaku
1

1Department of Electronic Engineering, University of Nigeria, Nsukka, UNN, Nigeria
2Department of Computer Science, Michael Opara University of Agriculture, Umudike,

Nigeria
3Department of Electronics and Computer Engineering, Unizik, Awka, Nigeria

Email address
arissyncline@yahoo.com(Ugwoke, F. N)

Citation
K. C Okafor, Ugwoke, F. N, Udeze, C. C, Okezie, C. C, O. U Oparaku. Gateway Load

Balancing Service in Cloud Data Centre Environments Using Throughput Metric Index.

American Journal of Computation, Communication and Control.

Vol. 1, No. 1, 2014, pp. 8-17.

Abstract
In cloud data centre designs, as a result of high density traffic transactions,
introducing a gateway load balancer (GLB) to improve server performance
considering the demand of clients, will greatly offer robust fault tolerance, while
enhancing performance at large. This paper developed, and analysed the
performance of a core layer network simulation which hosts a typical http web
service while outlining the advantages of load balancing service. This reflects in the
throughput response of a two case scenario: Cloud DCN failure recovery and Cloud

DCN No_ failure recovery in a carefully design cloud datacenter setup. From the
results of this study, it was observed that the former yielded 99% throughput index
while the later offered 97% throughput index. The 3% differential accounts for
occasional server downtimes. Consequently, this paper argues that in a data
intensive network, any load balancing service will allow load sharing of traffic from
access layer endpoints within a common subnet through redundant default gateways,
while also providing failure protection. This will offer an additional improvement in
a proposed Enterprise Energy Tracking Analytics Cloud Portal (EETACP) in our
future work.

1. Introduction

Recently, applications continue to rely increasingly on distributed resources of
datacenter networks thereby creating a need for fault tolerance at the core layer. As
a result, networking systems in the cloud environment will continue to evolve with
increased interface speeds and packet forwarding rates. The underlying complexity
of these systems must continue to support virtualization, advanced security
mechanism, scalability and stability. Datacenter designs must focus more on the
relationship it will have with business processes, rather than on details of balancing
access layer traffic, in order to gain competitive advantage from their networked
systems.

In the business process of our earlier proposal on EETACP, figure 1 shows its

 American Journal of Computation, Communication and Control 2014; 1(1): 8-17 9

development criteria, but using the public deployment
model, a critical issue to be considered for mission critical
applications is fault tolerance in the cloud environment.

2. Related Works

While a lot of work have been done on large scale
network computing such as datacenter congestion
management (TCP/IP networks), and fault tolerant designs,
etc [2], [3], [4], [5], [6], [7], and [8], clouds aim to drive the
design of the next generation data centres by architecting
them as networks of virtual services (hardware, database,
user-interface, application logic) so that users can access
and deploy applications from anywhere in the world on
demand at competitive costs depending on their QoS
(Quality of Service) requirements [3]. Developers with
innovative ideas for new Internet services no longer require
large capital outlays in hardware to deploy their service or
human expense to operate it [9].

Figure 1. Cloud Application Framework (Source: Crowe H.L. et al,

COSO, 2012).

In the context of fault tolerance, server, link, switch, rack
failures due to hardware, software, and power outage
problems presents vulnerabilities. As the network size
grows, individual server and switch failures may become
the norm rather than exception. Fault tolerance in DCN
may requests for both redundancy in physical connectivity
and robust mechanisms in protocol design. In all our
review studies, failures are quite common in current
datacenters [10], [11]. Besides, high network capacity in
online infrastructure services will need large amount of
network bandwidth to deliver satisfactory runtime
performance as well.

Any contribution that will improve the performance
index of cloud public delivery model will be widely
celebrated. Load balancing is the act of balancing packet
load over multiple links to the same remote network [12]. It
is a function that spreads the traffic over multiple devices
and circuits, rather than sending it all through a single
device and circuit. As studied in [12], Open Shortest Path
First (OSPF), (a link-state, hierarchical routing algorithm
derived from an earlier version of the Intermediate System-
Intermediate System (IS-IS) protocol), Enhanced Interior
gateway Routing Protocol (IGRP), Interior Gateway
Protocol (IGP), and IP all offers load balancing

capabilitities which was not discussed in our earlier work in
[13].

The paper is organized as follows: In section II, Related
works is discussed. We state a hypothesis; describe the
general system model with relevant assumptions for the
cloud environment. Also, we discuss the advantages of
GLB in cloud DCN physical architecture. In section III, an
analytical model for throughput metric is presented. In
Section IV, We actually present a simulation design of a
two case scenario for Cloud DCN fault tolerance system.
Section V gives the simulation results to validate our
hypothesis. The paper ends with the conclusions and future
directions.

2.1. Research Hypothesis, System Design

and Assumptions

A. Research Hypothesis
There is a significant variation in the throughput
index of a cloud datacenter network with a failure
recovery service compared to the one with no
failure recovery service.

B. System Model and Description
Consider figure 2, the users X1…………….Xn+1 utilize a

single gateway to reach the Internet. In this model, the
gateway f(x) and f(y) are multilayer series switches where
f(x) represents the client gateway, and f(y) represents the
server gateway; however, a Layer-3 router can serve same
purpose as it can be used interchangeably with multilayer

switch. The server gateway represents a single point of
failure on this network. In the absence of a fault tolerate
gateway, if that gateway fails, users will lose access to all
resources beyond that gateway. This lack of redundancy in
such networks is unacceptable on business-critical systems
that require maximum uptime. However, this required a
solution transparent to the end user (or host device) as
shown in figure 2

Figure 2. System Model for Cloud Datacenter network.

As shown in figure 2, detailed discussion on server load
balancing, otherwise referred to as clustering service is
discussed below.

10 K. C Okafor et al.: Gateway Load Balancing Service in Cloud Data Centre Environments Using Throughput Metric Index

2.2. Server Load Balancing (SLB)

Intelligent Cisco routers/multilayer switches supports the
following protocols for datacenter load stabilization in their
IOS softwares, viz
i. Hot Standby Router Protocol (HSRP)

ii. Virtual Router Redundancy Protocol (VRRP)
iii. Gateway Load Balancing Protocol (GLBP)

HSRP, VRRP, and GLBP provide gateway redundancy
for clients. While HSRP and VRRP do provide redundant
gateways for fault tolerance, they do not provide load-
balancing between those gateways which is a serious
limitation. The SLB service in figure 2 allows a router to
apply a virtual IP address (Assuming IP address
192.168.1.10) to a group of servers S1, S2,S3. All of the
servers are configured identically (with the exception of
their IP addresses), and provide the same function. Having
multiple servers for the proposed EETACP, etc allows for
both redundancy and load-balancing. As shown in figure 2,
clients point to a single virtual IP address to access the
server farm. The client is unaware of which server it is truly
connecting to. If a specific server fails, the server farm can
stay operational. Individual servers can be brought down
for repair or maintenance, and the server farm can stay
functional. Assume the servers are Web servers hosting the
proposed EETACP. To access the Web resource, users will
connect to the Virtual IP address of 192.168.1.10. The
multilayer switch intercepts this packet, and redirects it to
one of the physical servers inside the server farm. In
essence, the multilayer switch is functioning as a Virtual
Server. For the SLB, there are two load balancing methods
available viz:
i. Weighted Round Robin: In this case, the traffic is

forwarded to the physical servers in a round robin
fashion. However, servers with a higher weight are
assigned more traffic. This is the default method as
used in this work.

Weighted Least Connections: In this case, the traffic is
assigned to the server with the least amount of current
connections. Appendix 2 shows the SLB Configuration for
Cloud DCN on a Cisco MLS

2.3. Advantages of GLB in Cloud DCN

Some identified advantages of GLB in cloud computing
environment include:
i. Efficient use of network resources: multiple paths

upstream from the gateways can be utilized
simultaneously.

ii. Higher availability: GLBP offers enhanced
redundancy eliminating single point of failure of
the first-hop gateway. An enhanced object-tracking
feature can be used with GLBP to ensure the
redundancy implementation mirrors network
capabilities. This same feature is also available for
HSRP and VRRP.

iii. Automatic load balancing: Off-net traffic is shared
among available gateways on a per-host basis,

according to the defined load-balancing algorithm.
iv. Lower administration costs: Since all hosts on a

subnet can use a common default gateway while
load balancing is still achieved, administration of
multiple groups and gateways is unnecessary.

v. Simpler Access-layer design: More efficient use of
resources is now possible without configuring
additional VLANs and subnets. GLBP can be used
if IP hosts on the LAN have a default gateway
configured or learned via DHCP. It allows them to
send packets to hosts on other network segments
while balancing their traffic among multiple
gateways.

2.4. Design Goals

In designing a fault tolerant Cloud datacenter, the main
goals is to maintain high throughput with near zero
downtime. It should be stable and robust. In the following,
goals are explained in details [2]:

- High Throughput: Since the demand for data
exchange and resources in cloud environment is
enormously high compared with other networks,
throughput maximization is indispensable, and this
is characterized by maximized link utilization.

- Stability: The stability of a system in general
depends on the control target [2]. Since, server
centric datacenters are involved in high speed
computations, our design objective must consider
the respective individual flows and convergence
rates of the links in active states.

- Low Queuing Delays: Since, the servers supports
and runs mission critical applications, the higher
the throughput, the higher the link utilization which
often leads to long queuing delays. As such, to
avoid or maintain the delays within the lowest
threshold while achieving, high utilization, the load
balancer must be configured to optimize these
variables.

2.5. Assumptions/Design Specifications

Following the block diagram overview of the cloud DCN
model shown in figure 2, our design will focus on the two
layers: access layer and GLB/ speed redundancy layer.
Recall that MLS is the major component in the GLB/speed
redundancy layer, while servers interconnected through
gateway, are the major components of the GLB/Speed core
layer. The cloud DCN port architectural model overview is
shown in figure 3. This will facilitate the understanding
of the model specifications described in [14]. The model
specifications are as follows:

• Let C_DCN be an acronym chosen for the Cloud
DCN. C_DCN was designed to have four subnets
(subnet 1-4) which were called C_DCNsa, C_DCNsb,

C_DCNsc, C_DCNsd interconnected as shown in
figure 3, where s is a subnet factor such that s > 0.
Each C_DCN uses High Performance Computing

 American Journal of Computation, Communication and Control 2014; 1(1): 8-17 11

(HPC) servers and a Multi-Protocol Label Switch
(MLS) layered in linearly defined architecture.
Since our designing of datacenter network is for
efficient server load balancing and application
integration, we will need one (4-port) MLS switch
and few servers, hence, the choice of four subnets.
Virtual server instances running on the HPC servers
made up for further need of hardware servers in the
network.

• Servers in C DCNs are connected to MLS port of
the load balancer corresponding to it, and owing to
the running virtual instances Vi, a commodity 4-
port switch with 40GB/s per port serve the design
purpose. Also, each of the C DCNs is
interconnected to each other through the MLS
switch ports.

• The virtualized server used in this work has two
ports for redundancy (in Gigabytes). Each server is
assigned a 2-tuple [a1, a0] in consonance with its
ports (a1, a0 are the redundant factors) together with
a VLAN ID (1 to 1005).

• Cisco Ws-C3560-44Ps-E IOS version 12.2 was the
MLS used in this work, hence, the number 1005 is
the maximum number of VLAN that can be created
in it. The switch is a multilayer commodity switch
that has a load balancing capability. This capability
together with its VLAN capability was leveraged
upon to improve the overall Cloud DCN stability.

• Each server has its interface links in Cloud DCNs.

One connects to an MLS, and other servers
connects as well but all segmented within their
subnets its VLAN segmentation, see figure 4.

• C-DCNs servers have virtual instances running on it
and are fully connected with every other virtual
node in the architecture.

Figure 3. Cloud DCN Port Architectural Model.

3. Analytical Algorithms and

Characterizations

3.1. Cloud-DCN Construction Algorithm

The C-DCN recursive construction algorithm has two
sections. The first section checks whether C-DCNs is
constructed. If so, it connects all the n nodes to a
corresponding multi-label switch (MLS) port and ends the
recursion. The second section interconnects the servers to

the corresponding switch port and any two servers are
connected with one link. Each server in the C-DCNs
network is connected with 10GB links for all VLANid. The
C-DCN physical architecture with the VLAN segmentation
is shown in figure 4 while the linear construction algorithm
is depicted in Algorithm 1 below. In the C-DCN physical
structure, the servers in one subnet are connected to one
another through one of the MLS ports that is dedicated to
that subnet. Each server in one subnet is also linked to
another server of the same order in all another subnets.

As such, each of the servers has two links, with one, it
connects to other servers in the same subnet (intra server
connection) and with the other it connects to the other
servers of the same order in all other subnets (inter server
connection). Apart from the communication that goes on
simultaneously in the various subnets, the inter server
connection is actually a VLAN connection. This VLAN
segmentation of the servers logical isolates them for
security and improved network performance. Together with
server virtualization which ultimately improves the
network bandwidth and speed, this VLAN segmentation
gives each C-DCNs (subnet) the capacity to efficiently
support enterprise web applications (EETACP, Web Portals,
Cloud applications such as software as a service) running
on server virtualization in each MLS.

Algorithm 1: C_DCN Construction Algorithm.
/* l stands for the level of C_DCNs subnet links, n is the

number of nodes in a C_DCNs,
pref is the network prefix of C_DCNs s s is the number

of servers in a C_DCNs,*/
Build C_DCNs (l, n, s)
Section I: /* build C_DCNs */
If (l = = 0)
For (int i = 0; i < n; i++) /* where n is=4*/
Connect node [pref, i] to its switch;
Return;
Section II: /*build C_DCNs servers*/
For (int i = 0; i < s; i++)
Build C_DCNs ([pref, i], s)
Connect C_DCNs (s) to its switch;
Return;

Figure 4. Cloud DCN Physical Architecture with VLAN Segmentation.

12 K. C Okafor et al.: Gateway Load Balancing Service in Cloud Data Centre Environments Using Throughput Metric Index

3.2. Logical Isolation of Cloud DCN

Architecture

The application of VLAN in each subnet creates full
logical isolation of the Cloud-DCN architecture as shown
in figure 4. In order to achieve this, each server and nodes
in Cloud-DCNs is assigned virtualization identity , [Vid =

av1, av2 ……… avn-1] and VLAN identity (Vlid) between 1
and 1005, where av1, av2 ……..… avn-1 is the virtualization
instances on C_DCNs servers. As such each server can be
equivalently identified by a unique Vlid in the range Vlid ≤

1005*.
Hence the total of Vlid for servers in the Cloud-DCNs is

Vlid = ∑ Vlid � Vs�	
�
�	
� (1.1)

Where N is the maximum number of VLAN, and Vs is
the virtual instances in the C-DCNs.

The mapping between a unique Vlid and the C-DCNs
servers considering that there are four C-DCNs is given in
equation (1.2)

 C-DCN mapping = 4 * Vlid * Vs (1.2)

Following the Cloud-DCN architecture in figure 4, in
order to minimize broadcast storms and reduce network
traffic/demand density, a VLAN mapping scheme of the
servers in the Cloud-DCNs was applied resulting to the
simulation model in figure 5a, 5b

Consider Cloud-DCNsa, Cloud -DCNsb, Cloud -DCNsc

and Cloud_DCNsd with servers S1 to Sn. The servers in each
of the Cloud-DCNs are mapped into different VLANs with
their corresponding ids as follows:

VLAN1 �S1a, S1b, S1c, S1d………………..S1n
VLAN2 �S2a, S2b, S2c, S2d………….…….S2n
VLAN3 �S3a, S3b, S3c, S3d…….………….S3n
VLAN4 �S4a, S4b, S4c, S4d………………. S4n

VLANn �Sna, Snb, Snc, Snd………………. Snn

Where S1a, S2a, S3a, S4a are the servers in Cloud_DCNsa

S1b, S2b, S3b, S4b are the servers in Cloud-DCNsb
S1c, S2c, S3c, S4c are the servers in Cloud-DCNsc
S1d, S2d, S3d, S4d are the servers in Cloud-DCNsd.
With this VLAN mapping scheme, a logical isolation of

the Cloud-DCN architecture was achieved as shown in the
mode of figure 4. This make for fluid flexibility, improved
network security, agility and control of traffic flow in the
Cloud-DCN architecture.

3.3. Modeling Traffic Stability for Cloud-

DCN

Request or demand arrives randomly in the Multilabel
switch, not necessarily in a deterministic fashion. This
work assumed that the packet arrival follows the stochastic
process such that the packet size is exponentially
distributed, and the system is considered as an M/M/1
queuing system. An M/M/1 queue represents the queue
length in a system having a single server, where the arrivals
are determined by a stochastic process and the job service

time has an exponential distribution. The buffer size of the
switch (MLS) is of infinite size.

For the system (C_DCN), capacity management and
optimum utilization will address broadcast oscillation
(congestion) and instability. To address this situation,
adapting Little’s law which takes care of the system
response time and scheduling distribution will optimize
traffic flow.

If the average arrival rate per unit time is denoted by λp
(pps) and µp is the average service rate per unit time, then
from Little’s law, the average delay (in seconds), D is given
by:

D =1/ (µp – λp) (1.3)

And the traffic demand, a (referred to as offered load or
offered traffic in C_DCNs), is given by a = λp *

Μp (1.4)

The system is considered stable only if λp < µp. If on the
other hand, the average arrivals happen faster than the
service completions (λp > µp), the queue will grow
indefinitely long and the system will not have a stationary
distribution (the system is unstable).

3.4. Cloud-DCN Fault Tolerant Algorithm

(GLB)

The Traffic algorithm in Cloud-DCN architecture is
modelled for effective fault tolerance and failure
suppression which makes for greater efficiency in web
application integration. The Cloud-DCN algorithm is
shown in Algorithm 2.

The procedure in Algorithm 2 normalizes and stabilizes
traffic flow in the proposed DCN. In initialization, the rate
controller and Ethernet interfaces are initialized while
enabling the bus arbitration in ports. In the ports the
peripheral component interconnect extension and the MAC
are defined while calling the subroutine for more addition
of ports in the DCN switch. For each subnet, traffic
scheduling is asserted true while enabling the maximum
bandwidth for the medium of traffic propagation. On the
switch, MAC address mapping is assigned multiplexer
switch arbitration bus which suppresses collision types
(unicast, broadcast, multicast). For Round Trip Time (RTT),
unicast data flows with their frame sizes and packet length
are scheduled for two-way handshake (transfer). At the
instance of correspondence between a scheduled
destination address and rate controller buffer, data, and
packet length from the port are established for transfers.
The process is repeated throughout the entire period of the
DCN traffic initiation. At each point, normalisation of the
rate controller, the data length, and the buffer sizes is
carried out while consistently suppressing collision forms
in the DCN.

Conventionally, in DCN flooding of packets from an
active port to destination addresses is done with a
compromise to the DCN resources. With GLB beside

 American Journal of Computation, Communication and Control 2014; 1(1): 8-17 13

collision suppression, fair scheduling and sharing of
resources is an optimal feature that will enhance service
availability and reliable throughput. Hence, with GLB as an
improvement to CSMA/CD, utilization of resources by
heavy web application servers will maintain dynamic
stability without compromise to other QoS metrics.

Algorithm 2: Cloud_DCN Traffic Algorithm.
 Procedure: trafficController: Public {SERVER 1:N}

 {

 Set

 Normalization UiXi ==TAMP==0

 RateController ==0

 ServerEthernet = = Ethernet Initialization

 Define Abitration Bus {Ports}

 Define PCIx MAC (TF)

 Addports(Cloud-DCNports);

 Data Packets:� MAC Address []

 Cloud-

DCN.Subnet(1),transferScheduled(True) { }

 int uploadData() const { return MAC

Address};

 setUploadLimit(int bytes Per Second)

 {upLimit = 10 Gbps; }

 Map MacAddres: � Multiplexer Switch

Abitration Bus

 SetDownloadLimit(int bytesPerSecond);

 Data: Public Unicast data:

 Assign Data bytes:� Length (L);

 ScheduleTransfer();

 };

 If Cloud_DCN BUFFER && RateController ==

Destination Address)

 {

 Connect(L,Data (readyToTransfer());

 Complete Scheduled Transfert-

>setReadBufferSize();

 Output.Network buffer(port);

 ScheduleTransfer();

 }

 For (i =0;i++)

 Clou-DCN BUFFER==RateController � UiXi

 {

Normalize(PortContention,Collision,Saturation&&Switc

hPoison)

 SIGNAL(readyToTransfer()),

 C-DCN->setReadBufferSize(0);

 }

4. Simulation Analysis

4.1. Design Context

As for the simulation testbed used for Cloud DCN
simulation, a generic template for running C-DCN was
developed using OPNET IT guru as a simulation tool.
The equivalent system model is shown in figure 2. The
C-DCN architecture of figure 5a is made up of following
major component vis:

• The N number of C-DCN subnets with their

Media Access Control (MAC) controller and
their application data blocks.

• The MLS switch model comprising of the First-
in-First-out (FIFO) queue, connecting a server
farm gateway with a Gigabit Etherent link.

• The http IP Cloud.
• Entity sources ie end users.
Before the simulation, link consistence tests were

carried out randomly to ascertain any possibility of
failure in all cases. A randomly selected nodes and
servers routes packets in a bidirectional way from the
access layer to the core layer and vice versa. In context,
an investigation on both the path failure ratio and the
average path length for the found paths was carried out
and all the links found satisfactory. All links and nodes
passed the test in all cases. Figure 5b shows OPNET
screenshot for simulation sequence used in the analysis.
In all the simulations, we enabled the essential attributes
for each of the two scenarios on the template. Simulation
completed successfully and the results collated in the
global and object statistics reports. The simulation plot of
the Cloud DCN model under study is shown in figure 6.

4.2. Simulation Results/Hypothesis

Validation

4.2.1. C-DCN Model Validations

For further validation of our C-DCN, we used the
design parameters obtained from our experimental
testbed to develop a generic template in OPNET
modeller (a simulation tool). Based on some
experimental measurement carried out on the testbed,
we used the throughput metric for performance
evaluations of fault tolerance throughput index. On the
generic OPNET template shown in figure 5a, two
scenarios were created, one for Cloud DCN Fault
tolerance and one for Cloud DCN No Fault tolerance.
For each of the scenarios, the attributes of the three
architectures were configured on the template and the
simulation was run. Afterwards, the OPNET engine
generates the respective data for each of the QoS
investigated in this work as shown in Appendix 1. The
C-DCN used only a low-end MLS with the gateway
load balancing functions. It also uses traffic routing
algorithms viz: VLAN, feedback mechanisms, server
virtualization, and convergence with randomization.
The experiment only used the throughput parameter for
fault-tolerance analysis against the two scenarios. The
load balancer can detect when a server fails and
remove that machine from the server pool until it
recovers. In this scenario, server3 fails 5 minutes into
the simulation. 30 minutes later, the server recovers.
Appendix 1 shows the OPNET Guru Simulation Data
set generated from figure 5b after building the trace
file statistics in figure 5a. Figure 5c shows the packet
animation flow of traffic from users as depicted in
figure 1 previously discussed.

14 K. C Okafor et al.: Gateway Load Balancing Service in Cloud Data Centre Environments Using Throughput Metric Index

Figure 5a. Simulation Testbed for Cloud-DCN validation.

Figure 5b. OPNET Screenshot for Simulation Sequence used in the Analysis.

Figure 5c. OPNET Screenshot for the Simulation Packet Flows (Consistence Test).

 American Journal of Computation, Communication and Control 2014; 1(1): 8-17 15

4.2.2. Throughput Response Evaluations

Throughput being the data quantity transmitted correctly
starting from the source to the destination within a
specified time (seconds) is quantified with varied factors
including packet collisions, obstructions between
nodes/terminal devices between the access layer and the
core layer and more importantly at the core layer of the
cloud-DCN. During the simulation, throughput as a global
statistics was being measured and compared. Figure 6
shows that the average throughput index as achieved in the
simulation. Interestingly, both scenarios, had an initial
interesting throughput response which was sustained while
Cloud_DCN with fault tolerant maintained a very stable
throughput response.

The average throughput in a network with load balancing
service has highest throughput compared with the average
throughput in a network without a fault tolerant service.
The main reason for this is stems from GLB layer 2
introduced in C_DCN design leveraging its advantages as

discussed previously.
Again, in all cases, the introduction of a load balancer

was expected to balance the traffic at the core, but it was
observed that the network model of C_DCN as well as its
topological layout had a significant effect on the throughput.
Again, this work attributes this observation to the fact that
the three-tier topology is communicating on the basis of
reduced policy implementation. This makes for efficiency
and as such the total load of the network is divided among
the two-tier only on 40% (access layer): 60% (core) leading
to lesser collisions and lesser packet drops which could
likely occur. From figure 6, the Cloud DCN with failure
mechanism offered 99% throughput index while without
GLB, it yielded 97%. This result validates our research
hypothesis stated earlier in this work. We argue that in all
ramifications, cloud datacenter environments with no fault
tolerance mechanisms will fail in the face of mission
critical applications being hosted therein.

Figure 6. Throughput Index Analysis for C_DCN.

5. Conclusion and Future Works

This paper have presented a throughput index metric in
cloud DCN for efficient web application integration. Apart
from the literature review carried out, the study, we also
developed the system model with Mathematical model for
scalability, and logical isolation of Cloud DCN load
balancer MLS architecture. The advantages of GLB was
outlined. Using the OPNET simulator, we simulated Cloud-
DCN and compared the results of the two case fault

scenarios. Our discovery showed that C_DCN performed
much better (99%) under fault tolerance mechanism
compared with the case with no fault tolerance mechanism
(97%) thereby validating our stated hypothesis. This work
has made significant contributions to the body of
knowledge in the following areas:

1. A Cloud DCN model that is very efficient with
respect to web application integration, scalable,
service-oriented, and responsive to business needs,
with rapid service delivery has been realised.

16 K. C Okafor et al.: Gateway Load Balancing Service in Cloud Data Centre Environments Using Throughput Metric Index

2. An enhanced throughput index comparison between
a two case fault tolerance scenario to validate a
stated hypothesis

3. Traffic control issues in DCNs have been handled
through the analytical model proposed in this work.

Our conclusion therefore, is that the proposed Cloud
datacenter architecture will be very efficient, scalable, cost
effective, service-oriented, and responsive to business
needs, with rapid service delivery, and one that can provide
tighter alignment with business goals. Hence we
recommend the Cloud DCN to enterprise organisations for
greater efficiency in web application integration vis-à-vis
their data center network. This will form the basis of our
implementation of EETACP as well as the TCP
communication protocol into the datacenter in our future
works

Acknowledgements

This part of an ongoing PhD work of which the lead
author wish to appreciate Prof. O. U. Oparaku, the HOD of
Electronic Engineering and my supervisor. Also, I wish to
thank the R&D group of Cisco Systems for their expert and
meaningful contributions. Also, I wish to thank my co-
authors for contributing and sponsoring the publication of
this research work.

Appendix 1. OPNET Guru Simulation

Data Set Results

Simulati

on

Time

CloudDCN_Failure_Recov

ery:

Network.server_farm_gate

way <-> load_balancer

[0].point-to-

point.throughput (bits/sec)

-->.none

CloudDCN_No_Failure_R

ecovery:

Network.server_farm_gate

way <-> load_balancer

[0].point-to-

point.throughput (bits/sec)

-->.none

0 0.62 0.58

16 0.63 0.59

32 0.64 0.6

160 0.65 #N/A

167.1111 0.66 0.61

979.5556 0.69 0.62

1011.556 0.7 0.63

1027.556 0.73 0.64

1043.556 0.75 0.66

1059.556 #N/A 0.68

1075.556 #N/A 0.69

1091.556 #N/A 0.7

1251.556 0.76 #N/A

1959.111 #N/A 0.71

1975.111 #N/A 0.72

1991.111 0.77 0.73

2023.111 #N/A 0.74

2039.111 0.78 0.75

2071.111 0.79 #N/A

2103.111 0.8 #N/A

2119.111 0.81 #N/A

Simulati

on

Time

CloudDCN_Failure_Recov

ery:

Network.server_farm_gate

way <-> load_balancer

[0].point-to-

point.throughput (bits/sec)

-->.none

CloudDCN_No_Failure_R

ecovery:

Network.server_farm_gate

way <-> load_balancer

[0].point-to-

point.throughput (bits/sec)

-->.none

2135.111 0.82 #N/A

2874.667 #N/A 0.76

2906.667 #N/A 0.78

2922.667 #N/A 0.79

2954.667 0.83 #N/A

2986.667 0.85 0.81

3002.667 0.86 0.82

3018.667 0.87 #N/A

3050.667 0.88 0.83

3066.667 0.89 #N/A

3114.667 #N/A 0.84

3162.667 #N/A 0.85

3178.667 0.9 #N/A

3242.667 #N/A 0.86

3886.222 0.91 #N/A

3966.222 0.92 0.89

3998.222 0.93 0.9

4062.222 0.94 #N/A

4705.778 #N/A 0.91

4929.778 #N/A 0.92

5009.778 0.95 0.94

5073.778 0.96 #N/A

5989.333 #N/A 0.95

6069.333 0.97 #N/A

6808.889 #N/A 0.96

7932.444 0.98 #N/A

7980.444 0.99 0.97

8816 #N/A 0.98

8944 #N/A 0.99

9747.556 1 #N/A

9747.556 #N/A #N/A

9904 #N/A 1

9904 #N/A #N/A

Appendix 2. SLB Configuration for

Cloud DCN

Two separate elements need to be configured with SLB,
the Server Farm, and the Virtual Server. To configure the
Server Farm:

MLSwitch(config)# ip slb serverfarm Cloud_FARM

MLSwitch(config-slb-sfarm)# predictor leastconns

MLSwitch(config-slb-sfarm)# real 192.168.1.20

MLSwitch(config-slb-real)# weight 150

MLSwitch(config-slb-real)# inservice

MLSwitch(config-slb-sfarm)# real 192.168.1.21

MLSwitch(config-slb-real)# weight 100

MLSwitch(config-slb-real)# inservice

MLSwitch(config-slb-sfarm)# real 192.168.1.22

MLSwitch(config-slb-real)# weight 75

MLSwitch(config-slb-real)# inservice

The ip slb server farm command sets the server farm

 American Journal of Computation, Communication and Control 2014; 1(1): 8-17 17

name, and enters SLB Server Farm configuration mode.
The predictor command sets the load balancing method.

The real command identifies the IP address of a physical
server in the farm, and enters SLB Real Server
configuration mode. The weight command assigns the load-
balancing weight for that server. The inservice command
activates the real server

Configuration For Virtual Server
MLSwitch(config)# ip slb vserver VSERVERNAME

MLSwitch(config-slb-vserver)# serverfarm Cloud_FARM

MLSwitch(config-slb-vserver)# virtual 192.168.1.10

MLSwitch(config-slb-vserver)# client 192.168.0.0

0.0.255.255

MLSwitch(config-slb-vserver)# inservice

The ip slb vserver command sets the Virtual Server name,
and enters SLB Virtual Server configuration mode. The
serverfarm command associates the server farm to this
Virtual Server.

The virtual command assigns the virtual IP address for
the server farm.

The client command specifies which clients can access
the server farm. It utilizes a wildcard mask like an access-
list. In the above, client 192.168.0.0 0.0.255.255 would
allow all clients in the 192.168.x.x Class B network. The in

service activates the Virtual Server.

References

[1] Crowe Horwath LLP , Warren Chan , Eugene Leung,
Heidi Pili, “Enterprise Risk management For Cloud
Computing ”, The Committee of Sponsoring
Organizations of the Treadway Commission (COSO),
July, 2012.

[2] Jinjing and Raj Jain, “Analysis of Backward
Congestion Notification (BCN) for Etherent In
Datacenter Applications,” In Proc. IEEE INFOCOM,
2007.

[3] Rajkumar Buyya, Anton Beloglazov, and Jemal Abawajy,
“ Energy-Efficient Management of Data Center Resources
for Cloud Computing: A Vision, Architectural Elements, and
Open Challenges”,

[4] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang
Zhang, Songwu Lu, “DCell: A Scalable and Fault-Tolerant
Network Structure for Data Centers”, SIGCOMM’08,
August 17–22, 2008, Seattle, Washington, USA.

[5] Haitao Wu, Guohan Lu, Dan Li, Chuanxiong Guo,
Yongguang Zhang, “MDCube: A High Performance
Network Structure for Modular Data Center
Interconnection”, CoNEXT’09, December 1–4, 2009, Rome,
Italy.

[6] Feng Huang, Xicheng Lu, Dongsheng Li and Yiming Zhang,
“ A Fault-tolerant Network Architecture for Modular
Datacenter”, International Journal of Software Engineering
and Its Applications Vol. 6, No. 2, April, 2012, Pp 93-106 .

[7] Dan Li, Chuanxiong Guo, Haitao Wu, Kun Tan,Yongguang
Zhang, Songwu L, “FiConn: Using Backup Port for Server
Interconnection in Data Centers”.

[8] Yong Liao, Jiangtao Yin, Dong Yin, Lixin Gao, “DPillar:
Dual-port server interconnection network for large scale
data centers, Elsevier Computer Networks 56 (2012),
Pp.2132–2147, 2012 ,doi:10.1016/j.comnet.2012.02.016

[9] M. Armbrust et. al. Above the Clouds: A Berkeley View of
Cloud Computing. Technical Report No. UCB/EECS-2009-
28, University of California at Berkley, USA, Feb. 10, 2009.

[10] L. Barroso, J. Dean, and U. HÄolzle. Web Search for a
Planet: The Google Cluster Architecture. IEEE Micro,
March-April 2003.

[11] S. Ghemawat, H. Gobio®, and S. Leung. The Google File
System. In ACM SOSP'03, 2003.

[12] Todd lammle, “ Cisco Certified Associate Network
Guide”, Sixth Edition, Wiley Publishing, Inc.,
Indianapolis, Indiana, 2007.

[13] Udeze C.C, Okafor Kennedy.C., Ugwoke F. N, U.M.Ijeoma,
“An Evaluation of Legacy 3-Tier DataCenter Networks for
Enterprise Computing Using Mathematical Induction
Algorithm”, Computing, Information Systems,
Development Informatics & Allied Research Vol. 4 No. 4
December, 2013.Pp1-10.

[14] Udeze Chidiebele.C, “Re-Engineering DataCenter Networks
for Efficient Web Application Integration in Enterprise
Organisations”, PhD thesis, Unizik, February, 2013.

