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Abstract 
The implementation of the proposed biometric fingerprint image compression algorithm 
involved three stages, namely the transformation of biometric fingerprint image; non-
uniform quantization of transformed image and the entropy coding which is the final 
stage. In order to determine the overall performance of the algorithm, Peak Signal to 
Noise Ratio (PSNR) and Compression Ratio (CR) were used as performance metrics.  
PSNR was used as a measure of the resultant image quality after compression and the 
Compression Ratio was used as a measure of the degree of compression achievable.  A 
trade-off was made between the achievable compression ratio and the realizable image 
quality which is a function of the achievable PSNR in the overall compression process. 
The overall performance of the proposed compression algorithm achieved an 
improvement in terms of compression ratio of 20:1 over the existing compression 
algorithms for biometric applications which achieved a compression ratio of 15:1.  The 
improvement was largely due to the new approach employed in this research work. 

1. Introduction 

A biometric fingerprint compression algorithm consists of two distinct structural 
blocks, namely: An image encoder and decoder [1].  The encoding process is the forward 
process of compressing the source image while the decoding process is the reverse 
process of reconstructing the image signal from the encoded bitstreams. The source 
image encoder is responsible for reducing or eliminating any coding, inter-pixel and 
psychovisual redundancies in the source image. 

In the first stage of the source encoding process, the source image is transformed into 
a domain designed to reduce inter-pixel redundancies.  This operation reduces the 
amount of data required to represent the image which directly results in data 
compression and the process is reversible [1].  In addition, the representation of an image 
by a set of transformed coefficients makes its inter-pixel redundancies more accessible 
for reduction to achieve compression. 

The second stage of the encoding process is the quantization stage where lossy 
compression is achieved which results in the reduction of the quality of quantized image 
output.  The quantization operation at this stage reduces the psychovisual redundancy of 
the source image and the process is irreversible [1]. In the third stage, of the source 
encoding process is the entropy coding which creates a fixed-length or variable-length 
codes to represent the quantizer output and maps the output to some codewords on the 
basis of the data source’s statistical characteristics. The entropy coding is a lossless 
compression method which provides an effective mechanism to eliminate coding 
redundancy [2]. The primary objective of this lossless compression is to decompose a  
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data set into a sequence of events or symbols, then to encode 
the symbols using as few bits as possible.  The idea is to 
assign short codewords to more probable symbols and longer 
codewords to less probable symbols [3]nd Vitter, 1994). Data 
compression can be achieved whenever some source symbols 
are more likely to occur than others.  Entropy coding 
optimally compresses the redundancy present in source input 
data and make its encoding rate tend to the entropy of the 
source data [2].  Upon completion of the entropy coding 
process, the input source image has been processed to reduce 
or remove each of the three redundancies present in the 
image. 

Source fingerprint image decoding process involves only 
two stages: a symbol or entropy decoder and an inverse 
discrete wavelet transform and they are performed in reverse 
order of the encoding process.  Since the quantization process 
is a non-invertible operation and resulted in irreversible 
information loss, the idea of inverse quantization is not 
applicable in a lossy compression process. 

2. Literature Review 

This section is divided into two sub-sections.  Section 2.1 
describes the fundamental concepts pertinent to this research 
work. In Section 2.2, a critical review of similar research 
works is presented in chronological order. 

2.1. Review of Fundamental Concepts 

This section reviews the fundamental concepts pertinent to 
this research work. 

2.1.1. Wavelet Transform in Two Dimensions 

For analytic transformation of image signal, a two-
dimensional (2-D) discrete wavelet transform is used which 
can easily be extended from a one-dimensional (1-D) wavelet 
transform.  To achieve this, one 2-D scaling function, φ(x, y), 
and three 2-D wavelets: ��(x, y), �	(x, y), and	��(x, y) are 
required. Each is the product of 1-D scaling function φ and 
corresponding 1-D wavelets φ as shown [1]: 

φ(x, y) = 	φ(x)φ(y)                     (2.1) 

��(x, y) = 	�(x)φ(y)                   (2.2) 

�	(x, y) = 	φ(x)�(y)                   (2.3) 

��(x, y) = 	�(x)�(y)                    (2.4) 

Equation 2.1 defines the separable scaling function, 
φ(x, y).  Equations 2.2 to 2.4 define the wavelet functions 
that measure the functional variations of intensity or 
grayscale for images along different directions: ��  defines 
variation along columns (horizontal edges); �	  defines 
variation along rows (vertical edges); ��  defines variation 
along diagonals. 

Given separable 2-D scaling and wavelet functions, 2-D 
DWT can be defined.  First, we define the scaled and 
translated or shifted basis functions are defined as follows: 

φ
,�,�(�, �) = 2
�
�φ(2
� −�, 2
� − �)              (2.5) 

��
,�,�(�, �) = 2
�
���(2
� − �, 2
� − �),			� = {�, �, �} (2.6) 

Where, i = directional wavelet index 
Therefore, 2-D DWT of function f(x, y) of size MxN is 

given by [1]: 

w (j", �, �) = #
√%&∑ ∑ ((�, �)&)#*+"%)#,+" φ-.,�,�(�, �)  (2.7) 

w�/(0,�, �) = #
√%&∑ ∑ ((�, �)&)#*+"%)#,+" ��
,�,�(�, �),			� =

{�, �, �}                                      (2.8) 

Where, 
j" = Arbitrary starting scale (j" = 0) 
w (j", �, �) = Approximation coefficients for f(x, y) at 

scale j" w�/(0,�, �) =  Horizontal, vertical and diagonal details 
coefficients at scales j ≥ j" 

3 = 4 = 2
 , (56	0 = 0,1,2, … , 0 − 1 

�, � = 0,1,2, … ,2
 − 1 

Given w  and w�/ , f(x, y) can be obtained from 2-D 
Inverse DWT as follows [1]: 

((�, �) = 		 #
√%&∑ ∑ w (j", �, �)�� φ-.,�,�(�, �) +

#
√%&∑ ∑ ∑ ∑ w�/(0,�, �)��:
+-.�+�,�,	 ��
,�,�(�, �)        (2.9) 

It should be noted that since image signal has two 
dimensional data structure, 2-D DWT will be implemented 
for fingerprint image transformation in this research work.  

2.1.2. Lloyd Max Non-Uniform Quantization 
Lloyd-Max quantization procedure defines an optimal 

approach to non-uniform quantization process. The basic idea 
of the Lloyd-Max quantization is to find the decision 
boundaries and reconstruction levels that minimize the mean 
square quantization error (MSQE).  This approach solves the 
problem of finding the decision boundaries {;
}  and the 
reconstruction levels {�
} given N-level quantizer Q(x) on [a, 
b] so that the MSE given by Equation 2.8 can be minimized 
[4]. 

3<=> = 	∑ ? @� − �
ABC�
C�DE (,(�)F�&
+#          (2.10) 

Where: 
(,(�) = The Probability Density Function (PDF) of the 

source input, X 
;
 = Decision boundary 
�
 = Reconstruction level 
N = Quantization level 
Given the PDF of an input source x, the approach to 

designing the best non-uniform quantizer is to determine the 
values of the decision boundary and the reconstruction level 
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that minimize the mean square quantization error (MSQE). 
Setting the derivative of Equation 2.10 with respect to �
 

to zero, and solving for �
: 
G(3<=>)
G�
 = 0 

H G
G�
 [J @� − �
AB

C�

C�DE
(,(�)F�]

&


+#
= 0 

Using the Chain Rule of Differentiation: 
L*
L, =

L*
LM ∗

LM
L, 

−2J @� − �
A(,(�)F� = 0
C�

C�DE
 

J [2�
(,(�)F� − 2�(,(�)F�] = 0
C�

C�DE
 

2J �
(,(�)F� − 2J �(,(�)F�
C�

C�DE
= 0

C�

C�DE
 

2? �
(,(�)F� = 2? �(,(�)F�C�
C�DE

C�
C�DE     0 = 1, 2…4 

�
 =	
? ,O�
O�DE PQ(,)L,

? PQ(,)L,O�
O�DE

                          (2.11) 

The reconstruction point for each quantization interval is 
the centroid of the probability distribution of the interval.  
Taking the derivative Equation 2.8 with respect to ;
  and 
setting it equal to zero, an expression for ;
  is obtained as 
follows: 

G(3<=>)
G;
 = 0 

G
G;
 {J @� − �
AB

C�

C�DE
(,(�)F� + J @� − �
AB

C�RE

C�
(,(�)F�} = 0 

(;
 − �
)#)B	(,@;
A + (;
 − �
)B(,@;
A = 0 

(;
 − �
)#)B	(,@;
A = −(;
 − �
)B(,@;
A 
(;
 − �
)#) = ±(;
 − �
) 
(;
 − �
)#) = −(;
 − �
) 
;
 − �
)# = −;
 + �
 
2;
 = �
 + �
)# 
;
 = *�T*�DE

B                                (2.12) 

Lloyd-Max algorithm iteratively solves for the values of ;
 
and  �
 that minimize the MSQE. 

2.1.3. Arithmetic Coding and Image 

Compression 

Compression applications employ a wide variety of 
techniques and have different degrees of complexity, but 
share certain processes in common. Figure 2.1 shows a 
process block for data compression. These processes depend 
on the data type, and the stages may be in different order or 
combination. The pre-processing stage often includes 
transformation and quantization processes.  The next stage, 
source modeling is used to account for variations in the 
statistical properties of the data. It is responsible for 
gathering statistics and identifying data contexts that make 
the source models more accurate and reliable [5]. What most 
compression systems have in common is the fact that the 
final process is the entropy coding, which is the process of 
representing information in the most compact form without 
any data loss [5].  In lossless compression scheme, entropy 
coding is responsible for the entire compression process.  
However, in lossy compression scheme, it complements what 
has been accomplished by previous stages such as 
transformation and quantization stages as it is the case in this 
research work. 

Arithmetic coding stands out among existing entropy 
coding scheme in terms of effectiveness and versatility, since 
it is able to work most efficiently in the largest number of 
circumstances and purposes.  

 

Figure 2.1. Arithmetic entropy coding as the final stage of a compression process 

2.1.4. Encoder and Decoder 

Arithmetic coding scheme codes one data symbol at a time, 
and assigns to each symbol a real-valued number of bits [5]. 
Code value or code word representation means coded 
messages mapped to real numbers in the interval [0, 1).The 
code value, v of a compressed data sequence is the real 

number with fractional digits equal to the sequence's symbols 
[5]. The code value representation can be used for any coding 
system and it provides a universal way to represent large 
amounts of information independent of the set of symbols 
used for the coding [5]. 

Fundamentally, the arithmetic encoding process consists of 
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creating a sequence of nested intervals in the form [5]: 

∅V(<) = [WV ,			XV),					Y = 0, 1, … , 4         (2.13) 

Where: 
∅"(<) = encoded source sequence 
WV 	Z�F			XV  = real numbers such that 	0 ≤ WV	≤WVT#, Z�F	XVT# ≤ XV ≤ 1 
For simplicity, a new notation for arithmetic coding 

interval is represented in the form [b, l), where b is called the 
base or starting point of the interval, and l is the length of the 
interval.  The relationship between the two interval notations 
is [5]: 

[;, \) = [W, X),				�(	; = W	Z�F	\ = X − W         (2.14) 

The intervals used during the arithmetic coding process are 
defined by the set of recursive equations [5]: 

∅"(<) = [;, \) = [0, 1)                     (2.15) 

∅"(<) = [;V ,			\V), = [;V)# + 	](^V)\V)#, _(^V)\V)#),			Y =1, 2, … , 4                                    (2.16) 

Where: 
∅"(<) = encoded source sequence 
S = data symbol 
p = symbol probability 
c = cumulative distribution 
b = interval base 
l = interval length 
The properties of intervals guarantee that	0 ≤ ;V	≤ ;VT# <1, Z�F	0 < \VT# ≤ \V ≤ 1.  The encoding process defined by 

Equations 2.14 and 2.15 is called Elias coding [5]. Equation 
2.16 depicts that the size of the symbol’s subinterval [;V ,			\V) 
is proportional to the estimated probability of occurrence p of 
the symbol in accordance to the cumulative distribution 
function c of the source input. Put differently, the length of 
the final interval in the arithmetic coding subdivision process 
is equal to the product of the probability p of the particular 
sequence of symbols in the source input.  The final interval is 
then assigned a codeword in bits. 

In arithmetic coding, to decode the source sequence, the 
encoding process is reversed. The decoder input set is 
determined to restore the original sequence.  In other words, 
the decoded sequence is determined solely by the code value 
a’	used to represent the encoded sequence. Therefore, the 
decoded sequence is represented as [5][6]: 

Ŝ(a’) = {ŝ#(a’), ŝB(a’), … , ŝ&(a’)}                 (2.17) 

In the decoding process, code value a’  is the set of 
codewords used for decoding the correct symbol 
sequence	Ŝ(a’) = <  of the encoded source input.  The 
decoding process recovers the data symbols in the same 
sequence that they were encoded coded. The numerical 
solution to the decoding process is determined by defining a 
sequence of code values {ã#, ãB, … , ã& }.  Starting with 
ã# = af, ŝV and ãV  are sequentially determined and ãVT#  is 
computed from ŝV and ãV.  Equations 2.18 to 2.21 define the 

numerical solution for decoding process [5]: 

ã# = af                                       (2.18) 

ŝV(a’) = ^	(56	](^) ≤ ](^ + 1),			Y = 1, 2, … , 4.   (2.19) 

ãVT# = hfi)j(ŝi(h’))
k(ŝi(h’)) ,				Y = 1, 2, … , 4 − 1.         (2.20) 

ãV = h’)CiDE
liDE                                 (2.21) 

Where: 
Ŝ(a’) =	Decoded symbol sequence 
ãV = Sequence of decoded code values 
a’ = Encoded code values of the source input 
S = Numerical values of symbols that satisfy the inequality, 

](^) ≤ ](^ + 1) 
In summary, the decoding process recovers the decoded 

sequence Ŝ(a’) by sequentially determining the sequence of 
decoded code values ãV from the encoded code values a’	of 
the source input. 

2.1.5. Cumulative Distribution Function (CDF) 

Arithmetic coding essentially entails the determination of 
the cumulative distribution function (CDF) of the probability 
of a sequence of symbols. The length of the final subinterval 
in the arithmetic coding process is equal to the product of the 
cumulative probabilities of the individual source symbol.  
The cumulative distribution function (CDF) is given by [3]: 

m�n(�V) = ∑ oV�)#V+#                        (2.22) 

Where: 
oV = probability of individual symbol  
�V =	Length of symbol 

2.1.6. Entropy Coding Efficiency 

Source coding efficiency is defined as the ratio (in 
percentage) of the entropy of a source to the average code 
length and it is given by [7]: 

>(<, p) = �(q)
lr(q,s) ∗ 100%                    (2.23) 

Where: 
>(<, p) = Coding Efficiency 
�(<) = Source entropy 
\u(<, p) = Average code length 
The codeword is the number of bits used to represent a 

source’s symbol in an entropy coding process.  Given the 
length of codewords  p = (\#, \B, … , \�)  resulting from an 
entropy coding process of a source < = (^#, ^B, … , ^�), the 
average length of the code is given by [7]: 

\′ = ∑ 
̂\
�
+#                              (2.24) 

Where: 


̂ = Symbol’s probability of occurrence 
\
 = Length of codeword 
The entropy provides a theoretical bound of the minimum 

number of bits that can be used to represent source data. 
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Given the source < = (^#, ^B, … , ^�), the source entropy is 
given by [7]: 

�(<) = ∑ 
̂\5wB 
̂�
+#                   (2.25) 

Where:  


̂ = Symbol’s probability of occurrence 
Information theory states that the best a lossless symbolic 

compression scheme can achieve is to encode a source with 
an average number of bits equal to the entropy of the source. 
However, when the difference between the entropy and the 
average length of the code increases, the code efficiency 
decreases.  It follows therefore that an entropy coding 
process is optimal, if the code efficiency reaches 100%. In 
other words, a code is optimal if the average length of the 
codewords equals the entropy of the source [7]. 

2.1.7. Validation and Performance Measures 

Two measures will be used to validate the perceptual 
quality of the compressed fingerprint images, namely: 
Compression Ratio (CR) and Peak Signal to Noise Ratio 
(PSNR).  The PSNR metric is normally used to measure the 
performance of image coding algorithm. 

i) Compression Ratio:  The compression ratio (CR) or Cr 
is used as a performance measure to assess the 
efficiency of a compression algorithm and this is given 
by [2]: 

mx = ∑ ∑ xO(�,
)y�zEy{zE
∑ ∑ x|(�,
)y�zEy{zE

                       (2.26) 

Where: 
rb = bits per pixel of original image 
rc = bits per pixel of compressed image 
ii)  The Peak Signal to Noise Ratio (PSNR): It represents a 

measure of the peak error and is expressed in decibels. 
It is defined by [8]:  

o<4} = 20 log �B�)#%q� �                     (2.27) 

Where: B is the bit depth of the image. For an 8-bit image 
the PSNR is given by [8]: 

o<4} = 20 log � B��%q��                   (2.28) 

The higher the PSNR value, the closer the quality of the 
compressed or reconstructed image to the original source 
image. Typical values for lossy compression of an image are 
between 30 and 50 dB and when the PSNR is greater than 40 
dB, then the two images are indistinguishable. Images with 
PSNR higher than 30 dB are considered to be perceptually 
lossless [8].  The Mean Square Error (MSE): It represents the 
mean squared error between the compressed and the original 
image. The lower the MSE value, the lower the distortion or 
degradation incurred in the compression process.  For a 
source image Xi,j of size N x M pixels and a 
reconstructed/processed image Yi,j also of size N x M, the 
Mean Square Error, MSE, is given by [8]: 

3<> = 	 #%&∑ ∑ (��,
 − ��,
)B%)#�&)#
              (2.29) 

2.2. Review of Similar Works 

The approach adopted for a critical review of similar 
research works is based on the compliance with the 
requirements of a standard compression scheme which 
involved three processes, namely: transformation, 
quantization and entropy coding.  In addition, the review is 
based on the performance metrics achieved which includes: 
compression ratio (CR) and peak signal to noise ratio 
(PSNR). Table 2.1 summarizes the reviewed similar works 
done on wavelet based image compression methods with 
their critical analysis. 

Table 2.1. Summary of the Review of Similar Works Based on Wavelet Image Compression Methods 

Reference Transformation Quantization Coding scheme Critique 

Khuwaja and Tolba, 
[9] 

Coiflet and Biorthogonal 
wavelets 

Not implemented Not implemented 

Compression ratio was not 
estimated to determine the level 
of achievable compression. The 
work is not compliant with 
standard compression scheme 
requirement. 

Winger and 
Venetsanopoulos, 
[10] 

Cooklet and CDF Not implemented Not implemented 

The source data used for the 
analysis were the MATLAB 
experimental Lena, Barbara and 
Goldhill images.  The work did 
not implement the quantization 
and entropy coding stages of a 
standard lossy compression 
scheme. 

Li and Bayoumi, 
[11] 

Wavelet block transformation 
Uniform scalar 
quantization 

EBCOT encoding 
Complex algorithm due to 
EBCOT implementation.   

Khalifa, [12] 
Daubechies wavelet-based 
decomposition 

Vector quantization and 
DPCM 

Huffman  

High computation cost due to 
codebooks generated from 
Vector quantization and 
Huffman coding 

Sudhakar et al, [13] Multiwavelet filters Not implemented 
SPIHT based on Embedded 
Zerotree encoder 

A higher PSNR value can be 
obtained if a quantization 
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Reference Transformation Quantization Coding scheme Critique 
scheme is implemented. 

Hsin et al, [14] Wavelet transform Not implemented 
Context-based EBCOT 
encoding  based on 
arithmetic coder 

High computation cost due to 
EBCOT. Compression ratio 
was not estimated to determine 
the level of achievable 
compression. The work is not 
compliant with standard 
compression scheme 
requirement. 

Chang et al, [15] 
DWT based Daubechies 
wavelet 

Uniform scalar 
quantization 

 EBCOT encoding based on 
arithmetic coder 

High computation cost of 
complex algorithm due to 
EBCOT  

Mushen et al, [16] Not covered Vector quantization Not implemented 

High computation cost due to 
codebook resulting from vector 
quantization. Compression ratio 
was not estimated to determine 
the level of achievable 
compression. The work is not 
compliant with standard 
compression scheme 
requirement. 

Rawat et al, [17] Biorthogonal wavelet transform 
SOFM based vector 
quantization with code 
book 

SPIHT based on Embedded 
Zerotree encoder 

Complex algorithm due to 
vector quantization 

Haddad et al [18] Curvelet and wave atom Not implemented Not implemented 
The compression process fell 
short of the requirement of a 
standard compression scheme. 

Zhao and Wang [19] Contourlet transform 
Uniform scalar 
quantization 

Arithmetic coding 

The compression ratio was not 
estimated and therefore, there is 
no basis for determining the 
extent of compression in the 
process. 

Kumar et al, [20] 
DWT based on Biorthogonal 
wavelets 

Not implemented 
SPIHT based on Embedded 
Zerotree encoder 

The compression ratio was not 
estimated and therefore, there is 
no basis for determining the 
extent of compression in the 
process. 
Poor preservation of biometric 
features by SPIHT 

Ashok et al, [21] Wave atom decomposition Vector quantization Arithmetic entropy coding 
Complex algorithm due to 
codebook generated from 
vector quantization process 

Krishnaiah et al, 
[22] 

5/3 wavelet transform Not implemented 
SPIHT based on Embedded 
Zerotree encoder 

Low compression ratio due 
lossless scheme employed. 

Muhsen et al, [23] 9/7 Wavelet filter 
Vector quantization and re-
quantization with 
codebook 

Run-length encoding 

High computation cost and 
complex algorithm due to 
codebook generation resulting 
from vector quantization is a 
challenge 

Gangwar, [24] Haar wavelet Not implemented Not implemented 
Failed to comply with 
compression standards 

Shanavaz et al, [25] Daubechies Wavelet lifting Not implemented 
SPIHT based on Embedded 
Zerotree encoder 

Complex algorithm 

Shakhakarmi, [26] Wavelets multiscale analysis Not implemented Not implemented 
Poor comparative study with 
FFT and DCT 

Libert et al, [27] WSQ Versus JPEG2000 N/A N/A 
JPEG2000 achieved poor 
biometric quality. WSQ is 
limited in compression ratio 

Islam et al, [28] 
Coiflet wavelet implemented 
with global threshold strategy 

Not implemented Not implemented 

Compression ratio was not 
estimated to determine the level 
of achievable compression. The 
work is not compliant with 
standard compression scheme 
requirement. 

Singla et al, [29] 
Haar, Coiflet, Daubechies, 
Biorthogonal wavelets 

Not implemented Not implemented 
Wavelets were implemented 
with global threshold strategy.   

Selvakumarasamy, Biorthogonal, Symlet, Not implemented Not implemented The entropy coding process of 
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Reference Transformation Quantization Coding scheme Critique 
et al  [30] Daubechies and Coiflet 

wavelets for lossless 
compression 

a standard lossless compression 
system was not implemented. 
Lossy compression scheme is a 
better approach to achieving a 
much higher compression ratio. 

Guangqi et al [31] 
Wave Atom dictionary for 
sparse representation 

Uniform scalar 
quantization 

Arithmetic coding 

Uniform scalar quantization 
used in this work is not the 
most efficient quantization 
scheme available. 

 
The reviewed research works employed wavelet filter 

banks such as Haar, Symlet, Wave Atom, Coiflet 
implemented with global thresholding, Daubechies and their 
variants for image decomposition and these have been 
identified to possess limited properties that can achieve 
optimal image compression.  Vector quantization and 
uniform scalar quantization schemes were implemented in 
most of the compression scheme under review. Additionally, 
the existing techniques generated codebooks or lookup tables 
for image coding and this invariably increased the 
complexity of the algorithms and hence, increased 
computation or implementation cost.  Therefore, the 
proposed biometric fingerprint image compression algorithm 
will employ Coiflet wavelet implemented with level-
dependent threshold strategy for image transformation as 
against the global threshold strategy used in the existing 
wavelet-based image transformation scheme to achieve 
improved energy de-correlation for a more efficient 
compression process.  In addition, non-uniform quantization 
scheme will be used at the quantization stage as against the 
uniform scalar and vector quantization methods employed in 
the existing compression techniques.  This combined 
approach, to the best of my understanding based on all the 
reviewed literature, is novel as it has not been applied for any 
image compression standard so far.  

3. Statement of Problems  

From the survey of the existing wavelet-based image 
compression methods, the problems that have been identified 
include: the limitation of WSQ standard to a compression 
ratio of 15:1 which could be improved with better algorithm. 
High complexity of image encoding process of the existing 
techniques is also a problem. Most of the existing methods 
require the generation of codebooks or lookup tables which 
require additional computational cost for implementation.  
More significantly, the variant of Daubechies wavelet, that is, 
Cohen Daubechies Feauveau (CDF) wavelet basis adopted 
for image decomposition and de-correlation in JPEG2000 
and WSQ standards lacks the vital property of symmetry 
necessary for perfect reconstruction of image signal.  
Additionally, significant degradation in the biometric features 
of fingerprint at compression ratio higher than 15:1 remains a 
major challenge.  For instance, at compression ratio higher 
than 15:1, the WSQ compression technique starts to yield 
unsatisfactory result.  Therefore, the investigation of an 
efficient compression method that can significantly reduce 

fingerprint image size while preserving its biometric 
properties (the core, ridge endings and bifurcations) with 
compression ratio higher than 15:1 is justified. 

4. Aim and Objectives 

The aim of this presentation is to carry out the entropy 
coding of quantized source fingerprint image to complement 
the lossy compression process.  The objectives are as follows: 

i) Transformation of  the source fingerprint image to 
lower the correlation of its pixel values and eliminate 
interpixel redundancy; 

ii)  Representation of large image pixel values with 
smaller quantized values to achieve efficient lossy 
compression of fingerprint image; 

iii)  Representation of quantized fingerprint image symbols 
with binary codewords for optimal storage; 

iv) Evaluation of the overall performance of proposed 
compression algorithm on the basis of image quality 
measure; 

v) Computation of the compression ratio for the 
compression algorithm. 

5. Methodology 

This progress report covered stage three to five of the 
proposed research methodology, which include: 

i) Source fingerprint image transformation with Coiflet 
wavelet filters; 

ii)  Non-uniform quantization of transformed source 
coefficients using Lloyd-Max algorithm; 

iii)  Arithmetic entropy coding of quantized fingerprint 
source symbols; 

iv) Reconstruction of source fingerprint image from 
compressed bit-stream; 

v) Validation and evaluation of the performance of the 
proposed compression algorithm using PSNR and 
Compression Ratio (CR) performance metrics. 

For the proposed algorithm to work, raw-bits, 
uncompressed fingerprint dataset is required.  Hence, the 
need to employ the use of the National Institute of 
Technology and Standards (NIST) fingerprint datasets [32]. 
The proposed compression process involved the 
transformation of biometric fingerprint image using Coiflet-
based discrete wavelet transform to reduce interpixel 
redundancy; non-uniform quantization of transformed image 
using Lloyd-Max algorithm to reduce psychovisual 
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redundancy and entropy coding into bit-streams as the final 
encoding stage using arithmetic coding to reduce coding 
redundancy.  The transformed image formed the input to the 
non-uniform quantization process and the quantized image 
formed the input to the entropy coding process.  In order to 
reconstruct the compressed fingerprint image from the 
encoded bit-streams, the processes of transformation, 
quantization and entropy encoding were reversed with 
arithmetic entropy decoding; de-quantization and inverse 
discrete wavelet transform (IDWT).  The forward and reverse 
processes are depicted in the program flowchart as shown in 
Figure 5.1 and the algorithm was implemented in MATLAB 
image processing toolbox. 

 

Figure 5.1. Program Flowchart of the Proposed Coiflet-based Lossy 
Compression Algorithm for Biometric Fingerprint Image 

In order to determine the performance of the proposed 
biometric fingerprint compression algorithm, Peak Signal to 
Noise Ratio (PSNR) and Compression Ratio (CR) were used 
as performance metrics.  PSNR was used as a measure of the 
resultant image quality after compression and the 
Compression Ratio was used as a measure of the degree of 
compression achievable.  In the performance analysis a trade-
off was achieved between the achievable compression ratio 
and the allowable degradation which is a function of 

achievable PSNR in the compression process. Compression 
ratio values were computed with the intent of maintaining 
compressed fingerprint image quality consistent with the 
requirements of biometric application.  The results of the 
performance metrics are shown in Tables 6.1 and 6.2. The 
original 8-bit source fingerprint images were transformed 
using the Coiflet wavelets at a decomposition level of three 
as shown in Figure 5.2. Compression ratio of 15:1, 20:1, 40:1 
and 80:1 were applied and the corresponding values of the 
PSNR ratio as a measure of image quality after compression 
were estimated as shown in Figures 5.3 to 5.5.  

 

Figure 5.2. 3-level Decomposition of Fingerprint Image in the Compression 
Process 

 

Figure 5.3. Compression of Fingerprint Image with Values of Compression 
Ratio and their Corresponding PSNR Values 

Original (589x605)

1-stage transform 3-stage transform

CR=15:1, PSNR 25.3 dB CR=20:1, PSNR 22.9 dB

CR=40:1, PSNR 17.5 dB CR=80:1, PSNR 9.8 dB
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Figure 5.4. Compression of Single Fingerprint Image with Values of 
Compression Ratio and their Corresponding PSNR Values 

 

Figure 5.5. Compression of Fingerprint Image with Values of Compression 
Ratio and their Corresponding PSNR Values 

6. Results and Discussions 

Table 6.1. Performance Analysis of the Proposed Compression Algorithm on 
Fingerprint Images at Different Compression Ratios 

Source Images 
Size of 
Original 
Image 

Size of 
Quantized 
Image 

Compression 
Ratio (CR) 

PSNR 
(dB) 

Cmp00001.pgm 356360 23757 15:1 25.30 
Cmp00001.pgm 356360 17818 20:1 22.90 
Cmp00001.pgm 356360 8909 40:1 17.50 
Cmp00001.pgm 356360 4455 80:1 9.80 
Cmp00002.pgm 638991 42599 15:1 32.10 
Cmp00002.pgm 638991 31949 20:1 29.10 
Cmp00002.pgm 638991 15974 40:1 22.40 
Cmp00002.pgm 638991 7987 80:1 11.50 

The performance analysis results of the proposed 
fingerprint compression algorithm on the basis of 

compression ratio and peak signal to noise ratio are as shown 
in Tables 6.1 and 6.2. 

Figure 6.1 represents the results obtained from the 
application of the proposed fingerprint compression 
algorithm on NIST fingerprint dataset for compression ratios 
of 15:1, 20:1, 40:1 and 80:1 and the corresponding values of 
the PSNR ratio as a measure of compressed image quality.  It 
was observed that as the compression ratio increased for a 
particular source image from 15:1 to 80:1, the corresponding 
values of PSNR decreased from 25.3 dB for CR of 15:1 to 
11.50 dB for CR of 80:1 and the result for other fingerprint 
images followed the same trend. This is evident in the plot of 
CR against PSNR as shown in Figures 6.1 and 6.2. 

 

Figure 6.1. Bar chart Plot of PNSR Values against their corresponding 
Compression Ratio (CR) for fingerprint image cmp00001.pgm 

 

Figure 6.2. Bar chart Plot of PNSR Values against their corresponding 
Compression Ratio (CR) for fingerprint image cmp00002.pgm 

The significance of these results is that as the CR value 
increased beyond 20:1, the fingerprint images began to lose 
their biometric features due to increased degradation which 
resulted from the compression process. However, at 
compression ratio of 20:1, the compressed fingerprint images 
still retained their biometric attributes and this was visually 
evident from the compressed image output at the minimum 
PSNR value of 22.90 dB. The existing fingerprint algorithm 
such Joint Photographic Expert Group (JPEG2000) and 
Wavelet Scalar Quantization (WSQ) were reported to yield 
unsatisfactory results beyond a compression ratio of 15:1 and 
at CR of 20:1, the biometric features of the compressed images 
were completely lost. Therefore, all the NIST fingerprint 
dataset were compressed at a compression ratio of 20:1 and 
their PSNR values were tabulated as shown in Table 6.2.  

CR=15:1, PSNR 32.1 dB CR=20:1, PSNR 29.1 dB

CR=40:1, PSNR 22.4 dB CR=80:1, PSNR 11.5 dB

CR=15:1, PSNR 36.1 dB CR=20:1, PSNR 32.9 dB

CR=40:1, PSNR 26.0 dB CR=80:1, PSNR 5.9 dB
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The minimum PSNR value was 22.9 dB and the maximum 
PSNR value is 35.50 dB.  The variation in the values of 
PSNR for the NIST dataset at the same compression ratio 
was due to different level of source fingerprint image quality 
which was visually evident in the compressed output display.  
This is because the source fingerprint images were acquired 
at different levels of image quality.  The presence of 
background noise also accounted for the variation in the 
measurement of overall image quality in the compression 
process. Generally, the overall performance of the proposed 
compression algorithm achieved an improvement in terms of 
compression ratio of 20:1 over the existing algorithms which 
achieved a compression ratio of 15:1. 

Table 6.2. PSNR Values Obtained for a Compression Ratio of 20:1 

Source Images 
Size of 
Original 
Image 

Size of 
Quantized 
Image 

Compression 
Ratio (CR) 

PSNR 
(dB) 

Cmp00001.pgm 356360 17818 20:1 22.90 
Cmp00002.pgm 638991 31949 20:1 29.10 
Cmp00003.pgm 638991 31949 20:1 32.90 
Cmp00004.pgm 612895 30645 20:1 33.30 
Cmp00005.pgm 638991 31949 20:1 35.50 
Cmp00006.pgm 638991 31949 20:1 28.00 
Cmp00007.pgm 347725 17386 20:1 25.60 
Cmp00008.pgm 600015 30001 20:1 28.80 
Cmp00009.pgm 347151 17358 20:1 25.10 
Cmp00010.pgm 197265 9863 20:1 25.40 
Cmp00011.pgm 440253 22012 20:1 25.40 
Cmp00012.pgm 369471 18473 20:1 24.90 
Cmp00013.pgm 350904 17545 20:1 24.90 
Cmp00014.pgm 269363 13468 20:1 25.70 
Cmp00015.pgm 292135 14606 20:1 30.40 
Cmp00016.pgm 504843 25242 20:1 31.70 
Cmp00017.pgm 347001 17350 20:1 26.00 
a001.pgm 1520081 76004 20:1 27.10 
a002.pgm 1460729 73036 20:1 25.50 
a018.pgm 1534580 76729 20:1 30.10 
a039.pgm 458175 22908 20:1 24.90 
a070.pgm 1605297 80264 20:1 26.50 
a076.pgm 612848 30642 20:1 27.60 
a089.pgm 1574914 78745 20:1 24.10 
a107.pgm 1862081 93104 20:1 27.10 
a129.pgm 365777 18288 20:1 27.10 
a165.pgm 387047 19352 20:1 26.30 
b124.pgm 1510456 75522 20:1 25.50 
b157.pgm 1572731 78636 20:1 26.30 
b186.pgm 371349 18567 20:1 27.10 

7. Conclusion 

In conclusion, the implementation of the proposed 
biometric fingerprint image compression algorithm involved:  

(i) the transformation of biometric fingerprint image to 
reduce interpixel redundancy;  

(ii)  non-uniform quantization of transformed image to 
reduce psychovisual redundancy; 

(iii)  arithmetic entropy coding to reduce coding redundancy.  
In order to determine the overall performance of the 

algorithm, Peak Signal to Noise Ratio (PSNR) and 

Compression Ratio (CR) were used as performance metrics.  
PSNR was used as a measure of compressed image quality 
and it was estimated as a function of the mean square error 
(MSE) which is a measure of the image distortion that 
resulted from the compression process. The Compression 
Ratio was used as a measure of the degree of compression 
achievable to evaluate the performance of the proposed 
compression algorithm against the achievable compression 
ratio for the existing fingerprint compression schemes.   In 
the system performance analysis, a trade-off was made 
between the achievable compression ratio and the allowable 
degradation which is a function of achievable PSNR in the 
compression process. Compression ratio values were 
computed with the intent of maintaining compressed 
fingerprint image quality consistent with the requirement to 
preserve the biometric features in the fingerprint images.  
From the performance analysis results, the overall 
performance of the proposed compression algorithm 
achieved an improvement in terms of compression ratio of 
20:1 over the existing algorithms which achieved a 
compression ratio of 15:1 for biometric application.  This 
overall improvement was largely due to the improvement 
achieved at the transformation stage by employing Coiflet 
wavelet basis for image energy decorrelation as opposed to 
Daubechies wavelet in the existing system.  In addition, the 
improvement achieved at the quantization stage through the 
use of non-uniform quantization as opposed to uniform scalar 
quantization used in the existing compression algorithm also 
contributed to the overall performance.  

This research work encountered the following challenges: 
(i) the non-availability of raw-bits  and uncompressed 

fingerprint image acquisition device. As a result, 
uncompressed fingerprint dataset were obtained from 
the database of the National Institute of Standards and 
Technology (NIST), USA for experimental analysis.   

(ii)  the presence of background noise in some of the 
experimental fingerprint images obtained from NIST 
which accounted for the differences in the overall Peak 
Signal to Noise Ratio (PSNR) values obtained for 
fingerprint images at the same compression ratio. 

In view of the challenge of image background noise, the 
denoising of fingerprint image as a pre-processing stage to 
the lossy compression system is recommended for further 
research work. 
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