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Abstract 
This paper presents an object-oriented publish/subscribe(Pub/Sub) programming 
language, called OPS, for modeling and implementing the architecture of wireless sensor 
networks (WSNs) reprogramming applications. Considering the ability to efficiently 
update applications running on sensor nodes which is necessary for WSNs reprogramming, 
event and subscription models provide suitable programming abstractions by integrated 
Pub/Sub with object-oriented environment. Focusing on the modifications that should be 
easy to reflect on the sensor nodes, we select an abstraction level for sending the compiled 
updates, and make a trade-off between WSNs operation costs and reprogramming costs. 
We design and implement a prototype system on OPS. Simulation experiments imply that 
OPS is simplicity, while ensuring good flexibility in updating code. 

1. Introduction 

WSNs are composed of a large number of communication nodes with limited sensing, 
processing and computational capabilities. These nodes, developed at a low cost and in 
small size, can be randomly deployed across the monitored area, providing dense sensing 
close to physical phenomena, processing and communicating this information, and 
coordinating actions with other nodes. Due to the dynamic nature of WSNs, 
environmental change and other factors, WSNs often need to update the codes running at 
the sensor nodes. These updates may include bug fixes, the perception for new information 
as well as the use of more efficient algorithms. WSNs have many characteristics such as 
large amount of nodes and wide distribution. Sometimes, these nodes can be deployed in 
the places that are difficult to reach. Therefore, it isn’t realistic to manually update the 
codes on the nodes. Usually, the updated code needs to be distributed to each sensor node 
in a wireless way. This behavior of modifying the application and sending the compiled 
updates to sensor nodes is called reprogramming. 

Pub/Sub is an asynchronous communication paradigm that supports many-to-many 
interactions between a set of clients. A client can be an information publisher, an 
information subscriber, or both. Client interactions are data-centric: publishers describe 
their publishable events, subscribers express their interest in events, and Pub/Sub protocol 
delivers the published events to their corresponding event subscribers. The loose coupling 
of clients eliminates the burden of context information gathering and processing by 
resource constrained devices. Existing methodologies based on the request/response 
model for system software design, rooted in principles of object-oriented design, lead to 
tightly-coupled interactions, and lack coordination capacities. Pub/Sub paradigm is 
particularly suitable for loosely- coupled communication environment. Our design of OPS  
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is motivated by the idea of using object-oriented Pub/Sub 
environment for WSNs reprogramming. 

The rest of the paper is organized as follows. In Section 2, 
we review some related works. Our main methods including 
Pub/Sub for OPS, event model, and subscription model are 
presented in Section 3. The prototypical implementations 
including compiler and interpreter are given in Section 4, 
followed by the performance evaluations in Section 5. Finally, 
the paper is concluded in Section 6. 

2. Related Work 

In order to solve this problem and put our work in 
perspective, we give a brief overview of related works. A 
major approach is based on embedded operating system (OS) 
that allows for WSNs reprogramming applications. TinyOS 
(Gay D et al., 2005) supports for reconfigurability can be 
attributed to the encapsulation-by-modules feature in nesC 
that provides a unified interface [1]. Contriki (Dunkels A et al., 
2004) employs advanced reprogramming support in the form 
of loadable modules as well as an abstract programming 
interface that applications can use to perform actual 
transmission and routing of data message [2]. LiteOS (Cao Q 
et al., 2008) provides Unix-like abstractions for WSNs, and 
supports software updates through a separation between the 
kernel and user applications, which are bridged through a suite 
of system calls [3]. Lin Gu et al. (2006) design a new OS 
kernel, the t-kernel, to perform extensive code modification at 
load time. The modified code and the OS work in a 
collaborative way supporting the aforementioned features [4]. 
MANTIS OS (Bhatti S et al., 2005) is flexibility in the form of 
cross-platform support and testing across PCs, PDAs, and 
different micro sensor platforms. A key design feature is 
support for remote management of in-situ sensors via dynamic 
reprogramming and remote login [5]. 

Query processing in sensor networks is another relevant 
area to our work. Researchers have noted the benefits of a 
query processor-like interface to sensor networks and the need 
for reprogramming to limited power and computational 
resources. TinyDB (Madden S R et al., 2005) is a distributed 
query processor that runs on each of the nodes in a sensor 
network, also incorporates a number of other features 
designed to minimize power consumption via acquisitional 
techniques[6]. Yao Y et al. (2002) introduce the Cougar 
approach to tasking sensor networks through declarative 
queries. Since queries are asked in a declarative language, the 
user is shielded from the physical characteristics of the 
networks[7]. Tavakoli A et al. (2007) propose Snlog, a 
programming paradigm for declaratively specifying sensor 
networks systems. Snlog allows the user to specify an 
application using a high-level language, which is subsequently 
fed to a compiler which builds a runtime query processor that 
executes on each node[8]. 

There are other ways of achieving WSNs reprogramming. 
Taherkordi A et al. (2013) consider WSN programming 
models and run-time reconfiguration models as two 

interrelated factors, and present an integrated approach for 
addressing efficient reprogramming in WSNs [9]. Maia G et al. 
(2013) propose a multicast-based over-the-air programming 
protocol that considers a small world infrastructure [10]. 
Krontiris I and Dimitriou T (2006) present Scatter, a secure 
code dissemination protocol that enables sensor nodes to 
authenticate the program image efficiently [11]. A multi-block 
forward error correction technique is used (Park T et al., 2013), 
in which blocks were encoded using a rateless code, such as a 
Luby transform code [12]. Ortega-Zamorano F et al. (2014) 
presents an alternative based on an on-chip learning scheme in 
order to adapt the node behaviour to the environment 
conditions [13]. Mazumder B and Hallstrom J O (2013) 
present an incremental code update strategy used to efficiently 
reprogram WSNs, and adapt Hirschberg’s algorithm for 
computing maximal common subsequences to build an edit 
map specifying an edit sequence [14]. Semparuthi R and 
Yuvaraj R (2014) propose a secure distributed reprogramming 
protocol named SDRP with node classification algorithm. 
Based on the evaluation results, all nodes will be registered as 
users before giving the reprogramming authorization [15]. 

The above researches effectively improve the efficiency of 
software development for WSNs and running quality. But 
with the expansion of WSNs applications and the growth of 
WSNs scale, reprogramming makes the following demands on 
the programming languages. Firstly, languages need to 
provide suitable programming abstractions, help programmers 
to efficiently build programs which have a reasonable 
structure, and are easy to be modified and reused. Secondly, 
modifications to source code should be easy to reflect on the 
sensor nodes, so the execution mechanism of language needs 
to select an appropriate abstraction level for sending the 
compiled updates. Finally, the execution mechanism of 
language faces the tradeoff between the WSNs operation costs 
and the reprogramming costs. This paper proposes an 
object-oriented Pub/Sub programming model for WSNs 
reprogramming, and addresses two issues: 

(1) The establishment of event model and subscription 
model in object-oriented environment. 

(2) The design and implementation of compiler and 
interpreter that support for WSNs reprogramming. 

Compared with other works on reprogramming on WSNs 
based on high-level abstract, several advantages to using OPS 
in WSNs reprogramming can be discussed as follows. 

(1) Query processing approaches, such as TinyDB and 
Cougar, regard WSNs as relational database table, and provide 
SQL-like language for users to query data. Due to a too high 
programming abstraction level, they can only support part of 
WSNs applications. While based on object-oriented language 
environment, OPS supports most of WSNS applications. 

(2) A logical language, such as Snlog, abstracts WSNs as 
globally deductive databases that can be logically 
programmed. Therefore, these aren’t conducive to WSNs 
reprogramming. By reducing the size of the updated code, the 
OPS interpreter efficiently support reprogramming. 
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3. Our Methods 

3.1. Event and Subscription Model 

In an object-oriented environment, communications 
between different objects are carried out by the event delivery. 
When an object receives an event, a method is called, 
therefore, the method calls can be treated as events. Pub/Sub 
events are considered as value events, a value event can be 
mapped to one or several method events. 

Definition 1 method event. Method event in an 
object-oriented environment is defined as follows: 

Create Event <Event> <EventClause> 
<Event Clause>=[Before|After] <Name.MethodName> 
The Event is a string uniquely identifying event, the Before 

and After events are produced before and after method 
execution, the Name is a class or object name, and the 
MethodName is a method name. 

In an object-oriented system, method events are divided 
into pre-execution and post-execution method events, and 
include two kinds of method events: class method events and 
general method events. Class method events are generated 
before and after invoking class methods, such as creating an 
instance, deleting an instance. Similarly, general method 
events are generated before and after executing object 
methods. 

Definition 2 subscription. Subscription in an 
object-oriented environment is defined as follows: 

Create Sub <Subscription-Name> 
On <Event-Trigger > 
Condition: <Condition> 
Act: <Action> 
The Subscription-Name is a string uniquely identifying a 

subscription, the Event-Trigger is a list of Method events, the 
Condition is a Boolean function, and the Action denotes a 
procedure defined by an application program. As used in this 
definition, the subscription means as follows: when a method 
event in an event-trigger occurs, the condition is evaluated, 
and then if the condition is true, actions are executed. 

3.2. Operational Semantics 

In order to understand OPS more clearly and guide the 
implementation of OPS language processing system, we learn 
from the calculus of communication system [16], and give the 
operational semantics of event and subscription. 

Definition 3 substitution. A substitution θ is defined as the 
set of variables and its values, and is denoted as 
θ={c1/v1,…,cn/vn}. Where v1,…, and vn represent different 
variables, c1,…,and cn represent constants. The symbol ┴ 
indicates an invalid substitution. 

Given an event Event(v1,…,vn). A substitution θ= {c1/v1, …, 
cn/vn} will be returned when the event happens. 

Definition 4 subscription semantics. Suppose there is a 
subscription Subid: On <Eid >, Condition: <Conid>, Act: 
<Actid>. When the message channel β receive a triggering 
message, OPS detects whether the message meet the condition 
Conid. If the condition is met, the method corresponding to Eid 
is substituted into θ. Subsequently, OPS uses θ to assign 

values to parameters, executes Actid. The subscription 
semantics of Subid is expressed as the following. Stask denotes 
the sequence of tasks to be executed, <Subid, Stask> represents 
an ordered pair that defines structural pattern of sentence, and 
means that Subid will be executed in the current task sequence. 

)()(1 θθ vactvact
m

idid
>L>  represents that all actions in 

Actid are carried out in sequence. 

4. OPS Language Processing System 

4.1. OPS Architecture 

In conjunction with system software, programs written in 
embedded languages are compiled into the binary images. 
Since the binary images are usually larger, it’s more costly to 
distribute the images through wireless transmission. At the 
same time, the application programs in the binary images 
tightly couple with system software, there are many 
restrictions in the process of incremental update to the 
application codes. 

In order to reduce the cost of updating sensor code, OPS 
uses intermediate code to decouple the applications and the 
system software. Intermediate code contains only the codes 
associated with the relevant business logic, it has the 
advantages of small volume, and is easy to transport. OPS 
language processing system selects the architecture which 
includes the server-side compiler and the sensor-side 
interpreter, and as shown in Fig.1. 

 

Fig. 1. Architecture of OPS processing system 

The compiler is responsible for converting the OPS source 
program to intermediate codes which are independent of the 
specific sensor platforms. The interpreter and embedded OS 
reside in the sensors, and execute the received intermediate 
codes by way of interpretation. 

4.2. Compiler 

The main task of the compiler is to generate intermediate 
code which contains only the business logic of the application, 
and reduces the amount of code transmission caused by code 
updates so as to improve the efficiency of reprogramming. At 
the same time, taking into account extra burden brought by the 
interpretation and execution mechanism executing certain 
application code, another important task of the compiler is to 
optimize intermediate code to improve the interpreter 
computing speed and reduce power consumption. 

The computational demands for the interpreter in the 
sensors mainly originate from execution of external 
procedures. External procedures are virtual procedures that 
could be anything when compiled, including class methods, 
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attributes, methods, events and procedures. External 
procedures are used to store class type information for the 
compiler subsystem. Fig.2. shows the compiler. 

 

Fig. 2. OPS compiler 

The working process of the compiler is divided into three 
phases: the first phase is initialization, the second will focus 
on compiling, and the third phase is to generate intermediate 
code. In the initialization phase, the compile time class library 
establishes class information. In the compile phase, the object 
supporting environment generates push instructions, creates or 
finds the number of the called external procedures, and then, 
fills in the import descriptions of the external procedures 
import table. The import declaration used for the class library 
contains all information needed for external function 
registered to the compiler. In the code generation phase, the 
compiler completes two works. First of all, subscriptions are 
translated into the following procedure. 

Procedure <Subscription name> (<Triggering event 
parameter list>) 

Begin 
If <conditions> Then <actions>; 

End. 
Second, the association between event and subscription 

name is established. 

4.3. Interpreter 

The interpreter, together with system software to support its 
running, reside in the sensors, and are responsible for 
executing intermediate code by way of interpretation. The 
interpreter is implemented on the embedded OS, and as shown 
in Fig.3. Its core part includes external procedure which 
supports environment, scheduler, subscription library 
management, and communication handler. 

 

Fig. 3. Architecture of the OPS interpreter 

The execution processes of the external procedure 
supporting environment are as follows. Firstly, according to 
the external procedure type, the environment calls the 
corresponding classification function. Secondly, the 
classification functions generate the call parameters according 

to the characteristics of the call functions. Finally, according 
to the different calling conventions, method calls and 
parameter-passing modes, the environment handles the results 
returned by the underlying call functions. According to the 
type of event, the scheduler is responsible for calling different 
external process modules to perform subscription tasks. 

The running state of the interpreter is determined by its core 
part. The external procedure supporting environment only 
involves six aspects of work related to executing external 
procedure, such as calling conventions, method call, returning 
results, constructors and destructors, virtual methods, and 
passing parameters. Regardless of the upper application logic 
of WSNs, the work is only related to sensor hardware and OS. 
That is, this part code of the interpreter codes can be 
relatively unchanged. When extending the capability of the 
interpreter, we just need to update the rest of the interpreter 
which relates to event and subscription management. 

5. Simulation Experiment 

By OPS, the simulation experiment realizes the following 
function: The temperature sensor collects temperature data 
once every one second. And then, the temperature data, 
together with the sensor node number, are sent to the base 
station. The parent node forwards the data packet of its child 
node. We use this application as a case to evaluate the OPS 
performance in the following aspects. Firstly, we demonstrate 
the simplicity of the language by using OPS to write the 
applications. And then, by comparing the size of the compiled 
code, we show the flexibility in updating the codes. In the 
evaluation of the OPS performance, we use a program written 
in nesC as a comparative target. 

var app:TApplication; t:TTimer; r:TReceive;
begin
app:=TApplication.CreateNew(app,0);
t:=TTimer.CreateNew(app, sys_Initial, 1000, sys_Infinity);
r:=TReceive.CreateNew(app);
while app.Enabled do
Application.ProcessMessages;
app.free;
end.

Create Event OnTimer After TTimer.OnTimer;
Create Event Get_Temperature After TReceive.Get;

Create Sub Insert_Temperature
On TTimer.OnTimer
Condition: Aowner=app;
Act: Begin
Insert(Temperature);
End.

Create Sub Forwarding_Temperature
On TReceive.Get
Condition: Aowner=app;
Act: Begin
              Send(Parent-ID, ID, Temperature);
        End.

(3) Define the subscriptions.

(2) Define the events.

(1) main program

 

Fig. 4. An OPS program for collecting temperature 

(1) The simplicity of OPS. An OPS program for collecting 
temperature is shown in Fig.4. The compiler generates 
intermediate codes for the main program and the subscriptions, 
and then establishes associations between the method events 
and the subscriptions. After the interpreter executes TTimer. 
Create New (app, sys_Initial, 1000, sys_Infinity), the event 
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On Timer is triggered once every one second. After the 
interpreter executes TReceive. Create New (app), the event 
Get_ Temperature is triggered when the object r receives the 
data packets. The elements on the top of the external 
procedure supporting environment stack stands for the actual 
value that the interpreter uses. Then the intermediate codes 
corresponding to the subscriptions are executed. 

The program basically can be viewed as a simple translation 
of the application requirements. Programmers don’t need to 
consider the implementation details which don’t correlate with 
the application requirements, such as hardware equipment 
management, message buffer management, etc. 

(2) The flexibility in updating code. The target platform is 
set to be Mica Z sensor. After the nesC program for collecting 
temperature is compiled, its binary image is 53180 bytes. 
While the intermediate code of the OPS program is 1805 bytes. 
The intermediate code is only 3%, compared with the binary 
image. The explanation behind this is as follows. The nesC 
program, together with the embedded OS, is compiled. Firstly, 
most of the code in the compiled binary image doesn’t have 
direct relation with the business logic of the application, while 
the OPS intermediate code contains only the code related to 
the business logic. And then, compared with the binary image, 
OPS intermediate code has a higher level of abstraction.  

(3) The costs related to the interpreter on each node. MicaZ 
can provide 128KB ROM and 4KB RAM. The interpreter 
needs 40375 bytes ROM and 3500 bytes RAM. Since the 
interpreter uses static memory allocation, so this situation is 
acceptable. We perform the experiments using MicaZ nodes 
for grid topology. For the grid network, a node situated at one 
corner of the grid acts as the base node, the transmission range 
Rtx of a node satisfies d2 <Rtx<2d, where d is the separation 
between the two adjacent nodes in any row or column of the 
grid. In our experiments, if a node receives a packet from a 
non-adjacent node, it is dropped. We perform these 
experiments for grids of size 4x4. We run both versions 120s 
on ATEMU simulator [17], and come to the following 
conclusions. As the sensors are closer to the base node, the 
more packets are dropped. But the packet loss status of OPS 
interpreter is very close to that of nesC algorithm, and the 
nesC version cuts the total energy consumption by 10 percent 
than that of the OPS version. Therefore, in this application, the 
way of interpretation can meet the requirements. 

6. Conclusions 

In this paper, we propose OPS, an object-oriented Pub/Sub 
programming language, to provide the architecture of WSNs 
reprogramming. OPS is based on event and subscription 
model. We design and implement OPS language processing 
system, and derive conclusions from the simulation 
experiments. The results show the simplicity of the language, 
and the flexibility in updating code. 
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