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Abstract 
A device which comprises three parts, electromotor, screw and cable, is proposed to 

suppress the vibration of a single-link flexible manipulator. The manipulator acted on 

jointly by the device and the load at manipulator’s end-effector is modeled as a cantilever 

beam with three concentrated loads at two end-points and midpoint. By taking the 

exserted length of the screw as control variable, the curve equation of the cantilever beam 

is educed. According to the curve equation, the expression about the exserted length of 

the screw and the maximal offset of the manipulator arm are given in the case of offset at 

manipulator’s end-effector to be zero. By comparing the maximal offset with that in case 

without using the device, the result shows that the maximal offset in latter case is 3√5 
times. A simulation result shows the shape of manipulator acted on jointly by the device 

and the load at manipulator’s end-effector, and confirms feasibility of the device and its 

control algorithm. A prominent predominance of the vibration suppression device and its 

control algorithm is that the maximal offset appears at the midpoint neighborhood of 

manipulator, but offset at manipulator’s end-effector closes to zero. 

1. Introduction 

Space manipulators are complex systems, composed by robotic arms accommodated 

on an orbiting platform. They can be used to perform a variety of tasks: launch of 

satellites, retrieval of spacecraft for inspection, maintenance and repair, movement of 

cargo and so on [1]. Space missions and on-orbit tasks will rely increasingly on space 

manipulators, since these tasks are either too risky or very costly, due to safety support 

systems, or just physically impossible to be executed by humans. All these missions 

require extreme precision. However, in order to respect the mass at launch requirements, 

manipulators arms are usually very light and flexible, and their motion involves 

significant structural vibrations, especially after a grasping maneuver.  

Considerable work has been carried out in the vibration suppression of flexible 

manipulators by various researchers [2-4]. The traditional approaches to minimize the 

effect of structural vibrations are focused on either increasing the structural stiffness, 

which increases the system’s size and weight, or using closed-loop control methods for 

active vibration control, which require advanced instrumentation and control equipment 

that increase the system cost and complexity [5]. Ref. 6 presents the analytic and 

experimental development of piezoelectric actuators as elements of intelligent structures, 

i.e., structures with highly distributed actuators, sensors, and processing networks. Static 

and dynamic analytic models are derived for segmented piezoelectric actuators that are 

either bonded to an elastic substructure or embedded in a laminated composite. These  
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models lead to the ability to predict, a priori, the response of 

the structural member to a command voltage applied to the 

piezoelectric and give guidance as to the optimal location for 

actuator placement. A scaling analysis is performed to 

demonstrate that the effectiveness of piezoelectric actuators 

is independent of the size of the structure and to evaluate 

various piezoelectric materials based on their effectiveness in 

transmitting strain to the substructure. Three test specimens 

of cantilevered beams were constructed: an aluminum beam 

with surface-bonded actuators, a glass/epoxy beam with 

embedded actuators, and a graphite/epoxy beam with 

embedded actuators. The actuators were used to excite 

steady-state resonant vibrations in the cantilevered beams. 

The response of the specimens compared well with those 

predicted by the analytic models. Static tensile tests 

performed on glass/epoxy laminates indicated that the 

embedded actuator reduced the ultimate strength of the 

laminate by 20%, while not significantly affecting the global 

elastic modulus of the specimen. Ref.7 describes an approach 

for the use of smart materials, specifically, piezoelectric 

materials (PZT), in control of a single-link flexible 

manipulator. It is investigated by a Lyapunov approach that a 

combined scheme of PD feedback and command voltages 

applied to segmented PZT actuators, which are bonded to the 

surface of the flexible link, can effectively control the rigid 

body motion and at the same time, damp link vibrations. The 

unique features of the proposed PZT actuator control are 

twofolds: First, it utilizes linear in contrast to angular 

velocities of particular points on the link, signals which are 

readily available. Second, the actuator placement is examined 

based on the analysis of mode shape functions. Stability of 

the system with the proposed PZT actuator control is 

analyzed using a virtual joint model. The shape control of 

beams by piezoelectric actuators is addressed analytically in 

[8]. Solutions are presented for a beam subjected to different 

boundary conditions. The solutions show how and how much 

the piezoelectric actuators can influence the shape of a beam. 

Several case studies are also presented to show the 

applications of the analytical solutions in the various analyses 

relevant to shape control of beams by piezoelectric actuators. 

The limitation of the actuation forces produced by 

piezoelectric actuators makes it difficult to realize global and 

local precise shape control. Ref. 9 presented and discussed 

the results of several tests concerning possible application of 

piezoelectric elements to reduce torsional vibrations of a 

beam. The piezoelectric elements are positioned in two pairs 

and glued to the beam at the chosen cross-section. These 

elements are activated using a harmonically varying voltage 

of the same amplitude and opposite in phase. Simulations are 

performed regarding the active reduction of the lowest 

natural frequencies of vibration of the fixed-free beam with 

the use of piezoelectric actuators. 

However, since the length of a manipulator arm may attain 

several meters, or even exceed ten meters, the PZT bonded to 

the surface of the flexible manipulator arm will be either too 

weightily or very costly. Although some PZT actuators can 

be bonded to the surface of the arm dividually for reducing 

weight and cost, it is still a fatal weakness for the maximal 

offset of the manipulator arm appears at end-effector. The 

positioning precision of the manipulator is actually the one at 

end-effector, and hence a desired vibration suppression effect 

is certainly that the maximal offset of the arm appears at 

other part except at end-effector. This paper aims at 

designing and studying active damping strategies and 

relevant devices that could be used to reduce the structural 

vibrations of a space manipulator with flexible links during 

its on orbit operations.  

2. Structure and Working Principle of 

the Vibration Suppression Device 

 
Fig. 1. Sketch of a vibration suppression device. 

The vibration suppression device comprises three parts, 

electromotor, screw and cables, as shown in Fig.1. The 

electromotor, whose axis is a hollow column with internal 

thread, is mounted on the middle part of the manipulator arm, 

and can rotate clockwise and counterclockwise. There is a 

square prism with hole at each end of the screw, and the 

screw thread of the screw can mesh with internal thread of 

the hollow axis of the electromotor. Two cables are mounted 

on two opposite surfaces of the manipulator arm, and their 

ends are fixed at ends of the arm after the cables cut through 

the holes in square prisms. 

The projection of the load inertial force on the direction 

perpendicular to plane containing the cables can be obtained 

by estimating the mass of load and the position of the 

end-effector, and the contrary direction is the desired 

movement direction of the screw for vibration suppression. 

In the following sections a formula to compute the desired 

protruded length of the screw will be derived using Hooke’s 

law. By controlling the screw’s movement according to the 

above direction and distance, the bending-moment of the 

manipulator arm coming from inertial force of the load will 

be counteracted by the bending-moment of a cable, and the 

purpose of vibration suppression will be achieved 

accordingly. 

3. Curve Equation of the Manipulator 

Arm 

Under the action of the vibration suppression device, the 
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single-link flexible manipulator grasping a payload can be 

modeled as a uniform cantilever beam shown in Fig. 2, where

2L
 

denotes the distance from screw to tips of the beam, l

denotes the length of the screw, P denotes the support force 

of the screw acting on a cable, R denotes the tensile stress of 

the cable, 
A

R
 

and 
B

R
 

are reactions of P at the support A

and B respectively, F denotes the projection of the load 

inertial force on the direction perpendicular to plane 

containing the cables, we have 

2
A B

P
R R= =  

We now cut through the beam at a cross section to the left 

of the support force P and at distance x from the support at

A . From the equations of equilibrium for this free body, we 

obtain the bending moment ( )M t
 

at distance x from the 

support A  (counterclockwise moments are positive) 

[10-13]: 

 

Fig. 2. Cantilever beam with two concentrated loads. 

( ) ( ) ( )( )
2

B

L
M x x P R F L x= − − + − −  

( ) ( )
2

B B

P
P R F x R F L= − + + − −  

( )
2

P
F x FL= + − ( 0 2x L≤ ≤ ) 

This expression is valid only for the part of the beam to the 

left of the support force P . 

Next, we cut through the beam to the right of the support 

force P (that is, in the region 2L x L≤ ≤ ). From the 

equations of equilibrium for this free body, we obtain the 

following expressions for the bending moment [14]: 

( ) ( )( ) ( ) ( )
2 2

B

P P
M x R F L x F x F L= − − = − − + −  

Note that this equation is valid only for the right-hand part 

of the beam. 

According to the theory of mechanics of materials, the 

curvature κ of the beam is directly proportional to the 

bending moment ( )M t
 

and inversely proportional to the 

quantity EI , which is called the flexural rigidity of the beam, 

and therefore we have the following moment-curvature 

equation: 

M EIκ =  

For reference purposes, we construct a system of 

coordinate axes whose origin is at the fixed support A , 

positive x axis is directed to the right, and positive y axis is 

directed upward, so that the two axes form a right-handed 

coordinate system. According to the expression of the 

curvature from differential geometry we get  

3
22

''

(1 ' )

y

y
κ =

+
 

In practical application, comparing with its length, the 

distortion of manipulator arm caused by the bending moment 

is very small quantity, and the angle of rotation θ  whose 

tangent is equal to 'y is accordingly a very small quantity. 

Therefore, 'y may be approximated as zero, and the curvature 

can be expressed as ''yκ = . Thus, in the case of 0 2x L≤ ≤
we have 

( )
2''

P
F x FL

y
EI

+ −
=  

By using boundary conditions (0) 0y =
 

and '(0) 0y = , 

successive integrations of the last equation 

yield 

3 2( 2 )

12 2

P F FL
y x x

EI EI

+= −  

Taking the derivative of this expression with respect to x , 

we get 

2( 2 )
'

4

P F FL
y x x

EI EI

+= −  

Substituting 2x L=  into the last two equations, we find 

3

( ) ( 10 )
2 96

L L
y P F

EI
= −          (1) 

2
2 2( 2 )

'( ) ( 6 )
2 16 2 16

L P F F L
y L L P F

EI EI EI

+= − = −  (2) 

In the case of 2L x L≤ ≤
 

we have 

( ) ( )
2 2''

P P
F x F L

y
EI

− − + −
=  

Integrating the last equation gives 

2

1

( 2 ) ( 2 )
'

4 2

P F P F L
y x x c

EI EI

− −= − + +  

where 
1

c
 

is integration constant. Substituting Eq.(2) into the 

last equation, we find 
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2 2

1

( 2 ) ( 2 )
( 6 )

16 16 4

L P F P F
P F L L c

EI EI EI

− −− = − + +  

or 

2

1
8

PL
c

EI
= −  

Therefore, the derivative 'y
 

is 

2
2( 2 ) ( 2 )

'
4 2 8

P F P F L PL
y x x

EI EI EI

− −= − + −  

Integrating the last equation gives 

2
3 2

2

( 2 ) ( 2 )

12 4 8

P F P F L PL
y x x x c

EI EI EI

− −= − + − +  

where 
2

c
 

is integration constant. Substituting Eq.(1) into the 

last equation, we find 

3
3 3 3

2

( 2 ) ( 2 )
( 10 )

96 96 16 16

L P F P F P
P F L L L c

EI EI EI EI

− −− = − + − +  

3

2
48

PL
c

EI
=  

Therefore, we get 

2 3
3 2( 2 ) ( 2 )

12 4 8 48

P F P F L PL PL
y x x x

EI EI EI EI

− −= − + − +  

Combining the equation with Eq.(1), we get the following 

curve equation of the manipulator arm 

3 2

2 3
3 2

( 2 )
0 2

12 2
( )

( 2 ) ( 2 )
2

12 4 8 48

P F FL
x x x L

EI EI
y x

P F P F L PL PL
x x x L x L

EI EI EI EI

+ − ≤ ≤=  − −− + − + ≤ ≤


  (3) 

Substituting x L=  into Eq.(31), we find 

3 3
3 3 3( 2 ) ( 2 ) (3 16 )

( )
12 4 8 48 48

P F P F PL PL P F
y L L L L

EI EI EI EI EI

− − −= − + − + =  (4) 

4. Protruded Length of the Screw 

In order to eliminate position offset at manipulator arm’s 

end-effector, equating the right-hand side of Eq.(4) to zero 

we have 
16

3
P F= . 

In order to compute the desired protruded length l of the 

screw, we denote the modulus of elasticity of the cables and 

its area of cross section by 
0

E
 

and S  respectively. The 

elongation of the cables can be expressed as  

2 2( 2) 2l L L+ −  

and the tensile forces in the cables 

can be expressed as 

2 2

2

0 0

( 2) 2
( ) ( 1 4( ) 1)

2

l L L l
T SE SE

L L

+ −
= = + −  

 

Fig. 3. Force acting on the cable. 

On the other hand, as shown in Fig. 3, the upward tensile 

force ( )
2

P
F−  acting on point B is a component of force 

produced by a cable, therefore 

5
sin ( )

2 3

P
T F Fθ = − =  

Noting 
2

tan
l

L
θ =

 
we obtain 

2
2

2

2
2

2
1 ( )

5 5 1 tan 5 5
1 4( )

23sin 3 3 6tan
( )

l

F F F FL lLT
l l L

L

θ
θ θ

++= = = = +  

thus 

2 2

0

5
( 1 4( ) 1) 1 4( )

6

l FL l
SE

L l L
+ − = +  

or 

2

0 0
(6 5 ) 1 4( ) 6

l
lSE FL lSE

L
− + =  

Since l L
 

is a very small quantity, using Taylor 

expansion 
2 21 4( ) 1 2( )

l l

L L
+ = +

 
we have 

2 2 2

0 0(6 5 )( 2 ) 6lSE FL L l lSE L− + =  

or 

3 2 3

012 10 5 0SE l FLl FL− − =  

30

3 2

12 2 1 1
( ) 0

5

SE

l lFL L
− − =  
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3 0

2 3

121 2 1
( ) 0

5

SE

l lL FL
+ − =

 

let
1

x
l

= ，

2

2
p

L
= ，

0

3

12

5

SE
q

FL
= − , then the last equation can be 

written as 

3 0x px q+ + =  

A unique real root of the last equation can be obtained by 

using Card an formula: 

2 3 2 33 3
1

2 3 2 30 0 0 03 3
3 3 2 3 3 2

( ) ( ) ( ) ( )
2 2 3 2 2 3

6 6 6 62 2
( ) ( ) ( ) ( )

5 5 3 5 5 3

q q p q q p
x

SE SE SE SE

FL FL L FL FL L

= − + + + − − +

= + + + − +

 

Finally, the protruded length of the screw is  

1

1
l

x
=  

5. Maximal Off Set of the Manipulator 

Arm 

Let 16 3p F=
 

in Eq. (3), and taking the derivative of

( )y x
 

with respect to x we get 

2

2
2

22
0 2

12
'( )

10 5 2
2

12 3 3

F FL
x x x L

EI EI
y x

F FL FL
x x L x L

EI EI EI

 − ≤ ≤= 
− + − ≤ ≤


 

Let '( ) 0y x =
 

for 0 2x L≤ ≤  we have the following 

equation 

222
0

12

F FL
x x

EI EI
− =  

with whose two roots are 
1

0x =
 

and 
2

6

11

L
x = . Since

(0) 0y = , we only need to search for the second root. By 

noting
2

6

11 2

L
x L= > , it is enough to search for 

2

6

11

L
x =

 
in 

the regions 0 2x L< ≤ . 

For 2L x L≤ ≤ , let '( ) 0y x = we get 

2
210 10 2

0
12 6 3

F FL FL
x x

EI EI EI
− + − =  

or 

2 24 10 4 0x Lx L− + =  

with two roots 

2 2

1,2

10 100 80 5
(1 )

10 5

L L L
x L

± −= = ±  

But there is only a root 
2

5
(1 )

5
x L= −

 
in the regions

2L x L≤ ≤ . Substituting 
2

5
(1 )

5
x L= −

 
into the Eq. (3), 

we get the maximal offset of the manipulator arm 

3
3 25 5 5 5

((1 ) ) [ 5(1 ) 15(1 ) 12(1 ) 2]
5 18 5 5 5

FL
y L

EI
− = − − + − − − +

3
5

45

FL

EI
= −                        (5) 

6. Analyse of the Vibration 

Suppression Effect 

In order to investigate the vibration suppression effect of 

the device with its control algorithm, we will compare the 

maximal offset and the end-effector’s offset of the 

manipulator with those in the case of without the device (or

0P = ). In case of 0P = , as shown in Fig. 3, for 0 x L≤ ≤ , 

the bending moment ( )M t
 

at distance x  from the support

A can be expressed as 

( ) ( )M x F L x Fx FL= − − = −  

By expressing the curvature as ''yκ =
 

approximately 'y , 

we have  

''
Fx FL

Y
EI

−=  

By using boundary conditions (0) 0Y =
 

and '(0) 0Y = , 

successive integrations of the last equation 

yields 

3 2
3

( )
6

Fx FLx
Y x

EI

−=  

Thus the maximal offset of the manipulator is 

3 3 3
3

( )
6 3

FL FL FL
Y L

EI EI

−= = −  

However from the Eq. (5) we know that in the case of 

using the device the maximal offset of the manipulator arm is  

3
5 5

((1 ) )
5 45

FL
y L

EI
− = −  

and obtain 

3 3( ) 5
( ) 3 5

3 45((1 5 5) )

Y L FL FL

EI EIy L
= =

−
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The last equation means that the maximal offset of the 

manipulator in the case of without the device is 3 5  times 

when compared with that in the case of without the device. 

Moreover, in the case of without the device the maximal 

offset of the manipulator appears at manipulator arm’s 

end-effector. But in the case of using the device, the offset at 

manipulator arm’s end-effector is zero, which is propitious to 

the accurate control of the manipulator’s end-effector. 

The above compare result shows that the device is 

certainly effective for the vibration suppression of 

manipulator. 

7. Simulation 

Suppose 2L m= , 10F N= , 106.6 10EI = × 2/N m
4 210S m−= , 16 3 160 3P F N= = , 10

0 2 10E = × 2/N m . 

Using the above the formula, we can obtain the protruded 
length of the screw 0.0255l m= . After regulating the 

protruded length of the screw according to the length, curve 

equation of the cantilever beam can be obtained through 

simulation operation. Its shape is shown in Fig. 4. 

 

Fig. 4. Shape of the cantilever beam. 

Fig.4 shows that the cantilever bends downwards at the left 

end and midpoint due to the action of the force F , which is 

consistent with the experimental result. 

8. Conclusions 

This paper deals with the vibration suppression problem of 

the manipulator arm with quadrate cross section. As long as 

the length of cross section is long enough compared to its 

breadth, we can consider that the manipulator arm bends only 

along breadth direction, and hence the bending moment can 

be counteracted by the tensile force of the cables. For general 

manipulator arm, we only need to use such two devices 

synchronously. But then for the convenience of computing 

component of forces and composition of forces, two devices 

have to be mounted in such a way that two screws are vertical 

mutually. In this case, as the component of the inertial force 

of load at manipulator arm’s end-effector, shearing stress can 

be counteracted by the tensile forces from the two cables. 

However, since it is difficult for all of the two screws to be 

mounted on the middle part of the manipulator arm, there are 

some problems need to be investigated.  

The distortion of the manipulator arm caused by its mass 

and acceleration is ignored in the paper for briefness and 

clarity. The reason is that in space application the 

manipulator arm is generally made of lightweight material, 

and its mass is much less than that of the load at manipulator 

arm’s end-effector. On the other hand, the problem we deal 

with is the suppression of the vibration, but not the 

exhaustive elimination of the vibration. Even though the 

distortion caused by above causation is considered, protruded 

length of the screw can still be obtained according the 

approach introduced in the paper, to say the least. 
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