

American Journal of Computation, Communication and Control
2015; 2(1): 1-6
Published online February 20, 2015 (http://www.aascit.org/journal/ajccc)
ISSN: 2375-3943

Keywords
Wireless Sensor Networks,
Reprogramming,
Publish/Subscribe,
Object Oriented

Received: January 23, 2015
Revised: February 2, 2015
Accepted: February 3, 2015

Object-Oriented Publish/Subscribe
Programming Language for Wireless
Sensor Networks Reprogramming

Biao Dong

School of Computer and Software, Nanjing Institute of Industry Technology, Nanjing, China

Email address
dongb@niit.edu.cn

Citation
Biao Dong. Object-Oriented Publish/Subscribe Programming Language for Wireless Sensor
Networks Reprogramming. American Journal of Computation, Communication and Control.
Vol. 2, No. 1, 2015, pp. 1-6.

Abstract
This paper presents an object-oriented publish/subscribe(Pub/Sub) programming
language, called OPS, for modeling and implementing the architecture of wireless sensor
networks (WSNs) reprogramming applications. Considering the ability to efficiently
update applications running on sensor nodes which is necessary for WSNs reprogramming,
event and subscription models provide suitable programming abstractions by integrated
Pub/Sub with object-oriented environment. Focusing on the modifications that should be
easy to reflect on the sensor nodes, we select an abstraction level for sending the compiled
updates, and make a trade-off between WSNs operation costs and reprogramming costs.
We design and implement a prototype system on OPS. Simulation experiments imply that
OPS is simplicity, while ensuring good flexibility in updating code.

1. Introduction

WSNs are composed of a large number of communication nodes with limited sensing,
processing and computational capabilities. These nodes, developed at a low cost and in
small size, can be randomly deployed across the monitored area, providing dense sensing
close to physical phenomena, processing and communicating this information, and
coordinating actions with other nodes. Due to the dynamic nature of WSNs,
environmental change and other factors, WSNs often need to update the codes running at
the sensor nodes. These updates may include bug fixes, the perception for new information
as well as the use of more efficient algorithms. WSNs have many characteristics such as
large amount of nodes and wide distribution. Sometimes, these nodes can be deployed in
the places that are difficult to reach. Therefore, it isn’t realistic to manually update the
codes on the nodes. Usually, the updated code needs to be distributed to each sensor node
in a wireless way. This behavior of modifying the application and sending the compiled
updates to sensor nodes is called reprogramming.

Pub/Sub is an asynchronous communication paradigm that supports many-to-many
interactions between a set of clients. A client can be an information publisher, an
information subscriber, or both. Client interactions are data-centric: publishers describe
their publishable events, subscribers express their interest in events, and Pub/Sub protocol
delivers the published events to their corresponding event subscribers. The loose coupling
of clients eliminates the burden of context information gathering and processing by
resource constrained devices. Existing methodologies based on the request/response
model for system software design, rooted in principles of object-oriented design, lead to
tightly-coupled interactions, and lack coordination capacities. Pub/Sub paradigm is
particularly suitable for loosely- coupled communication environment. Our design of OPS

2 Biao Dong: Object-Oriented Publish/Subscribe Programming Language for Wireless Sensor Networks Reprogramming

is motivated by the idea of using object-oriented Pub/Sub
environment for WSNs reprogramming.

The rest of the paper is organized as follows. In Section 2,
we review some related works. Our main methods including
Pub/Sub for OPS, event model, and subscription model are
presented in Section 3. The prototypical implementations
including compiler and interpreter are given in Section 4,
followed by the performance evaluations in Section 5. Finally,
the paper is concluded in Section 6.

2. Related Work

In order to solve this problem and put our work in
perspective, we give a brief overview of related works. A
major approach is based on embedded operating system (OS)
that allows for WSNs reprogramming applications. TinyOS
(Gay D et al., 2005) supports for reconfigurability can be
attributed to the encapsulation-by-modules feature in nesC
that provides a unified interface [1]. Contriki (Dunkels A et al.,
2004) employs advanced reprogramming support in the form
of loadable modules as well as an abstract programming
interface that applications can use to perform actual
transmission and routing of data message [2]. LiteOS (Cao Q
et al., 2008) provides Unix-like abstractions for WSNs, and
supports software updates through a separation between the
kernel and user applications, which are bridged through a suite
of system calls [3]. Lin Gu et al. (2006) design a new OS
kernel, the t-kernel, to perform extensive code modification at
load time. The modified code and the OS work in a
collaborative way supporting the aforementioned features [4].
MANTIS OS (Bhatti S et al., 2005) is flexibility in the form of
cross-platform support and testing across PCs, PDAs, and
different micro sensor platforms. A key design feature is
support for remote management of in-situ sensors via dynamic
reprogramming and remote login [5].

Query processing in sensor networks is another relevant
area to our work. Researchers have noted the benefits of a
query processor-like interface to sensor networks and the need
for reprogramming to limited power and computational
resources. TinyDB (Madden S R et al., 2005) is a distributed
query processor that runs on each of the nodes in a sensor
network, also incorporates a number of other features
designed to minimize power consumption via acquisitional
techniques[6]. Yao Y et al. (2002) introduce the Cougar
approach to tasking sensor networks through declarative
queries. Since queries are asked in a declarative language, the
user is shielded from the physical characteristics of the
networks[7]. Tavakoli A et al. (2007) propose Snlog, a
programming paradigm for declaratively specifying sensor
networks systems. Snlog allows the user to specify an
application using a high-level language, which is subsequently
fed to a compiler which builds a runtime query processor that
executes on each node[8].

There are other ways of achieving WSNs reprogramming.
Taherkordi A et al. (2013) consider WSN programming
models and run-time reconfiguration models as two

interrelated factors, and present an integrated approach for
addressing efficient reprogramming in WSNs [9]. Maia G et al.
(2013) propose a multicast-based over-the-air programming
protocol that considers a small world infrastructure [10].
Krontiris I and Dimitriou T (2006) present Scatter, a secure
code dissemination protocol that enables sensor nodes to
authenticate the program image efficiently [11]. A multi-block
forward error correction technique is used (Park T et al., 2013),
in which blocks were encoded using a rateless code, such as a
Luby transform code [12]. Ortega-Zamorano F et al. (2014)
presents an alternative based on an on-chip learning scheme in
order to adapt the node behaviour to the environment
conditions [13]. Mazumder B and Hallstrom J O (2013)
present an incremental code update strategy used to efficiently
reprogram WSNs, and adapt Hirschberg’s algorithm for
computing maximal common subsequences to build an edit
map specifying an edit sequence [14]. Semparuthi R and
Yuvaraj R (2014) propose a secure distributed reprogramming
protocol named SDRP with node classification algorithm.
Based on the evaluation results, all nodes will be registered as
users before giving the reprogramming authorization [15].

The above researches effectively improve the efficiency of
software development for WSNs and running quality. But
with the expansion of WSNs applications and the growth of
WSNs scale, reprogramming makes the following demands on
the programming languages. Firstly, languages need to
provide suitable programming abstractions, help programmers
to efficiently build programs which have a reasonable
structure, and are easy to be modified and reused. Secondly,
modifications to source code should be easy to reflect on the
sensor nodes, so the execution mechanism of language needs
to select an appropriate abstraction level for sending the
compiled updates. Finally, the execution mechanism of
language faces the tradeoff between the WSNs operation costs
and the reprogramming costs. This paper proposes an
object-oriented Pub/Sub programming model for WSNs
reprogramming, and addresses two issues:

(1) The establishment of event model and subscription
model in object-oriented environment.

(2) The design and implementation of compiler and
interpreter that support for WSNs reprogramming.

Compared with other works on reprogramming on WSNs
based on high-level abstract, several advantages to using OPS
in WSNs reprogramming can be discussed as follows.

(1) Query processing approaches, such as TinyDB and
Cougar, regard WSNs as relational database table, and provide
SQL-like language for users to query data. Due to a too high
programming abstraction level, they can only support part of
WSNs applications. While based on object-oriented language
environment, OPS supports most of WSNS applications.

(2) A logical language, such as Snlog, abstracts WSNs as
globally deductive databases that can be logically
programmed. Therefore, these aren’t conducive to WSNs
reprogramming. By reducing the size of the updated code, the
OPS interpreter efficiently support reprogramming.

 American Journal of Computation, Communication and Control 2015; 2(1): 1-6 3

3. Our Methods

3.1. Event and Subscription Model

In an object-oriented environment, communications
between different objects are carried out by the event delivery.
When an object receives an event, a method is called,
therefore, the method calls can be treated as events. Pub/Sub
events are considered as value events, a value event can be
mapped to one or several method events.

Definition 1 method event. Method event in an
object-oriented environment is defined as follows:

Create Event <Event> <EventClause>
<Event Clause>=[Before|After] <Name.MethodName>
The Event is a string uniquely identifying event, the Before

and After events are produced before and after method
execution, the Name is a class or object name, and the
MethodName is a method name.

In an object-oriented system, method events are divided
into pre-execution and post-execution method events, and
include two kinds of method events: class method events and
general method events. Class method events are generated
before and after invoking class methods, such as creating an
instance, deleting an instance. Similarly, general method
events are generated before and after executing object
methods.

Definition 2 subscription. Subscription in an
object-oriented environment is defined as follows:

Create Sub <Subscription-Name>
On <Event-Trigger >
Condition: <Condition>
Act: <Action>
The Subscription-Name is a string uniquely identifying a

subscription, the Event-Trigger is a list of Method events, the
Condition is a Boolean function, and the Action denotes a
procedure defined by an application program. As used in this
definition, the subscription means as follows: when a method
event in an event-trigger occurs, the condition is evaluated,
and then if the condition is true, actions are executed.

3.2. Operational Semantics

In order to understand OPS more clearly and guide the
implementation of OPS language processing system, we learn
from the calculus of communication system [16], and give the
operational semantics of event and subscription.

Definition 3 substitution. A substitution θ is defined as the
set of variables and its values, and is denoted as
θ={c1/v1,…,cn/vn}. Where v1,…, and vn represent different
variables, c1,…,and cn represent constants. The symbol ┴
indicates an invalid substitution.

Given an event Event(v1,…,vn). A substitution θ= {c1/v1, …,
cn/vn} will be returned when the event happens.

Definition 4 subscription semantics. Suppose there is a
subscription Subid: On <Eid >, Condition: <Conid>, Act:
<Actid>. When the message channel β receive a triggering
message, OPS detects whether the message meet the condition
Conid. If the condition is met, the method corresponding to Eid
is substituted into θ. Subsequently, OPS uses θ to assign

values to parameters, executes Actid. The subscription
semantics of Subid is expressed as the following. Stask denotes
the sequence of tasks to be executed, <Subid, Stask> represents
an ordered pair that defines structural pattern of sentence, and
means that Subid will be executed in the current task sequence.

)()(1 θθ vactvact
m

idid
>L> represents that all actions in

Actid are carried out in sequence.

4. OPS Language Processing System

4.1. OPS Architecture

In conjunction with system software, programs written in
embedded languages are compiled into the binary images.
Since the binary images are usually larger, it’s more costly to
distribute the images through wireless transmission. At the
same time, the application programs in the binary images
tightly couple with system software, there are many
restrictions in the process of incremental update to the
application codes.

In order to reduce the cost of updating sensor code, OPS
uses intermediate code to decouple the applications and the
system software. Intermediate code contains only the codes
associated with the relevant business logic, it has the
advantages of small volume, and is easy to transport. OPS
language processing system selects the architecture which
includes the server-side compiler and the sensor-side
interpreter, and as shown in Fig.1.

Fig. 1. Architecture of OPS processing system

The compiler is responsible for converting the OPS source
program to intermediate codes which are independent of the
specific sensor platforms. The interpreter and embedded OS
reside in the sensors, and execute the received intermediate
codes by way of interpretation.

4.2. Compiler

The main task of the compiler is to generate intermediate
code which contains only the business logic of the application,
and reduces the amount of code transmission caused by code
updates so as to improve the efficiency of reprogramming. At
the same time, taking into account extra burden brought by the
interpretation and execution mechanism executing certain
application code, another important task of the compiler is to
optimize intermediate code to improve the interpreter
computing speed and reduce power consumption.

The computational demands for the interpreter in the
sensors mainly originate from execution of external
procedures. External procedures are virtual procedures that
could be anything when compiled, including class methods,

4 Biao Dong: Object-Oriented Publish/Subscribe Programming Language for Wireless Sensor Networks Reprogramming

attributes, methods, events and procedures. External
procedures are used to store class type information for the
compiler subsystem. Fig.2. shows the compiler.

Fig. 2. OPS compiler

The working process of the compiler is divided into three
phases: the first phase is initialization, the second will focus
on compiling, and the third phase is to generate intermediate
code. In the initialization phase, the compile time class library
establishes class information. In the compile phase, the object
supporting environment generates push instructions, creates or
finds the number of the called external procedures, and then,
fills in the import descriptions of the external procedures
import table. The import declaration used for the class library
contains all information needed for external function
registered to the compiler. In the code generation phase, the
compiler completes two works. First of all, subscriptions are
translated into the following procedure.

Procedure <Subscription name> (<Triggering event
parameter list>)

Begin
If <conditions> Then <actions>;

End.
Second, the association between event and subscription

name is established.

4.3. Interpreter

The interpreter, together with system software to support its
running, reside in the sensors, and are responsible for
executing intermediate code by way of interpretation. The
interpreter is implemented on the embedded OS, and as shown
in Fig.3. Its core part includes external procedure which
supports environment, scheduler, subscription library
management, and communication handler.

Fig. 3. Architecture of the OPS interpreter

The execution processes of the external procedure
supporting environment are as follows. Firstly, according to
the external procedure type, the environment calls the
corresponding classification function. Secondly, the
classification functions generate the call parameters according

to the characteristics of the call functions. Finally, according
to the different calling conventions, method calls and
parameter-passing modes, the environment handles the results
returned by the underlying call functions. According to the
type of event, the scheduler is responsible for calling different
external process modules to perform subscription tasks.

The running state of the interpreter is determined by its core
part. The external procedure supporting environment only
involves six aspects of work related to executing external
procedure, such as calling conventions, method call, returning
results, constructors and destructors, virtual methods, and
passing parameters. Regardless of the upper application logic
of WSNs, the work is only related to sensor hardware and OS.
That is, this part code of the interpreter codes can be
relatively unchanged. When extending the capability of the
interpreter, we just need to update the rest of the interpreter
which relates to event and subscription management.

5. Simulation Experiment

By OPS, the simulation experiment realizes the following
function: The temperature sensor collects temperature data
once every one second. And then, the temperature data,
together with the sensor node number, are sent to the base
station. The parent node forwards the data packet of its child
node. We use this application as a case to evaluate the OPS
performance in the following aspects. Firstly, we demonstrate
the simplicity of the language by using OPS to write the
applications. And then, by comparing the size of the compiled
code, we show the flexibility in updating the codes. In the
evaluation of the OPS performance, we use a program written
in nesC as a comparative target.

var app:TApplication; t:TTimer; r:TReceive;
begin
app:=TApplication.CreateNew(app,0);
t:=TTimer.CreateNew(app, sys_Initial, 1000, sys_Infinity);
r:=TReceive.CreateNew(app);
while app.Enabled do
Application.ProcessMessages;
app.free;
end.

Create Event OnTimer After TTimer.OnTimer;
Create Event Get_Temperature After TReceive.Get;

Create Sub Insert_Temperature
On TTimer.OnTimer
Condition: Aowner=app;
Act: Begin
Insert(Temperature);
End.

Create Sub Forwarding_Temperature
On TReceive.Get
Condition: Aowner=app;
Act: Begin
 Send(Parent-ID, ID, Temperature);
 End.

(3) Define the subscriptions.

(2) Define the events.

(1) main program

Fig. 4. An OPS program for collecting temperature

(1) The simplicity of OPS. An OPS program for collecting
temperature is shown in Fig.4. The compiler generates
intermediate codes for the main program and the subscriptions,
and then establishes associations between the method events
and the subscriptions. After the interpreter executes TTimer.
Create New (app, sys_Initial, 1000, sys_Infinity), the event

 American Journal of Computation, Communication and Control 2015; 2(1): 1-6 5

On Timer is triggered once every one second. After the
interpreter executes TReceive. Create New (app), the event
Get_ Temperature is triggered when the object r receives the
data packets. The elements on the top of the external
procedure supporting environment stack stands for the actual
value that the interpreter uses. Then the intermediate codes
corresponding to the subscriptions are executed.

The program basically can be viewed as a simple translation
of the application requirements. Programmers don’t need to
consider the implementation details which don’t correlate with
the application requirements, such as hardware equipment
management, message buffer management, etc.

(2) The flexibility in updating code. The target platform is
set to be Mica Z sensor. After the nesC program for collecting
temperature is compiled, its binary image is 53180 bytes.
While the intermediate code of the OPS program is 1805 bytes.
The intermediate code is only 3%, compared with the binary
image. The explanation behind this is as follows. The nesC
program, together with the embedded OS, is compiled. Firstly,
most of the code in the compiled binary image doesn’t have
direct relation with the business logic of the application, while
the OPS intermediate code contains only the code related to
the business logic. And then, compared with the binary image,
OPS intermediate code has a higher level of abstraction.

(3) The costs related to the interpreter on each node. MicaZ
can provide 128KB ROM and 4KB RAM. The interpreter
needs 40375 bytes ROM and 3500 bytes RAM. Since the
interpreter uses static memory allocation, so this situation is
acceptable. We perform the experiments using MicaZ nodes
for grid topology. For the grid network, a node situated at one
corner of the grid acts as the base node, the transmission range
Rtx of a node satisfies d2 <Rtx<2d, where d is the separation
between the two adjacent nodes in any row or column of the
grid. In our experiments, if a node receives a packet from a
non-adjacent node, it is dropped. We perform these
experiments for grids of size 4x4. We run both versions 120s
on ATEMU simulator [17], and come to the following
conclusions. As the sensors are closer to the base node, the
more packets are dropped. But the packet loss status of OPS
interpreter is very close to that of nesC algorithm, and the
nesC version cuts the total energy consumption by 10 percent
than that of the OPS version. Therefore, in this application, the
way of interpretation can meet the requirements.

6. Conclusions

In this paper, we propose OPS, an object-oriented Pub/Sub
programming language, to provide the architecture of WSNs
reprogramming. OPS is based on event and subscription
model. We design and implement OPS language processing
system, and derive conclusions from the simulation
experiments. The results show the simplicity of the language,
and the flexibility in updating code.

Acknowledgements

This work was sponsored by Qing Lan project(Jiangsu

province, china) and open fund project of Jiangsu provincial
research and development center of intelligent sensor network
engineering technology, china (ZK13-02-03, Software
technology, platform and application for sensor network).

References

[1] Gay D, Levis P, Culler D. Software design patterns for TinyOS.
ACM SIGPLAN Notices, 2005, 40(7): 40-49.

[2] Dunkels A, Gronvall B, Voigt T. Contiki-a lightweight and
flexible operating system for tiny networked sensors. Local
Computer Networks, 2004. 29th Annual IEEE International
Conference on. IEEE, 2004: 455-462.

[3] Cao Q, Abdelzaher T, Stankovic J, et al. The liteos operating
system: Towards unix-like abstractions for wireless sensor
networks. Information Processing in Sensor Networks, 2008.
IPSN'08. International Conference on. IEEE, 2008: 233-244.

[4] Gu L, Stankovic J A. t-kernel: Providing reliable OS support to
wireless sensor networks. Proceedings of the 4th international
conference on Embedded networked sensor systems. ACM,
2006: 1-14.

[5] Bhatti S, Carlson J, Dai H, et al. MANTIS OS: An embedded
multithreaded operating system for wireless micro sensor
platforms. Mobile Networks and Applications, 2005, 10(4):
563-579.

[6] Madden S R, Franklin M J, Hellerstein J M, et al. TinyDB: an
acquisitional query processing system for sensor networks.
ACM Transactions on database systems (TODS), 2005, 30(1):
122-173.

[7] Yao Y, Gehrke J. The cougar approach to in-network query
processing in sensor networks. ACM Sigmod Record, 2002,
31(3): 9-18.

[8] Tavakoli A, Chu D, Hellerstein J M, et al. A declarative
sensornet architecture. ACM SIGBED Review, 2007, 4(3):
55-60.

[9] Taherkordi A, Loiret F, Rouvoy R, et al. Optimizing sensor
network reprogramming via in situ reconfigurable components.
ACM Transactions on Sensor Networks (TOSN), 2013, 9(2): 14.

[10] Maia G, Aquino A L L, Guidoni D L, et al. A multicast
reprogramming protocol for wireless sensor networks based on
small world concepts. Journal of Parallel and Distributed
Computing, 2013, 73(9): 1277-1291.

[11] Krontiris I, Dimitriou T. Scatter–secure code authentication for
efficient reprogramming in wireless sensor networks.
International Journal of Sensor Networks, 2011, 10(1): 14-24.

[12] Park T, Kim S Y, Kwon G I. Multi-block FEC for
reprogramming wireless sensor networks. Electronics Letters,
2013, 49(14).

[13] Ortega-Zamorano F, Jerez J M, Subirats J L, et al. Smart
sensor/actuator node reprogramming in changing environments
using a neural network model. Engineering Applications of
Artificial Intelligence, 2014, 30: 179-188.

[14] Mazumder B, Hallstrom J O. An efficient code update solution
for wireless sensor network reprogramming. Proceedings of the
Eleventh ACM International Conference on Embedded
Software. IEEE Press, 2013: 4.

6 Biao Dong: Object-Oriented Publish/Subscribe Programming Language for Wireless Sensor Networks Reprogramming

[15] Semparuthi R, Yuvaraj R. A Efficient QOS based User
selection in Secure and Distributed Reprogramming Protocol
for Wireless Sensor Networks. IJRCCT, 2014, 3(4): 521-525.

[16] Milner R. A Calculus of Communicating Systems. New York:
Springer-Verlag, 1982.

[17] Polley J, Blazakis D, McGee J, et al. ATEMU: a fine-grained
sensor network simulator. Sensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on. IEEE, 2004:
145-152.

