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Abstract 
The work deals with the set-point weighting of PID controllers with two degrees of 
freedom (2DOF/PI_D). A dynamic weighting method is proposed to overcome the 
limitations that these controllers usually present in complex and/or non-linear processes. 
Unlike the conventional procedure in which the set-point weight of the integral action is 
set to 1, in this work that weight is dynamically adjusted. The proposal complements 
ideas of high order sliding mode control (HOSM) with concepts of immersion of systems 
and manifold invariance (I&I). This allows achieving the target dynamics in finite time 
and, potentially, allows preserving the anti-reset-windup properties that 2DOF/PID 
controllers present in linear systems. The main features of the proposal are validated 
through an example. 

1. Introduction 

Over the years, several PID structures have been proposed. One of them is the so-
called PID with set-point weighting or two degree of freedom PID controller (2DOF-
PID). This structure results especially useful for accomplishing several specifications 
simultaneously [1]. Particularly, a well known feature of the 2DOF-PID structure is that 
responses of the system to both disturbances and changes in the set-point can be adjusted 
separately. The popularity of this structure is such that most real commercial PID 
controllers include set-point weighting. In spite of that, the common practice is to set the 
integral weight at one (by steady state error reasons) and the derivative weight at zero to 
avoid large transients in the control signal due to sudden changes in the set-point (i.e. the 
derivative kick effect) [2] [3] [4]. In this case, where only the proportional set point 
weight is tuned, the controller is known as 2DOF-PI_D. 

The effects of set-point weighting are rather intuitive in most of the simple processes. 
For this reason, empirical tuning methods are extensively used. Several methods with 
theoretical support have also been proposed for both SISO and MIMO processes [5], 
between them some approaches include autotuning and dynamic weighting to improve 
the tracking behaviour or robustness [3] [6] [7] [8] [9] as well as to limit the coupling 
between variables in MIMO systems [10] [11]. References of the most popular methods 
for tuning 2DOF-PID can be found in Mudi & Dey (2011) [12] and O’Dwyer (2012) 
[13]. 

Although the lots of heuristic rules and analytic methods that have been proposed for 
the tuning of the set-point weight of these controllers, little has been written that 
explicitly deals with nonlinear processes. In this case, suitable constant weights for a  
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given set-point could be inappropriate for other reference 
values. Additionally, constant values for the weight 
coefficient in all nonlinear range of operation could drive to 
excessively conservative behaviours. Then, when the 
processes are complex and/or highly nonlinear, variable 
weights should be considered. While in some works, this 
problem is addressed from a process of linearization [11], in 
this paper the problem is focused using concepts from the 
theory of nonlinear systems (I&I). More precisely, with 
concepts of HOSM [14] [15] as complement of the theory of 
immersion of systems and invariance manifolds [16]. In this 
framework, a new methodology to the dynamic tuning of the 
set-point weights is presented. Unlike the conventional 
procedure in which the set-point weight of the integral action 
is set to 1, in this proposal that weight is dynamically 
adjusted. The proposal allows to assign a reduced-order lineal 
dynamics for the tracking response independently of the set-
point change. From a practical position, the adjustment is 
performed by a simple super twisting sliding mode regime 
that accepts a straightforward implementation. 

The paper is organized as follows. Section 2 briefly 
reviews the basic concepts of immersion of systems and 
invariant manifolds and high order sliding mode control. In 
section 3, the new proposal for the dynamic adjustment of the 
set-point weights of 2DOF-PID controllers in nonlinear 
processes is presented. Then, the main features of the 
proposal are validated through an example. Finally, 
conclusions are summarized. 

2. The I&I Philosophy and High Order 

Sliding Mode Properties 

The concepts of system immersion and manifold 
invariance are closely linked to the control theory of 
nonlinear systems. Effectively, while the idea of system 
immersion is usually associated with the transformation of a 
system into another with specific properties, the notion of 
invariant manifold has been extensively used to deduce 
control actions in nonlinear systems. Recently, Astolfi et al. 
have formalized a new theoretical framework termed I&I 
(Immersion and Invariance) [17] that removes some 
constrains of the conventional definitions of system 
immersion and manifold invariance. The new framework has 
the attractive property of reducing the design problem of 
nonlinear controllers to subproblems which might be 
substantially easier to solve and that do not require 
knowledge of Lyapunov functions. 

The basic idea of I&I philosophy consists in forcing the 
closed loop system dynamics to converge asymptotically into 
a desired behaviour. The desired behaviour, which presents a 
smaller number of variables than the original dynamical 
system, is immersed in the system original dynamics and is 
rendered “invariant”, i.e. all trajectories that enter in the state 
space of this smaller subsystem remain in it. Figure 1 
illustrates this basic idea of I&I philosophy in the state space 
defined by the n state variables of the actual system. The 

shaded surface (manifold M) corresponds with the desired 
closed loop dynamic response of order p<n. In the general 
case the desired behaviour is set in terms of other p state 
variables ζ. Then, through an proper control action ( )u v x=  
any trajectory beginning in an arbitrary initial state x(0) is 
forced to converge asymptotically to M to ensure the desired 
dynamic. The attractiveness of M is defined in terms of a 
distance function ξ1=dist(x,M) whose absolute value must be 
reduced to zero. This signal ξ1 can be defined in different 
ways, which gives an additional degree of freedom to design. 

 

Figure 1. Graphical interpretation of the I&I philosophy. 

Although I&I notions are used in a wide range of problems, 
they are usually introduced in the context of systems 
stabilization from the strict and long-established ideas of 
system immersion and manifold invariance [17]. The 
Appendix resumes this frequent explanation. 

In this work, I&I ideas are combined with sliding mode 
concepts. Particularly, it is Sliding Mode control has proved 
to be an apt technique capable of coping with complex 
characteristics of nonlinear systems. Since its origin SM has 
evolved into a powerful design technique for a wide range of 
applications. The discontinuous nature of SM control action, 
provides excellent system performance, which includes 
insensitivity to certain parameter variations and rejection of 
disturbances. However, in practice, direct application of such 
discontinuous control action can be not adequate for some 
actual plants. In addition, it can generate output chattering, 
which deteriorates the robustness of conventional SM control. 
To attenuate this problem, the concept of higher order sliding 
modes was introduced. HOSM are an excellent option to 
control nonlinear uncertain systems operating in perturbed 
environments [15]. HOSM techniques allow zeroing the 
sliding variable and its first time derivative in finite time, 
through a continuous control u(t) acting discontinuously on 
its time derivative, reducing strongly the chattering 
phenomenon. They result in controllers with several 
attractive characteristics 

a. Robustness with respect to disturbances and model 
uncertainties, 

b. Finite-time convergence. 
c. Reduction of mechanical stresses and chattering (i.e., 

high-frequency vibrations of the controlled system), 



 American Journal of Computation, Communication and Control 2018; 5(1): 7-15 9 
 

compared to standard sliding mode strategies, 
d. Relatively simple control laws, which entail low real-

time computational burden. 
e. Capability of dealing with nonlinear system, and 

therefore, wider ranges of operation are attained in 
comparison to design techniques based on model 
linearization. 

One of the most powerful high order continuous sliding 
mode control algorithms is the super-twisting control law, 
which is used in this work for the set-point weighting in 
2DOF/PID. [15] [18] 

3. Dynamic Set-Point Weighting 

Based on Concepts of I&I and 

HOSM 

Consider the state model of a nonlinear process 

( ) ( )x f x g x u= +ɺ                        (1) 

( )y h x=  

and the PID controller 

( ) ( )i d
p p i

p p

k k dy
u k b r y b r y dt

k k dt

 
= − + − − 

  
∫              (2) 

where kp, ki and kd are the proportional, integral and 
derivative gains respectively, which are tuned for the proper 
rejection of perturbations in the vicinity of y=r. bp and bi are 
the set-point weights for the proportional and integral 
actions. 

It is important to note that unlike the conventional 
procedure in which the set-point weight of the integral action 
bi is fixed constant and equal to 1, in this proposal bi is an 
adjustment variable. 

In complex and/or non linear processes, constant values of 
the set-point weights not always can solve the trade-off 
between the overshoot and settling time in the closed loop 
response, particularly when the non linear process works 
with set-points forcing the variables to operate in a wide 
range of values. In this respect, the present proposal deals 
with the dynamic tuning of the weights bp(t) and bi(t) so that 
the tracking system response presents a suitable behaviour, 
specifically a tracking response with reduced-order linear 
dynamics independently of the nonlinear characteristics of 
the system. As it will be shown, both the order of the desired 
tracking dynamics and the corresponding eigenvalues can be 
chosen without major difficulty from basic ideas of I&I and 
HOSM. For ease of presentation, in section 3.2 the tuning 
proposal is first introduced for the case in which a first-order 
tracking dynamics is specified. 

3.1. Implementation of the Dynamic Weights 

bp(t) and bi(t) 

Although bp(t) and bi(t) can be implemented through 

variable gains, in this work it is proposed to do it from 
the addition of signals wp(t) and wi(t) on the set-point. 
Then 

( ) ( )i d
p p i

p p

k k dy
u k r w y r w y dt

k k dt

 
= + − + − − − 

  
∫        (3) 

where 

( )
( ) p

p

r w t
b t

r

+
=                                (4) 

( )
( ) i

i

r w t
b t

r

+=                                (5) 

The implementation of the weights bp(t) and bi(t) 
according to equations (4) and (5) is similar to that used in 
the reference conditioning techniques to solve problems of 
windup, variable coupling, bump, transients in control gain 
scheduling, etc.. Depending on the nonlinear characteristics 
of the process, the determination of bp(t) and bi(t) may 
present difficulties. To avoid them, a practical procedure that 
actually simplifies this adjust is proposed in this section. That 
consists in forcing the attractiveness of M via a simple high 
order sliding mode. 

Figure 2 illustrates the scheme of the 2DOF-PID controller 
with a detail of the proposed tuning circuit for the variable 
set-point weighting. Note that simple algebraic operations 
convert the previous scheme into a higher order sliding mode 
algorithm known as super twisting (ST) [15] [17] acting on 
the reference r. Since, the set-point weighting is performed at 
the lowest power signal level, a digital implementation is also 
straightforward. 

The conditioning actions proposed are 

0 0

0

| | ( ( ))   si   | ( ) |

| ( ) | ( ( ))   si   | ( ) |
p

s sign s s s
w

s sign s s s

α

α

λ ξ ξ

λ ξ ξ ξ

− >
=

− ≤





          (6) 

0| | ( ( ))
i

w s sign sγ ξ= −                          (7) 

with ( )s ξ  is a function for zeroing 1ξ  and γ , λ  and 0s  

design parameters. 
According to the commented equivalence with respect to 

ST algorithms, α can be chosen in the interval (0; 0.5) in 
order that the trajectories of the controlled system converge 

to the origin of the plane ( ( ), ( )s sξ ξɺ ) in finite time, however, 

α = 0.5 has proven to be the best option for the non-ideal 
case [15]. Then, the sufficient conditions of convergence in 
finite time and operation in HOSM are 

2( )

m

M

m

C

C

γ

γ
λ

>
Γ

Γ +
>

Γ

                                 (8) 

where C, Γm and ΓM verify the differential inclusion 
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[ ] [ ], ,m Ms C C u∈ − + Γ Γɺɺ ɺ .                       (9) Then, taking advantage of the ST properties, the immersion 
of the real dynamics of the system in the desired one is 
achieved in finite time if it is chosen of relative degree 1. 

 

Figure 2. 2DOF-PID controller with the proposed tuning circuit for the weights bp(t) and bi(t). 

3.2. First-Order Tracking Dynamics 

In this section, we adjust bp(t) and bi(t) based on I&I ideas 
to achieve asymptotic immersion of the tracking dynamics in 
a invariant manifold M parameterized by the solutions of 

0y y rλ λ λ= − + >ɺ .                        (10) 

Among the different possibilities to select a signal for 
describing the discrepancy between the actual dynamics of 
the state x(t) and the corresponding with the manifold M, can 
be defined 

1( ) ( , ) ( ) ( )flcx dist x M L h x h x rξ λ λ= = + − .            (11) 

where Lflch(x) is the Lie derivative of the output h(x) along 
the closed-loop vector field flc. 

Then, if the signal 1( )xξ  is zeroed through bp(t) and bi(t), 
the dynamics of the set-point response will be asymptotically 
immersed in the desired one (ec. (10)). 

To provide the present proposal with theoretical support it 
is useful to reformulate the system model in the normal form 
[19] considering the variable ξ1(x(t)) as the first state. Then, 
if the relative degree of ξ1(x(t)) with respect to 

( ) ( ) ( )p i iw t w t w t k dt= + ∫  is ρ, we proceed to model the 

complete system (n +1 states: n states of the open-loop 
system and one of the PID) from the following state 
variables: 

( 1) 1

e

n x

x
ξ
η +

 =  
 

,                              (12) 

Where, the elements of the first subset ξ of states are the 
signal ξ1(x) and its ρ-1 successive derivatives and the surplus 
states η can be freely chosen. For simplicity, the first state 
(η1) of the set η is chosen as the actual process output y=h(x). 
Then, the new closed loop model results 

1 2

2 3

1

1 1 1 1 1

2 2 2

1 1 1 ( 1) 1

( ) ( )

( , ) ( , )

( , ) ( , )

( , ) ( , )n n n n x

a b w

q p w r

q p w

q p w

ρ ρ

ρ

ρ ρ ρ

ξ ξ
ξ ξ

ξ ξ
ξ ξ ξ

η ξ η ξ η ξ λη λ
η ξ η ξ η

η ξ η ξ η

−

+ − + − + − +

 =
 

= 
 
 

= 
 = + 
 = + = − +
 = + 
 
 

= +  

ɺ

ɺ

⋮

ɺ

ɺ

ɺ

ɺ

⋮

ɺ

.      (13) 

being our objective to force the fast convergence of the 
output ξ1(t) to zero by the discontinuous action w(t). To this 
end, i.e. to guarantee the attractiveness of M and, as a 
consequence, the asymptotic immersion of the tracking 
dynamic response in the target system, it is proposed a 
sliding mode regime on the control surface 

1 1 2 2 3 3( ) ..... 0s k k k kρ ρξ ξ ξ ξ ξ= + + + + =                    (14) 

where the coefficients ki define the convergence speed of ξ1 
to zero [20]. The selected surface s(ξ) has relative degree ρ=1 
with respect to the signal w(t) fulfilling the condition for the 
sliding motions of the ST. 

Then, once achieved the sliding regime, from equation 
(14), results, 

1 1 1 2 2 3 3 1 1

1
( ..... )ɺ k k k k

k
ρ ρ ρ ρ

ρ

ξ ξ ξ ξ ξ ξ− − −= = − + + + +            (15) 

then substituting (15) in (13), the reduced-order state model 
(order n+1) is obtained 
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1

1 2

2 3

1 1 1 2 2 3 3 1 1

1

( )

2 2 2

2 2 2 ( 1 1) 1

1
( ..... )

( )

( , ) ( , )

( , ) ( , )

f gu

x

n n n n x

k k k k
k

y L h x y r y r

q p w

q p w

ρ ρ ρ
ρ

ξ

ρ ρ ρ

ξ ξ
ξ ξ

ξ ξ ξ ξ ξ

η λ λ λ λ

η ξ η ξ η

η ξ η ξ η

− − −

+

+ − + − + − + −

 =
 

= 
 
 
 =− + + + + 
 
 
 

= = + − − + 
 
 = + 
 
 

= +  

ɺ

ɺ

⋮

ɺ

ɺ ɺ
���������

ɺ

⋮

ɺ

.   (16) 

where the extinction speed of the variable ξ1 is defined by a 
linear dynamics whose (ρ-1) eigenvalues are assigned from 
the characteristic polynomial 

12 131 2 ..... 0
kkk k

k k k k

ρ ρ
ξ ξ ξ

ρ ρ ρ ρ

λ λ λ− −+ + + + = ,                  (17) 

existing a degree of freedom for choosing the ki coefficients. 
Then, making this speed fast enough compared with the 
corresponding to the target system (defined by the eigenvalue 
λ), the dynamic equation of state η1, 

1

1 1

( ) 0

( )ɺɺ
�������

x

h x y r r

ξ

η λ λ λη λ
→

= + − − +
                  (18) 

approaches to the first order desired dynamics ɺy y rλ λ→ − + . 
Obviously, all the remaining states dynamics ηi must meet 

the stability requirements (i.e. minimum phase zero dynamics). 
Comments 

a. Note that the HOSM tools are used in the context of I&I 
philosophy for zeroing the signal ξ1 and not for forcing 
an SM on M. This procedure allows to choose the 
desired dynamic order p<<n (for example p=1). 

b. Observer that, in the previous explanation, the process 
output is one of the zero dynamics of the normal model 
(13). Effectively, the tracking objective is achieved in 
an indirect way actuating on the dynamic weights bp(t) 

and bi(t) for zeroing the variable ξ1. In this sense, the 
proposed adjusting action could be interpreted as a 
special case of reference conditioning via sliding mode. 

c. The HOSM tuning of the weights avoids chattering 
problems and guarantees that the dynamics of the 
system is immersed in the desired one in finite time. 

3.3. Higher-Order Tracking Dynamics 

Subsection 3.2 considered the asymptotic immersion of the 
tracking response in a target manifold parameterized by the 
trajectories of a first order dynamics. The extension of the 
previous ideas to the general case with higher order dynamics 
is straightforward. Indeed, it is enough to consider a new 
manifold parameterized by the solutions of the target tracking 

dynamics in the phase space 

2 1

1 1 1( )
m m m

m my a y a y a y a r
− −

−= − + + + +⋯                  (19) 

with m verifying m≤n+1-ρ, and a signal ξ1 defining a 
separation between the actual state trajectory x(t) and M, for 
example 

1

1 1 1( ) ( , ) ( ) ⋯
m m

mx dist x M h x a y a y a rξ
−

= = + + + − .          (20) 

Again, it is useful to state the normal model of the 
complete system, choosing ξ1 as the first state, i.e. a model 
where the first ρ states are ξ1 and its successive ρ-1 
derivatives and where the first m states of the subset η are 
selected according to (16) as the output variable y=h(x) and 
its m-1 derivatives, i.e. 

1

2

1

( )

( )

( )

ɺ

⋮
m

m

h x

h x

h x

η
η

η
−

=

=

=

                               (21) 

then, when the trajectories are forced to converge 
asymptotically to M by a HOSM regime on (14), the zero 
dynamics verifies the target tracking dynamics (16): 

1

1 2

2 3

1

1 1 1 1 1

( ) 0

( ) ( )

ɺ

ɺ

⋮

ɺ ⋯ ⋯
�������������

m m m

m m m m

x

y h x a y a y a r a a a r

ξ

η η
η η

η η η
−

→

=
=

= = + + + − − + + +

 (22) 

4. Example 

Consider a simplified nonlinear model of a laboratory 
thermal system for testing thermal properties of materials 

[ ]

2
2 1

2

0,1

1 0

ɺ
x x

x
x u

y x

 −
=  − + 

=
,                           (23) 

where x1 represent the sample temperature and x2 the voltage 
applied to the electrical heater. Consider also a PID controller 
as (2), where the gains ki=1.31 and kp=17.76 and kd=0.89 
have been tuned from the linearized model (in the proximity 
of the steady state point of regulation) to suitable 
disturbances rejection. In this case, the disturbance rejection 
has a characteristic close to that known as "quarter decay" 
which is considered adequate for many chemical processes 
(anyway it is important to keep in mind that the present 
proposal is independent of the PID gains tuning). Obviously, 
due to the nonlinear characteristics of the system, this type of 
response is not obtained in other operation points without the 
proper readjustment of the controller gains. 

Figure 3 shows system output y(t) in response to different 
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inputs (two changes of the set-point (0.6 and 0.75) and a 
constant disturbance) when constant set-point weights bi = 1 
(conventional case) and bp = 1, 0.75 and 0.5 are used. It is 
observed a clear trade-off between overshoot and large 
settling time. The poor tracking responses contrast with the 
suitable disturbance rejection. This result is not surprising 
since the PID controller gains were tuned based on a 
linearized model that is valid on the surrounding of the 
steady state point and not for the tracking response. Part b of 
the figure shows the corresponding control action. Note that 
the controller saturates when the set-point changes at t = 0sec 
leading to an important windup. 

The curves highlight 2DOF/PID constrains when constant 
weightings are used in nonlinear systems like this one, 
particularly to 

1) overcome the trade off between regulation and tracking 
responses, effectively the reduction of bp to attend the 
overshoot of the controlled variable leads to a marked 
degradation of the settling time. 

2) overcome restrictions problems in the control action. 
That is, in non-linear systems, it is not always possible 
to preserve the capabilities presented by the 2DOF/PID 
in linear systems to overcome problems such as windup 
without using additional correction actions. [21] 

Due to the limitations for obtaining an acceptable tracking 
response from constant weight values, we proceed to 
evaluate the proposed dynamic tuning. The dynamics of the 
closed loop system, including the integral state of the PID 
controller, is given by the state differential equations 

( )

2
2 1

1

2
2 2 1 1

1

0,1

0,1 ( ) i
d p p i

p

i

i

x x
x

k
x k x x k r w x x

k
x

r w x

 −
  

    = − − + + − +         
 + − 

ɺ

ɺ

ɺ

.     (21) 

We propose as target tracking dynamics a first order 
response with time constant τ=5sec 

.2 .2r rζ λζ λ ζ= − + = − +ɺ                       (22) 

with yζ =  and a signal 

2
1 2 1( ) 0,1x x x y rξ λ λ= − + −                     (23) 

as a measure between the actual trajectories and the manifold 
defined from the solutions of the target dynamics (22). This signal 

1ξ  has relative degree 2ρ =  with respect to the discontinuous 
signal w(t). Then its absolute value can be reduced in a controlled 
way forcing a sliding mode on the surface 

1 1 2 2( ) ( ) ( ) 0s k x k xξ ξ ξ= + =                     (24) 

with k1/k2>>λ to guarantee a convergence speed faster than 
corresponding to the selected for the tracking response. In the 
present case we choose k1/k2=2 (i.e. the time constant of the 
extinction speed of 1ξ  ten times less than the corresponding 
to the target dynamics 1/λ=5sec). 

Figure 4a shows the response of the non linear process 
with the 2DOF-PID controller with the proposed dynamic 
weighting. From a practical point of view, this tracking 
response presents the target dynamics (22) with a much better 
performance than the corresponding to constant weights. In 
particular, a lesser settling time is observed. 

In Figure 4b, it is observed that the dynamic conditioning 
of the reference allows to take better advantage of the 
degrees of freedom of the 2DOF/ PID to avoid the windup 
without adding additional corrections. This is possible 
because the choice of the tracking dynamics can limit its 
derivative when the change of the set-point occurs. Thus, the 
adjustment variable here is related to the target selected 
dynamics. Indeed, in part b of this figure it is seen that the 
control action is substantially smaller avoiding the 
constraints of the actuator. In addition, it is appreciated that 
there is not chattering in control signal u(t). 

Figures 5a and 5b show the dynamic evolution of the set-
point weights that ensure the desired dynamics verifying that 
the steady state value of bi is 1, necessary condition to avoid 
the error of steady state. Figures 5c and 5d show the 
extinction of the 1ξ  (function chosen to define the 
discrepancy between the actual system dynamics and the 
desired one) through ( )s ξ and its derivative. This fact can 
also be verified in the figure 5d where is observed, in the 
plane ( ( ), ( )s sξ ξɺ ). Then, after a finite time t = 0.9sec, the 
response of the original system is the desired one. 

 

Figure 3. Controlled variable (upper part) and control input (lower part) for 2DOF/PID with constant weights: bp=(0.5; 0.75; 1) and conventional bi=1. 
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Figure 4. Controlled variable (a) and control input (b) for 2DOF/PID with the proposed dynamic set-point weighting. 

 

Figure 5. a) and b) Dynamic adjustment of bp(t) and bi(t) from I&I and HOSM ideas; c) and d) evolution of the function ( )s ξ  and its derivative ( )s ξɺ ; d) 

trajectory in the plane ( ( ), ( )s sξ ξɺ ). 

5. Conclusion 

2DOF-PID controllers are widely used in industrial 
environments. Although lots of heuristic rules and analytic 
methods have been proposed for tuning the set-point 
weighting, little has been written that explicitly deals with 
nonlinear processes. In these cases, constant weight 
coefficients for suitable tracking of a given set-point are 
usually inappropriate for other set-point values (and/or other 
initial conditions). This fact encourages the use of dynamic 
weights. In this way, this paper has developed a new method 
for dynamic tuning of the set-point weighting of 2DOF-PID 
controllers, suitable for nonlinear processes. The proposal is 
focused using concepts from the theory of nonlinear systems, 
more precisely, with concepts of high order sliding mode 
control as complement of the theory of immersion of systems 
and manifold invariance. Unlike the conventional procedure 
in which the set-point weight of the integral error is set at 1, 
the proposal includes its adjustment. The proposed adjusting 
action can be interpreted as a special case of reference 
conditioning via high order sliding modes. From a practical 

point of view, the dynamic weighting is performed via a 
simple super twisting algorithm that accepts a 
straightforward implementation, which makes it suitable for 
industrial applications. In addition, this algorithm avoids 
chattering problems and guarantees that the dynamics of the 
system is immersed in the desired one in finite time. The 
main features of the proposal are validated through an 
example. 

Appendix 

I&I Basics 

As was commented earlier, for simplicity reasons, the I&I 
basics are usually introduced in the context of the systems 
stabilization making use of the strict concepts of system 
immersion and manifold invariance [17]. To this end, 
consider the nonlinear system, 

( ) ( )x f x g x u= +ɺ                             (A.1) 

with nx R∈  and mu R∈ , and where we are interested in 

getting a feedback control law ( )u v x=  so that the 
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controlled system presents an asymptotically stable 
equilibrium at the origin. Based on conventional ideas of 
system immersion and manifold invariance, the problem is 
addressed by finding: 

1. a target system with reduced-order dynamics 

( )ζ α ζ=ɺ  ,p nRζ <∈                          (A.2) 

asymptotically stable at the origin; 
2. a smooth mapping 

( )x π ζ= ,                                  (A.3) 

3. a state feedback control ( )u v x=  such that 

( )(0) (0)xπ ζ = ,                             (A.4) 

(0) 0π = ,                                  (A.5) 

( )( ) ( )( ) ( )( ) ( ).f g v
ππ ζ π ζ π ζ α ζ
ζ

∂+ =
∂            (A.6) 

If the previous problem can be solved, any state trajectory 
x of the closed loop system can be seen as a mapping π  of a 
trajectory ζ  of the target system. As this target system is 
asymptotically stable at the equilibrium, x(t) converges to the 
origin. From a geometric point of view all closed loop 
trajectories x(t) live in the invariant manifold 

{ }( ),n p nM x R x Rπ ζ ζ <= ∈ = ∈               (A.7) 

with internal dynamics ( )ζ α ζ=ɺ . 

Even though this approach is theoretically precise, it is not 
always practical since both the mapping ( )x π ζ=  and the 

control ( )u v x= depend on the initial conditions, which 

complicates the calculus (actually, in many applications, it 
could be impossible to be solved). From a practical standpoint, 
these limitations of the conventional definitions of system 
immersion and manifold invariance can be overcome by the 
I&I ideas determining a solution for (A.5) and (A.6) (i.e. 
without requiring (A.4)), and modifying the control action 

( )u v x=  such that M is attractive, i.e. for any initial condition, 
the system trajectories of the closed loop system 

( ) ( ) ( )x f x g x v x= +ɺ                           (A.8) 

converge to the manifold M. The attractiveness of M is 
defined in terms of a distance function 

1 ( , )dist x Mξ =                                (A.9) 

whose absolute value is reduced to zero. This signal can be 
defined in different ways, which gives an additional degree 
of freedom to design. 
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