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Abstract 
This article contributes for the further advancement of an innovative broad-spectrum 

analysis tool that can determine the regions of stability, defined by the variations of the 

system’s parameters and their interaction in the n-dimensional parameter space. The 

analysis of the interaction between the uncertain system parameters is bringing new ideas 

in the solution of the problem of stability. Control systems are discussed in the 

continuous and in the digital time-domain. This innovative broad-spectrum analysis tool, 

classified as Advanced D-Partitioning, is compared with other stability analysis methods 

applied to systems with multivariable parameters. The comparison reveals the 

considerable advantages of the Advanced D-Partitioning in terms of quick and graphical 

determination of the regions of stability defined by the variation of the system’s 

parameters and their interaction in the parameter space. 

1. Introduction 

Most of the research on the matter of stability analysis of systems with variable 

parameters is limited to very specific cases. There is a shortage of universal analysis tool, 

procedure or algorithm that can show the variable parameter margins and their 

interaction for different type of control systems. 

One of the main objectives of this research is to reveal a general stability analysis tool, 

rather than one attached to just few specific control systems, or systems with specific 

limitations. Following some initial ideas of Neimark categorized as D-Partitioning [1], 

this technique was better clarified and further developed by the author of this research in 

his previous published work [2], [3], [4], [5] and it was classified as the method of 

Advanced D-Partitioning. After this further expansion, the method of the Advanced D-

Partitioning became a powerful tool for system analysis. The approach to develop this 

broad-spectrum analysis tool for linear control systems is transforming the Laplace s-

plane into an n-dimensional parameter space with the aid of interactive MATLAB 

procedures. This introduces a clear graphical display of the system’s parameters variation 

and their interaction. As a result, this determines transparent regions of stability and 

instability in the parameter space. 

Further advancement of the D-Partitioning method is demonstrated in this research, by 

further expanding the system discretization, employing the Bilinear Transform, known 

also as the Tustin’s Method [6]. The suggested approach converts the continuous-time 
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system prototypes into its discrete-time equivalent. This 

gives a unique opportunity for further advancement of the D-

partitioning analysis for its application in the discrete-time 

domain, considering the Euler's approximation. 

The current research explores plants with multivariable 

parameters, inspired by cases of abnormal behaving systems, 

being stable at lower parameter values, further becoming 

unstable at a specific parameter range and turn out to be 

again stable at higher parameter values [3], [7]. This 

phenomenon was caused by the simultaneous variation of 

some of the system’s parameters. 

This research is also demonstrating the benefits of the 

Advanced D-Partitioning method for stability analysis of 

systems with uncertain parameters, compared to other well-

known methods. The comparison with Nyquist and Bode 

stability criterion [8], [9] and the Kharitonov’s Theorem 

assessment method [10], [11], [12] shows the considerable 

advantages of the Advanced D-Partitioning for stability 

analysis of control systems with variable parameters. 

2. The D-Partitioning as Proposed by 

Neimark 

Neimark suggested that the space of an n-order system’s 

characteristic equation coefficients can be partitioned into a 

number of regions corresponding to the number of roots in 

the left-hand side of the s-plane. The position of the 

characteristic equation roots in the s-plane depends on the 

values of the system’s parameters. This method was 

categorized as D-Partitioning [1]. In its initial ideas it was 

only theoretical, its applications were limited and it was 

rarely implemented because of its obscurity. 

3. Advancement of the D-Partitioning 

in Case of One Variable Parameter 

In previously published work [3] [4], the author of this 

research suggested further advancement of the method of the 

D-Partitioning stability analysis of continuous control 

systems in case of one variable parameter. 

To facilitate the upgrade of the stability analysis, the 

system’s characteristic equation can be presented in the 

format, exposing the variable parameter: 

0)()()( =+= svQsPsG                       (1) 

The D-partitioning regions could be obtained if the 

following substitution is applied s = jω, from where the 

variable parameter is presented as a complex number, seen 

from equations (2) and (3): 

0)()()( =+= ωωω jvQjPjG                   (2) 
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The D-partitioning regions are obtained graphically in the 

ν-plane for range of frequency variation −∞ ≤ ω ≤ +∞. Since, 

in the s-plane analysis, the region of stability is on the left-

hand side of the plane, in the complex plane

)()( ωω jYXv += , the region of stability remains always 

on the left-hand side of the D-Partitioning curve for a change 

of frequency from −∞ to +∞. [3], [4]. 

The D-partitioning curve in terms of one variable 

parameter can be plotted in the complex plane facilitated by 

the MATLAB “nyquist” m-code. To avoid any 

misinterpretation of the D-Partitioning procedure, the 

“nyquist” m-code is modified into a “dpartition” m-code with 

the aid of the MATLAB Editor and a proper formatting. The 

“dpartition” m-code will plot the curve of a specific system 

parameter in terms of the frequency variation from −∞ to +∞ 

[3], [4]. 

In this research, a number of original examples of practical 

implementation of the method will be shown. As initial 

example, a real-life cruise control system is reduced to a third 

order system of Type 0 [12]: 

The open loop linear transfer function of the system with 

variable parameter K is: 
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=
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K
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The transfer function of the unity feedback control system 

can be represented as: 

Ksss

K
G
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The system gain is 0.02K, while K is the gain factor, being 

a variable parameter due to some temperature effects within 

the environment of its operation. The characteristic equation 

of the feedback system is: 

01000)100)(50)(10()( =++++= KssssG          (6) 

The variable parameter equation (6) is modified as: 

0)()()( =+= sKQsPsG                        (7) 

Where the polynomials of equation (7) are as follows: 

)100)(50)(10()( +++= ssssP                (8) 

1000)( =sQ                                 (9) 

Therefore, the variable parameter is presented as: 

1000
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The D-partitioning curve in terms of one variable 

parameter K is plotted in the complex plane within the 

frequency range −∞ ≤ ω ≤ +∞, facilitated by the following 

code and illustrated in Figure 1. 
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>> K=tf([-1 -160 -6500 -50000],[1000]) 

Transfer function: 

-s^3 - 160 s^2 - 6500 s - 50000 

------------------------------- 

1000 

>> dpartition(K) 

 

Figure 1. D-Partitioning Facilitated by the “dpartition” m-code. 

The Advanced D-partitioning determines three regions on 

the K-plane: D(0), D(1) and D(2). Only D(0) is the region of 

stability, being the one, always on the left-hand side of the 

curve for a frequency variation from −∞ to +∞. The factor K 

range related to the segment AB, corresponds to a stable 

system being within the stable region D(0). 

4. Comparison with Nyquist Stability 

Criterion (Continuous System and 

One Variable Parameter) 

Ignoring the negative values of K, the results from the 

Advanced D-partitioning are compared and confirmed with 

the outcome from the Nyquist stability criterion for the cases 

of the positive gain factors K ∈ [400, 1200] corresponding to 

system gains 0.02K ∈ [8, 24]. This is facilitated by the 

following code and shown in Figure 2. 

>> K=[400:50:1200]; 

>> for n=1:length(K) 

Ao_array(:,:,n)=tf([1000*K(n)], [1 160 6500 50000]); 

end 

>> Ao1=tf([990000], 

[1 160 6500 50000]) 

Transfer function: 

990000 

------------------------------ 

s^3 + 160 s^2 + 6500 s + 50000 

nyquist(Ao_array,Ao1) 

>> nyquist(Ao_array,Ao1) 

 

Figure 2. Zoomed Image of the Marginal Gain, Confirmed with the Aid of 

the Nyquist Stability Criterion. 

The case of K = 990, or a system gain 0.02K = 19.8 

corresponds to a marginal case, while the case of K = 1200, 

corresponding to 0.02K = 24 relates to an unstable state of 

the system. The results from the Linear Time Invariant (LTI) 

array model confirm exactly the results from the Advanced 

D-Partitioning analysis. Differing from the Nyquist criterion, 

the Advanced D-Partitioning detects directly the variable 

parameter marginal value, delivering much quickly and 

accurately results in a simpler approach. 

5. Comparison with Nyquist Stability 

Criterion (Digital System and One 

Variable Parameter) 

The stability of the same system is examined in the 

discrete-time domain. Initially K(s) is introduced as a 

continuous-time function and next converted into its digital 

equivalent K(z), facilitated by the Tustin Transform [6], [7]. 

In accordance with the Euler's approximation [6], [13], 

observing that Ts ≤ (0.1Tmin to 0.2Tmin), the sampling period is 

chosen as Ts = 0.001sec, since the continuous system 

minimum time-constant is Tmin = 0.01sec. Then, the 

Advanced D-Partitioning in terms of the variable gain factor 

K is shown in Figure 3 and is achieved in the discrete-time 

domain by the code: 

>> K=tf([-1 -160 -6500 -50000],[1000]) 

Transfer function: 

-s^3 - 160 s^2 - 6500 s - 50000 

------------------------------- 

1000 

>> Kd = c2d(K,0.001,'tustin') 

Transfer function: 

-8.653e006 z^3 + 2.463e007 z^2 - 2.335e007 z + 7.373e006 

-------------------------------------------------------- 

z^3 + 3 z^2 + 3 z + 1 

Sampling time: 0.001 

>> dpartition(Kd) 



26 Kamen Yanev:  Comparison of the Advanced D-Partitioning of Continuous and Digital Control Systems with  

Other Stability Analysis Methods 

 

Figure 3. Advanced D-Partitioning in Terms of the Variable Gain Factor K 

in the Discrete-Time Domain. 

If the sampling frequency is ωS, the D-Partitioning curve at 

Figure 3 is plotted in the discrete-time domain within the 

frequency range ω = ±ωs/2 = ±2π/2Ts = ±6280rad/sec. There 

is a very close match between the system marginal results 

obtained in continuous-time domain (K = 900) and the results 

in discrete-time domain (K = 981). The minor difference is 

due to the Euler's approximation. 

 By already knowing the marginal value K = 981 from the 

Advanced D-Partitioning, the result can be confirmed in the 

discrete-time domain with the aid of the Nyquist stability 

criterion, as sown in Figure 4, by applying the code: 

>> Gol=tf([0 981000],[1 160 6500 50000]) 

>> Gold=c2d(Gol,0.001,'tustin') 

Transfer function: 

0.0001134 z^3 + 0.0003401 z^2 + 0.0003401 z + 0.0001134 

------------------------------------------------------- 

z^3 - 2.846 z^2 + 2.698 z - 0.8521 

Sampling time: 0.001 

>> nyquist(Gold) 

 

Figure 4. Confirmation of the Result from the Advanced D-Partitioning with 

the Aid of the Nyquist Stability Criterion in the Discrete-Time domain. 

As is seen from Figure 4, the Nyquist curve of the digital 

open loop control system is passing exactly via the point (-1, 

j0), therefore the closed loop digital control system is 

marginal. This confirms precisely the results, obtained from 

the Advanced D-Partitioning stability method. 

In case the marginal value K = 981 is not known, it would 

be a time-consuming effort to determine and verify it with 

the aid of the Nyquist stability criterion for digital control 

systems. This confirms the advantage of the Advanced D-

Partitioning that promptly determines the marginal value. 

6. Comparison with Bode Stability 

Criterion (Digital System and One 

Variable Parameter) 

By already knowing this marginal value K = 981, the result 

can be verified in the discrete-time domain also by the Bode 

stability criterion by applying the code: 

>> Gol=tf([0 981000],[1 160 6500 50000]) 

Transfer function: 

981000 

------------------------------ 

s^3 + 160 s^2 + 6500 s + 50000 

>> Gold=c2d(Gol,0.001,tustin') 

Transfer function: 

0.0001134 z^3 + 0.0003401 z^2 + 0.0003401 z + 0.0001134 

------------------------------------------------------- 

z^3 - 2.846 z^2 + 2.698 z - 0.8521 

Sampling time: 0.001 

>> margin(Gold) 

 

Figure 5. Confirmation of the Result from the Advanced D-Partitioning with 

the Aid of the Bode Stability Criterion in the Discrete-Time Domain. 

As is seen from Figure 5, the Gain and the phase margins 

are accordingly GM = 0.0878 ≈ 0 and PM = 0.264 ≈ 0, that 

proves the marginal state of the digital control system. The 

operating frequency is restricted to ω = ωs/2. 
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7. Advancement of the D-Partitioning 

in Case of Two Variable Parameter 

Further advancement of the D-Partitioning for systems 

with two simultaneously variable parameters is suggested by 

the author in previous publication [3]. The general 

characteristic equation of a system can be presented as: 

0)()()()( =++= sRsQsPsG γµ                    (11) 

where P(s), Q(s), and R(s) are polynomials of s 

µ and γ are system’s variables parameters 

The border of the D-Partitioning regions in the plain (µ, γ) 

is determined by [3]: 

0)()()()( =++= ωωγωµω jRjQjPjG             (12) 

A case is demonstrated for a control system of the 

armature-controlled dc motor and a type-driving mechanism. 

The gain K and one of the time-constants T are uncertain and 

simultaneously variable. Initially, the system is presented in 

the continuous time-domain and further is converted into its 

digital equivalent. The open-loop transfer function of the 

continuous system is: 

)8.01)(5.01)(1(
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ssTs

K
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The characteristic equation of the feedback system is: 

0)8.01)(5.01)(1( =++++ ssTsK                   (14) 

By substituting s = jω equation (14) is modified to: 

)3.1²4.0(²)4.03.1(1 TTjTK −−+++−= ωωω    (15) 

The imaginary term of equation (15) is set to zero, since 

the gain K may obtain only real values. Therefore: 

T

T
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After the result of (16) is substituted into equation (15): 

T
T
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3.1
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The D-Partitioning curve K =
f

(T), shown in Figure 6, is 

plotted with the aid of the following code: 

>> T = 0:0.1:5; 

>> K = 3.25.*T+4.225+1.3./T 

K = 

Columns 1 through 10 

Inf 17.5500 11.3750 9.5333 8.7750 8.4500 8.3417 8.3571 8.4500 

8.5944 

Columns 11 through 20 

8.7750 8.9818 9.2083 9.4500 9.7036 9.9667 10.2375 10.5147 

10.7972 11.0842 

Columns 21 through 30 

11.3750 11.6690 11.9659 12.2652 12.5667 12.8700 13.1750 

13.4815 13.7893 14.0983 

Columns 31 through 40 

14.4083 14.7194 15.0313 15.3439 15.6574 15.9714 16.2861 

16.6014 16.9171 17.2333 

Columns 41 through 50 

17.5500 17.8671 18.1845 18.5023 18.8205 19.1389 19.4576 

19.7766 20.0958 20.4153 

Column 51 

20.7350 

>> plot(T,K) 

 

Figure 6. Advanced D-Partitioning by Two Variable Parameters in the 

Continuous-Time domain. 

As seen from Figure 6, if the gain is K = 10, for variation 

of the time-constant within the range 0 < T < 0.25sec and T > 

1.5sec, the system is stable, but it becomes unstable in the 

range 0.25 sec < T < 1.5 sec. Higher values of K, enlarges the 

range of T at which the system will fall into instability, but if 

K < 8.3417 the system will be stable for any value of the T. It 

is evident that the system stability depends on the interaction 

between the two simultaneously varying parameters. 

8. Comparison with Bode Stability 

Criterion (Digital System and Two 

Variable Parameters) 

The examined control system with the two variable 

parameters is converted into its digital equivalent and is 

tested in the discrete-time domain for any of the 

simultaneous marginal values of the variables T and K. 

Equation (13) is modified by substituting any two 

simultaneous marginal values of the two variable parameters, 

for instance, T = 0.25 sec and K = 10. Taking into 

consideration the Euler's approximation, Ts≤ (0.1Tmin to 

0.2Tmin), the sampling period is chosen as Ts = 0.05sec, since 

the system’s minimum time-constant is Tmin = 0.5sec. The 

system’s stability assessment in the discrete-time domain for 

this case is achieved by the code: 



28 Kamen Yanev:  Comparison of the Advanced D-Partitioning of Continuous and Digital Control Systems with  

Other Stability Analysis Methods 

>> Go21=tf([0 10],[0.1 0.725 1.55 1]) 

Transfer function: 

10 

-------------------------------- 

0.1 s^3 + 0.725 s^2 + 1.55 s + 1 

>> God21 = c2d(Go21,0.05,'tustin') 

Transfer function: 

0.001312 z^3 + 0.003935 z^2 + 0.003935 z + 0.001312 

--------------------------------------------------- 

z^3 - 2.662 z^2 + 2.359 z - 0.6954 

Sampling time: 0.05 

>> margin(God21) 

 

Figure 7. System’s Marginal Result from the Advanced D-Partitioning in 

Case of Two Variable Parameters, confirmed by the Bode Stability Criterion 

in the Discrete-Time Domain. 

As seen from Figure 7, if the simultaneously marginal 

values of the variable parameters are T = 0.25 sec and K = 

10, the results for the digital system gain margin is GM = 

0.017 dB ≈ 0 dB and the system phase margin is PM = 

0.028° ≈ 0°, proving that the system is marginal. 

Further, the system stability is explored for stability in the 

discrete-time domain, allocating T = 1 sec and K = 5, by 

applying the following code: 

>> Go22=tf([0 5],[0.4 1.7 2.3 1]) 

Transfer function: 

5 

----------------------------- 

0.4 s^3 + 1.7 s^2 + 2.3 s + 1 

>> God22 = c2d(Go22,0.05,'tustin') 

Transfer function: 

0.000176 z^3 + 0.0005279 z^2 + 0.0005279 z + 0.000176 

----------------------------------------------------- 

z^3 - 2.795 z^2 + 2.604 z - 0.8085 

Sampling time: 0.05 

>> margin(God22) 

 

Figure 8. System’s Stability Result from the Advanced D-Partitioning in 

Case of Two Variable Parameters, confirmed by the Bode Stability Criterion 

in the Discrete-Time Domain. 

The positive gain and phase margins (GM = 4.89 dB and 

PM = 20.6°), prove that the digital system is stable. 

The system’s instability is proven in the discrete-time 

domain by allocating T = 1 sec and K = 14, by the code: 

>> Go23=tf([0 14],[0.4 1.7 2.3 1]) 

Transfer function: 

14 

----------------------------- 

0.4 s^3 + 1.7 s^2 + 2.3 s + 1 

>> God23 = c2d(Go23,0.05,'tustin') 

Transfer function: 

0.0004927 z^3 + 0.001478 z^2 + 0.001478 z + 0.0004927 

----------------------------------------------------- 

z^3 - 2.795 z^2 + 2.604 z - 0.8085 

Sampling time: 0.05 

>> margin(God23) 

 

Figure 9. System’s Instability Result from the Advanced D-Partitioning in 

Case of Two Variable Parameters, confirmed by the Bode Stability Criterion 

in the Discrete-Time Domain. 
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As seen from Figure 9, the negative values of the digital 

system margins (GM = –4.06 dB and PM = – 13.7°), prove 

that the digital closed loop system is unstable and is 

operating within the D-Partitioning region of instability D(1). 

9. Comparison with Kharitonov’s 

Theorem Assessment (Case of 

Two Variable Parameters) 

Further, the method of the Advanced D-Partitioning is 

compared with the Kharitonov's theorem assessment [9], 

[10], [14], [15]. The comparison will be demonstrated for the 

two-variable parameter system of the armature-controlled dc 

motor and a type-driving mechanism with the open-loop 

transfer function shown in equation (13). 

The Kharitonov's theorem assessment is used in the case 

where the coefficients are known to be within specified 

ranges. It provides a test of stability for a so-called interval 

polynomial that is the family of all polynomials: 

0...)(
2

2

1

10 =++++= n
sasasaasP n

            (18) 

This polynomial is the characteristic equation of the 

control system with variable parameters, where each of its 

coefficients ai can take any value in the specified intervals ai 

∈ [ai
−
, ai

+
]. The notations ai

−
 and ai

+ 
represent the lower and 

the upper limits of the variable coefficients.  

The interval polynomial is considered as stable if the four 

Kharitonov polynomials represented in the set of equations 

(19) are stable [8], [12], [16]. 

P1(s) =a0
− + a1

− s1 + a2
+s2 + a3

+s3 + … = 0 

P2(s) =a0
+ + a1

+s1 + a2
− s2 + a3

− s3 +… = 0 

P3(s) =a0
+ + a1

− s1 + a2
− s2 + a3

+s3 +… = 0                   (19) 

P4(s) =a0
− + a1

+ s1 + a2
+s2 + a3

− s3 + …= 0 

There is a specific arrangement of the lower limit and 

upper limit coefficients at each one of four these 

polynomials. Each of the four Kharitonov polynomials is 

tested for stability with the aid of the Routh-Hurwitz stability 

criterion [17], [18]. The results are placed in tables for final 

assessment of the system’s stability. 

For the discussed system, its characteristic equation (13) is 

presented as an interval polynomial, where the variable gain 

K and the variable time-constant T are defined within specific 

limits. 

9.1. Case of Instability 

The characteristic equation (13) is modified to the interval 

polynomial, shown in equation (20), now being a family of 

all polynomials: 

3

1

2

111
4.0)4.03.1()3.1(1)( sTsTsTKsP

A
++++++=        (20) 

Where: 

K1 ∈ [8, 10]; T1 ∈ [1, 2]; 

Considering equation (20), the lower and the upper limits 

of the suggested variable parameters are to be substituted. 

Accordingly, the following results are achieved for the set of 

the Kharitonov polynomial coefficients (21): 

a0
− = 8 + 1 = 9;                a0

+ = 10 + 1 = 11; 

a1
− = 1 + 1.3 = 2.3;           a1

+ = 2 + 1.3 = 3.3; 

a2
− = 1.3×1 + 0.4 = 1.7;    a2

+ = 1.3×2 + 0.4 = 3;                  (21) 

a3
− = 0.4×1 = 0.4;             a3

+ = 0.4×2 = 0.8; 

These coefficients are substituted in the set of equations 

(19), from where the set of four Kharitonov’s polynomials 

(22) is presented in the final proper state for assessment: 

k1(s) = 27.5 + 5.75s  + 4.25s2 + s3 

k2(s) = 13.75 + 4.125s  + 3.75s2 + s3 

k3(s) = 11.25 + 4.125s  + 3.75s2 + s3                              (22) 

k4(s) = 22.5 + 5.75s  + 4.25s2 + s3 

In this case, the interval polynomial PA(s) is stable, if the 

four Kharitonov’s polynomials (22) are stable. To verify their 

stability, the following supporting table is created to apply 

the Routh-Hurwitz stability criterion [17], [18]: 

Table 1. Routh-Hurwitz stability test (case of a third order system). 

ki (s) 

s3 an an-2 0 

s2 an-1 an-3 0 
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s0 c1 0 … 
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The Routh-Hurwitz stability criterion is applied to all 

Kharitonov’s polynomials ki (s), where (i = 1, 2, 3, 4). 

Table 2. Results from the four Kharitonov polynomials (case of instability). 

k1 (s) k2 (s) k3 (s) k4 (s) 

1 5.75 1 4.13 1 4.13 1 5.75 

4.25 27.5 3.75 13.75 3.75 11.25 4.25 22.5 

-0.72  0.46  1.13  0.46  

27.5  13.75  11.25  22.5  

The first column of the Routh array for the three 

polynomials k2 (s), k3 (s) and k4 (s) are all positive (that is, 

there is no change of sign in the first column). 

It is seen from Table 2 that the polynomial k1 (s) has 

change of sign in the first column of the Routh array. 

Therefore the closed-loop system will be unstable for the 

suggested set of coefficients variations. This result will be 

confirmed by the Advanced D-Partitioning method. 

9.2. Case of Stability 

It is demonstrated that if the set of parameter variations is 

changed, the closed-loop system may become stable. 
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3

2

2

222
4.0)4.03.1()3.1(1)( sTsTsTKsP

B
++++++=       (23) 

Where 

K2 ∈ [4, 6]; T2 ∈ [2, 4]; 

Considering equation (23), the lower and the upper limits 

of the suggested variable parameters are to be substituted. In 

this case, the following results are achieved for the set of the 

Kharitonov polynomial coefficients (24): 

a0
− = 4 + 1 = 5;                a0

+ = 6 + 1 = 7; 

a1
− = 2 + 1.3 = 3.3;          a1

+ = 4 + 1.3 = 5.3; 

a2
− = 1.3×2 + 0.4 = 3;      a2

+ = 1.3×4 + 0.4 = 5.6;         (24) 

a3
− = 0.4×2 = 0.8;            a3

+ = 0.4×4 = 1.6; 

These coefficients are substituted in the set of equations 

(19), from where the set of four Kharitonov’s polynomials 

(25) is presented in the final state for assessment: 

k1(s) = 8.75 + 2.875s + 3.75s2 + s3  

k2(s) = 4.375 + 3.3125s + 3.5s2 + s3  

k3(s) = 3.125 + 3.3125s + 3.5s2 + s3                                (25) 

k4(s) = 6.25 + 2.875s + 3.75s2 + s3  

The Routh-Hurwitz stability criterion is applied to all these 

polynomials ki (s), where (i = 1, 2, 3, 4). 

Table 3. Results from the four Kharitonov polynomials (case of stability). 

k1 (s) k2 (s) k3 (s) k4 (s) 

1 2.88 1 3.31 1 3.31 1 2.88 

3.75 8.75 3.5 4.38 3.5 3.13 3.75 6.25 

0.54  2.06  2.42  1.21  

8.75  4.38  3.13  6.25  

The first column of each Kharitonov’s Polynomial, in 

Table 3, contains no change in sign and all its components 

are positive.  

The conclusion is that all of the roots of each ki (s), (i = 1, 

2, 3, 4) polynomial have negative real parts and the closed-

loop control system is stable for all parameter values in the 

specified ranges. Again, this result will be confirmed by the 

Advanced D-Partitioning method. 

The advanced D-Partitioning analysis, presented in this 

research, has considerable advantages, compared with the 

Kharitonov’s theorem assessment. The advanced D-

Partitioning analysis does not need a specified set of limits of 

parameter variations. It is applicable generally and can 

deliver results representing the exact marginal values of the 

multivariable parameters. 

The D-Partitioning analysis results are obtained easily with 

the aid of the interactive MATLAB procedure. As already 

demonstrated, the D-Partitioning curve in terms of the two 

variable parameters is plotted by the simple MATLAB code. 

The clear graphical display of the regions of stability and 

instability is another significant advantage of the Advanced 

D-partitioning. A graphical comparison between the two 

methods, as seen from Figure 10, is confirming the 

considerable advantage of the Advanced D-Partitioning 

analysis compared with the Kharitonov’s theorem 

assessment. 

 

Figure 10. Comparison between the Advanced D-Partitioning Analysis and 

the Kharitonov’s Theorem Assessment in Terms of Two Simultaneously 

Variable Parameters. 

The graphical result of the Advanced D-Partitioning 

stability analysis is illustrating straight away and directly the 

region of stability D(0) and the region of instability D(1) that 

can be used for the entire general assessment of the closed-

loop system stability. 

By applying the Advanced D-Partitioning for two variable 

parameters, by plotting the D-Partitioning curve and directly 

applying the limits of the simultaneously variable parameters, 

the system’s stability assessment can be promptly 

established. 

When the two variable parameters are within the limits   

K1 ∈ [8, 10] and T1 ∈ [1, 2], these parameter variations are 

entering the region of instability D(1) and therefore the 

feedback control system will be unstable. 

When the two variable parameters are within the limits   K2 

∈ [4, 6] and T2 ∈ [2, 4], these parameter variations are entirely 

within the region of stability D(0) and therefore the feedback 

control system will be guaranteed asymptotically stable. 

This exceptional phenomenon is demonstrating the 

considerable advantage of the D-Partitioning analysis in 

comparison with the Kharitonov’s assessment. By applying 

the D-Partitioning analysis and implementing a simple 

interactive MATLAB procedure, the system’s asymptotic 

stability can be swiftly determined and it can be graphically 

demonstrated, avoiding the significant calculations needed 

for the Kharitonov’s theorem assessment. 

10. Conclusion 

The main contribution of this research is further upgrade 
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of the method of the D-Partitioning as a stability analysis tool 

for systems with multivariable parameters and comparing it 

with other stability analysis methods. 

In case of control systems with one variable parameter, 

the Advanced D-Partitioning method directly exposes the 

transparent images of regions of stability and instability, as 

well as the system’s margins of stability in the complex 

plane of the variable parameter. It is also demonstrated that 

the Advanced D-Partitioning can be successfully applied to 

digital control systems. The Advanced D-Partitioning is 

compared with other well known methods for stability 

assessment, like the Nyquist and the Bode stability 

criterion. Even if both these methods are applicable for 

continuous and for digital control systems as well, their 

disadvantage is that they cannot directly establish the 

marginal value of a variable parameter. In this case, they are 

used only to confirm the results from the Advanced D-

Partitioning method. 

In case of control systems with two simultaneously 

variable parameters, the Advanced D-Partitioning method 

directly exposes the transparent images of regions of 

stability and instability in the parameters’ plane.  

Each point on the D-Partitioning curve represents the 

marginal values of the two simultaneously variable 

parameters, being a unique property of the advanced D-

Partitioning stability analysis that is not offered by any 

other known stability analysis method. 

A comparison is demonstrated between the Advanced D-

Partitioning method and the Kharitonov's theorem 

assessment for control systems with simultaneously variable 

parameters. 

The only advantage of the Kharitonov’s assessment is that 

it can determine system’s stability in the cases of variation of 

large number of the system’s parameters, defined within 

specific limits. 

At the same time the Kharitonov’s assessment has 

substantial disadvantages. It is short of determination of the 

parameter marginal values of stability, the results are 

achieved after considerable calculations and there is lack of 

any graphical display visualizing these results. Another major 

disadvantage of this method is that the Kharitonov 

polynomials deal with the coefficients variations of the 

Kharitonov characteristic interval polynomial, rather than 

directly with the system’s parameter variations. The 

variations of the system’s parameters remain in a hidden 

mode and cannot be directly observed from the four 

Kharitonov polynomials. 

Alternatively, the Advanced D-Partitioning analysis has 

considerable advantages compared with the Kharitonov’s 

assessment. It does not need a specified set of limits of 

parameter variations. It is applicable generally and can 

deliver results representing the exact marginal values of the 

multivariable parameters. 

This research is achieving new advances in knowledge. It 

may have also considerable practical application in analysis 

of industrial control systems with variable and uncertain 

parameters due to various process conditions. 
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