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Abstract 
In this paper a numerical method based on the double Fourier series is developed for 

obtaining the solution to boundary controllability of the 1D heat equation. The Fourier 

series of the solution is written subject to the boundary, initial and final conditions 

satisfied exactly. Then the Fourier series coefficients are obtained by solving an 

optimization problem. The details of the method are discussed and the capabilities of the 

method are illustrated by solving heat problem with different boundary conditions. 

1. Introduction 

The controllability problems in one-dimensional are known to be solvable since the 

seventies: we mention to the earlier contributions [1, 2] for some proofs based on 

spectral arguments. The numerical approximation schemes of boundary control for the 

heat equation are an important problem. Glowinski et al. [3, 4] devoted to approximate 

controllability using duality. This is due to the intrinsic ill-posedness of the problem we 

have just pointed out. For the null boundary case in one dimensional space, we mention 

the motion planning method introduced in [5] allowing a semi-explicit expression of 

controlled solutions in term of Gevrey series. This approach has been adapted and 

numerically developed recently in [6] to obtain inner controls. 

In practice, the null control problem is then reduced to the minimization of a dual 

conjugate function with respect to the final condition of the adjoint state [7, 8, 10]. 

The theory of the Fourier series involves expansions of arbitrary functions in certain 

types of trigonometric series. It proves that any periodic function in an interval of time 

could be represented by the sum of a fundamental and a series of higher orders of 

harmonic components at frequencies which are integral multiples of the fundamental 

component. The series establishes a relationship between the function in time and 

frequency domains. Today, the theory has become the famous ‘Fourier series’ and it is 

one of the most important tools for engineers and scientists in many applications. 

Theorem: (Convergence of Fourier series) 

Let ���� and �′��� be piecewise continuous functions on ���, �
 and ���� be periodic 

with period 2� then � has a Fourier Series 
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the Fourier Series converges to f (x) at all points at which � 

is continuous and to the average value of the left and right 

limits (
&�'(�	)	&�'*�

+ ) at a point of discontinuity of the function 

�. 

Proof: the proof is in [9]. 

The Fourier series representations extend in a natural way 

to functions ���, ,) of two real variables x and t over the 

intervals −� ≤ � ≤ �  and −. ≤ , ≤ . , provided f can be 

represented as a Fourier series in x when t is held constant, 

and as a Fourier series in t when x is held constant. 

The general double Fourier series representation of �(�, ,) 
over the interval −� ≤ � ≤ � and −. ≤ , ≤ . is given by  

	�(�, ,) = ∑ ∑ (
01��� 02'
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4 + �01��� 02'
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A function �(�, ,) that is specified on the interval 0 ≤ � ≤
�  and 0 ≤ , ≤ .  can be represented in terms of a Fourier 

series on the interval. These series are obtained by first 

extending the definition of the function to the interval 

−� ≤ � ≤ � and −. ≤ , ≤ . in a suitable manner, and then 

restricting the Fourier series representation of the extended 

function to the original interval. 

2. Description of Method 

We are concerned in this work the controllability of the 

following 1D heat equation: 

73 − 
(�)7'' = ℎ(�, ,)                           (1) 

7(�, 0) = ��(�),								� ∈ (0,1) 
7(0, ,) = :�(,),								, ∈ (0, .) 
7(�, .) = �4(�),									� ∈ (0,1) 
7(1, ,) = ;(,),									, ∈ (0, .) 

where 7 = 7(�, ,)  is the state, ��, �4 , 
 ∈ <+(0, 1), :� ∈  

<+(0, .) and ℎ(�, ,) are known functions and ( )=u u t is the 

control function which acts on the extreme 1=x . We aim at 

changing the dynamics of the system by acting on the 

boundary of the domain (0, 1). 

To obtain an approximate solution of problem (1), we 

define 

=(�, ,) = >(',3)#?(',3)
@(',3)                         (2) 

where the functions A(�, ,) and B(�, ,) are given. 

Now, we can write the Fourier series of =(�, ,) as follow: 

C(D,E)(�, ,) = ��(
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E
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when the numbers M and N are large enough, the Fourier 

series representation =(D,E)(�, ,) is a suitable approximate of 

=(�, ,) and so we have the approximation of  7(�, ,) in the 

following form: 

7(D,E)(�, ,) = A(�, ,) + B(�, ,){(∑ ∑ (
01��� 02'
"

E1��D0�� ��� 123
4 	+ �01��� 02'

" ��� 123
4 ) + ∑ ∑ (�01��� 02'

"
E1��D0�� ��� 123

4 +
%01��� 02'

" ��� 123
4 )}                                                                               (4) 

Here, the functions A(�, ,) and B(�, ,) are defined as: 

A(�, ,) = (4#3)
4 H��(�) − ��(0)I + 3

4 H�4(�) − �4(0)I + :�(,)  
B(�, ,) = �,(. − ,). 

With this choice, the function 7(D,E)(�, ,)	can satisfy the 

boundary, initial and final conditions. We substitute 

7(D,E)(�, ,) in the first equation of (1) and the Fourier Series 

coefficients in such a way to bring that the following 

objective function to be minimized 

K��L ∑ {�70(D,E)(�0 , ,0) − 
(�0)7''(D,E)(�0 , ,0) −('M,3M)NO

ℎ(�0 , ,0)�
+},                              (5) 

where P = �0,1
 × �0, .
  and R = {
01 , �01 , �01 , %01 :	� = 0, 
1,…K, 5 = 0,1, … , U} 

. 

As the choice (4) the minimization problem (5) is 

quadratic. When the problem was solved, the Fourier 

coefficients and thus the approximate solution of problem (1) 

is obtained. 

3. Numerical Results 

We now offer some numerical experiment and survey the 

behavior of the computed control with respect to data, M and 

N. 

Example1.3: As in [8], consider the problem (1) with the 

following data: 

��(�) = ���(��) , ℎ(�, ,) = 0, :�(,) = �4(�) = 0, 
We assume that the diffusion 
 is constant and equal to 


(�) = 
� = �
V , � ∈ (0, 1)  and take a controllability time 

equal . = �
+. We introduce the notation  

Ω=(0,	1)×(0,	T),			Γ={1}×(0,	T) 
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The problem (1) subject to the above data with the various 

K,U is solved. It is interesting to note that our method was 

convergence to a steady case for M=N=5 (by 25 independent 

functions), since the all coefficients of the solution for M and 

N greater than 5 are equal zero. 

Table 1 gives various norms of the solution 7(D,E���, ,� 
with respect to K , U  and 8 , and clearly suggests the 

convergence of the approximation.  

 

Table 1. Numerical results with respect to M=N=5. 

∆X � ∆Y Z
[ 

Z
\ 

Z
Z] 

Z
Z^ 

‖7��, ,�‖`a�Ω� 0.2865 0.2977 0.2944 0.2896 

‖7��, ,�‖`a�c� 0.4555 0.4709 0.4799 0.4633 

Figure 2 depicts the corresponding error functions for 

K � U � 5, 8 � �
e  and 

�
f . Also, Figure 3 depicts the 

corresponding error functions for K � U � 5, 8 � �
�� and 

�
�+. 

 

Figure 1. The error function for M=N=5 and respect to ∆� � ∆, � �
�e (left), and ∆� � ∆, � �

f (right). 

Figure 2 depicts the corresponding solution 7��, ,� and the 

control function u(t). It is also interesting to note that the 

control obtained is quite regular near , � .. 

 

Figure 2. The solution 7��, ,� (left) and the control function u(t) (right). 

Example 2.3: consider the problem (1) with the following 

data: 

����� � ������� , 8��, ,� � 0, :��,� � 0,	 
�4��� � 0.1 �������. 

We assume that the diffusion 
 is constant and equal to 


��� � 
� � �
V � ∈ �0, 1� , and take a controllability time 

equal . � �
+. 

The problem (1) subject to the above data with the various 

K, U is solved. It is interesting to note that our method was 

convergence to a steady case for M=N=5 (use 25 

independent functions), since the all coefficients of the 

solution for M and N greater than 5 are equal zero. 

Table 2 gives various norms of the solution 7�D,E���, ,� 
with respect to K , U  and 8 , and clearly suggests the 

convergence of the approximation. 

Table 2. Numerical results with respect to M=N=5. 

∆X � ∆Y Z
[ 

Z
\ 

Z
Z] 

Z
Z^ 

‖7��, ,�‖`a�Ω� 0.2880 0.2861 0.2834 0.2806 

‖7��, ,�‖`a�c� 0.2529 0.3014 0.3115 0.3018 

 

Figure 3. The solution 7��, ,� (left) and the control function u(t) (right). 

4. Conclusion 

In this paper a new method based on Fourier series has 

been applied to find approximate solutions for boundary 

controllability of heat equations. The solutions via this 

method are differentiable, closed analytic form easily used in 

any subsequent calculation. The method here allows us to 

obtain the solution of control problem starting from randomly 

sampled data sets and refined it without wasting memory 

space and therefore reducing the complexity of the problem. 

If we compare the numerical results, we see that our method 

has been convergence. 
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