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Abstract: Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole 

spectrum of t-norms when the parameter is changed from zero to infinity. In this paper, we study a nonlinear optimization 

problem where the feasible region is formed as a system of fuzzy relational equations (FRE) defined by the Schweizer-Sklar t-

norm. We firstly investigate the resolution of the feasible region and present some necessary and sufficient conditions for 

determining the feasibility of the problem. Moreover, two procedures are presented for simplifying the problem. Since the 

feasible solutions set of FREs is non-convex, conventional nonlinear programming methods may not be directly employed. For 

this reason, a genetic algorithm is presented to solve the nonlinear non-convex problems. The proposed GA preserves the 

feasibility of new generated solutions. Additionally, we propose a method to generate feasible max-Schweizer-Sklar FREs as 

test problems for evaluating the performance of our algorithm. The proposed method has been compared with some related 

works. The obtained results confirm the high performance of the proposed method in solving such nonlinear problems. 

Keywords: Fuzzy Relational Equations, Nonlinear Optimization, Genetic Algorithm 

 

1. Introduction 

In this paper, we study the following nonlinear problem in 

which the constraints are formed as fuzzy relational 

equations defined by Schweizer-Sklar t-norm: 

min ( )

[0,1]n

f x

A x b

x

ϕ =

∈
                                       (1) 

where {1,2,..., }I m= , {1,2,..., }J n= , ( )ij m nA a ×= , 

0 1ija≤ ≤  ( i I∀ ∈  and j J∀ ∈ ), is a fuzzy matrix, 

1( )i mb b ×= , 0 1ib≤ ≤  ( i I∀ ∈ ), is an m –dimensional fuzzy 

vector, and “ ϕ ” is the max-Schweizer-Sklar composition, 

that is, 

{ }( )
1

1

( 1) 0

( , ) ( , )
max 1,0 0

p p p

p
pSS p p

x y p

x y T x y
x y p

ϕ
 + − −∞ < <
= = 

+ − < < ∞


 

If ia  is the i ’th row of matrix A , then problem (1) can be 

expressed as follows: 

min ( )

( , ) ,

[0,1]

i i

n

f x

a x b i I

x

ϕ = ∈

∈
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where the constraints mean: 

( , ) max{ ( , )} max{ ( , )} ,
p

i ij j ij j iSS
j J j J

a x a x T a x b i Iϕ ϕ
∈ ∈

= = = ∀ ∈  

and 

{ }( )
1

1

( 1) 0

( , )
max 1,0 0

p p p
ij j

p
pij jSS

p p
ij j

a x p

T a x
a x p

 + − −∞ < <
= 

+ − < < ∞


 

The family { }p
SST  is increasing in the parameter p . Each 

member of this family is strict for (0, )p ∈ +∞  and is 

nilpotent for ( ,0)p ∈ −∞  [1]. It can be easily shown that 

Schweizer-Sklar t-norm ( , )p
SST x y  converges to the basic 

fuzzy intersection { }min ,x y  when p → +∞  and converges 

to Drastic product t-norm as p → −∞ . In [2], the authors 

focused on the parametric triple I algorithms by the 

combination of Schweizer-Sklar interval-valued operators 

and triple I principles for fuzzy reasoning. They gave the 

interval-valued triple I solutions based on schweizer-Sklar 

interval-valued operators and investigated the sensitivity of 

Schweizer-Sklar interval-valued fuzzy connectives. You and 

Lao [3] showed that the parameterized triple I algorithms by 

the combination of Schweizer-Sklar operators are closer 

human reasoning in daily life. Also, Xiaohong et al. [4] 

established a fuzzy logic system UL based on the Schweizer-

Sklar t-norm and used the fuzzy logic system UL in 

approximate reasoning. 

The problem to determine an unknown fuzzy relation R  

on universe of discourses U V×  such that A R Bϕ = , where 

A  and B  are given fuzzy sets on U  and V , respectively, 

and ϕ  is an composite operation of fuzzy relations, is called 

the problem of fuzzy relational equations (FRE). Since 

Sanchez [5] proposed the resolution of FRE defined by max-

min composition, different fuzzy relational equations were 

generalized in many theoretical aspects and utilized in many 

applied problems such as fuzzy control, discrete dynamic 

systems, prediction of fuzzy systems, fuzzy decision making, 

fuzzy pattern recognition, fuzzy clustering, image 

compression and reconstruction, fuzzy information retrieval, 

and so on [6-17]. For example, Klement et al. [18] presented 

the basic analytical and algebraic properties of triangular 

norms and important classes of fuzzy operators’ 

generalization such as Archimedean, strict and nilpotent t-

norms. In [19] the author demonstrates how problems of 

interpolation and approximation of fuzzy functions are 

converted with solvability of systems of FRE. The authors in 

[12] used particular FRE for the compression/decompression 

of color images in the RGB and YUV spaces. 

The solvability and the finding of solutions set are the 

primary (and the most fundamental) subject concerning FRE 

problems. Many studies have reported fuzzy relational 

equations with max-min and max-product compositions. 

Both compositions are special cases of the max-triangular-

norm (max-t-norm). Di Nola et al. proved that the solution 

set of FRE (if it is nonempty) defined by continuous max-t-

norm composition is often a non-convex set that is 

completely determined by one maximum solution and a finite 

number of minimal solutions [20]. This non-convexity 

property is one of two bottlenecks making major contribution 

to the increase in complexity of problems that are related to 

FRE, especially in the optimization problems subjected to a 

system of fuzzy relations. The other bottleneck is concerned 

with detecting the minimal solutions for FREs. Chen and 

Wang [21, 22] presented an algorithm for obtaining the 

logical representation of all minimal solutions and deduced 

that a polynomial-time algorithm to find all minimal 

solutions of FRE (with max-min compositions) may not 

exist. Also, Markovskii showed that solving max-product 

FRE is closely related to the covering problem which is an 

NP-hard problem [23]. In fact, the same result holds true for 

more general t-norms instead of the minimum and product 

operators [24, 25]. Lin et al. [25] demonstrated that all 

systems of max-continuous t-norm fuzzy relational 

equations, for example, max-product, max-continuous 

Archimedean t-norm and max-arithmetic mean are 

essentially equivalent, because they are all equivalent to the 

set covering problem. Over the last decades, the solvability 

of FRE defined with different max-t compositions has been 

investigated by many researches [26-34]. It is worth to 

mention that Li and Fang [35] provided a complete survey 

and a detailed discussion on fuzzy relational equations. They 

studied the relationship among generalized logical operators 

involved in the construction of FRE and introduced the 

classification of basic fuzzy relational equations. 

Optimizing an objective function subjected to a system of 

fuzzy relational equations or inequalities (FRI) is one of the 

most interesting and on-going topics among the problems 

related to the FRE (or FRI) theory [36-53]. By far the most 

frequently studied aspect is the determination of a minimizer 

of a linear objective function and the use of the max-min 

composition [36, 39]. So, it is an almost standard approach to 

translate this type of problem into a corresponding 0-1 

integer linear programming problem, which is then solved 

using a branch and bound method [54, 63]. In [56] an 

application of optimizing the linear objective with max-min 

composition was employed for the streaming media provider 

seeking a minimum cost while fulfilling the requirements 

assumed by a three-tier framework. Chang and Shieh [36] 

presented new theoretical results concerning the linear 

optimization problem constrained by fuzzy max-min relation 

equations by improving an upper bound on the optimal 

objective value. The topic of the linear optimization problem 

was also investigated with max-product operation [38, 44, 

57]. Loetamonphong and Fang defined two sub-problems by 

separating negative and non-negative coefficients in the 

objective function and then obtained the optimal solution by 

combining those of the two sub-problems [57]. Also, in [44] 

and [38], some necessary conditions of the feasibility and 

simplification techniques were presented for solving FRE 

with max-product composition. Moreover, some studies have 

determined a more general operator of linear optimization 

with replacement of max-min and max-product compositions 



70 Amin Ghodousian et al.:  Solving a Non-Linear Optimization Problem Constrained by a Non-Convex Region   

Defined by Fuzzy Relational Equations and Schweizer-Sklar Family of T-Norms 

with a max-t-norm composition [43, 49, 51, 70], max-

average composition [47, 52] or max-star composition [41, 

48]. 

Recently, many interesting generalizations of the linear 

and non-linear programming problems constrained by FRE 

or FRI have been introduced and developed based on 

composite operations and fuzzy relations used in the 

definition of the constraints, and some developments on the 

objective function of the problems [39, 50, 58-62, 69, 71]. 

For instance, the linear optimization of bipolar FRE was 

studied by some researchers where FRE was defined with 

max-min composition [60, 72] and max-Lukasiewicz 

composition [50, 61]. In [61] the authors introduced the 

optimization problem subjected to a system of bipolar FRE 

defined as ( , , ) { [0,1] : }ɶ� �
mX A A b x x A x A b+ − + −= ∈ ∨ =  

where 1ɶ
i ix x= −  for each component of 1( )ɶ ɶ

i mx x ×=  and the 

notations ‘’ ∨ ’’’ and ‘’ � ’’ denote max operation and the 

max-Lukasiewicz composition, respectively. They translated 

the problem into a 0-1 integer linear programming problem 

which is then solved using well-developed techniques. In 

[50], the foregoing problem was solved by an analytical 

method based on the resolution and some structural 

properties of the feasible region (using a necessary condition 

for characterizing an optimal solution and a simplification 

process for reducing the problem). Ghodousian and khorram 

[40] focused on the algebraic structure of two fuzzy 

relational inequalities 
1A x bϕ ≤  and 

2D x bϕ ≥ , and studied a 

mixed fuzzy system formed by the two preceding FRIs, 

where φ  is an operator with (closed) convex solutions. Yang 

[63] studied the optimal solution of minimizing a linear 

objective function subject to fuzzy relational inequalities 

where the constraints defined as 

1 1 2 2 ...i i in n ia x a x a x b∧ + ∧ + + ∧ ≥  for 1,...,i m=  and 

min{ , }a b a b∧ = . He presented an algorithm based on some 

properties of the minimal solutions of the FRI. In [14], the 

authors introduced FRI-FC problem 

min{ : , [0,1] }
T n

c x A x b xϕ ∈� , where φ  is max-min 

composition and “ �” denotes the relaxed or fuzzy version 

of the ordinary inequality “ ≤ ”. 

Another interesting generalizations of such optimization 

problems are related to objective function. Wu et al. [62] 

represented an efficient method to optimize a linear fractional 

programming problem under FRE with max-Archimedean t-

norm composition. Dempe and Ruziyeva [58] generalized the 

fuzzy linear optimization problem by considering fuzzy 

coefficients. Dubey et al. studied linear programming 

problems involving interval uncertainty modeled using 

intuitionistic fuzzy set [59]. If the objective function is 

{ }{ }
1

( ) max min ,
n

i i
i

z x c x
=

=  with [0,1]ic ∈ , the model is called 

the latticized problem [64]. Also, Yang et al. [53] introduced 

another version of the latticized programming problem 

subject to max-prod fuzzy relation inequalities with 

application in the optimization management model of 

wireless communication emission base stations. The 

latticized problem was defined by minimizing objective 

function 1 1( ) ... nz x x x x= ∨ ∨ ∨  subject to feasible region 

( , ) { [0,1] : }�
nX A b x A x b= ∈ ≥  where “ � ’’ denotes fuzzy 

max-product composition. They also presented an algorithm 

based on the resolution of the feasible region. On the other 

hand, Lu and Fang considered the single non-linear objective 

function and solved it with FRE constraints and max-min 

operator [65]. They proposed a genetic algorithm for solving 

the problem. Hassanzadeh et al. [66] used the same GA 

proposed by Lu and Fang to solve a similar nonlinear 

problem constrained by FRE and max-product operator. 

Ghodousian et al. [68] introduced a new GA to solve a 

nonlinear problem defined by FRE constraints and Dubois 

and Prade operator that is an important example of non-

Archimedean t-norms [DP]. 

Generally, the most important difficulties related to FRE or 

FRI problems can be categorized as follows: 

1. In order to completely determine FREs and FRIs, we 

must initially find all the minimal solutions, and the finding 

of all the minimal solutions is an NP-hard problem. 

2. A feasible region formed as FRE or FRI [40] is often a 

non-convex set. 

3. FREs and FRIs as feasible regions lead to optimization 

problems with highly non-linear constraints. 

Due to the above mentioned difficulties, although the 

analytical methods are efficient to find exact optimal 

solutions, they may also involve high computational 

complexity for high-dimensional problems (especially, if the 

simplification processes cannot considerably reduce the 

problem). 

In this paper, we propose a genetic algorithm for solving 

problem (1), which keeps the search inside of the feasible 

region without finding any minimal solution and checking 

the feasibility of new generated solutions. For this purpose, 

the paper consists of three main parts. Firstly, we describe 

some structural details of FREs defined by the Schweizer-

Sklar t-norm such as the theoretical properties of the 

solutions set, necessary and sufficient conditions for the 

feasibility of the problem, some simplification processes and 

the existence of an especial convex subset of the feasible 

region. By utilizing the convex subset, the proposed GA can 

easily generate a random feasible initial population. These 

results are used throughout the paper and provide a proper 

background to design an efficient GA by taking advantage of 

the structure of the feasible region. Then, our algorithm is 

presented based on the obtained theoretical properties. The 

proposed GA is designed especially for solving nonlinear 

optimization problems with fuzzy relational equations 

constraints. It is shown that all the operations used by the 

algorithm such as mutation and crossover are also kept 

within the feasible region. Finally, we provide some 

statistical and experimental results to evaluate the 

performance of our algorithm. Since the feasibility of 

problem (1) is essentially dependent on the t-norm 

(Schweizer-Sklar t-norm) used in the definition of the 

constraints, a method is also presented to construct feasible 

test problems. More precisely, we construct a feasible 

problem by randomly generating a fuzzy matrix A  and a 
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fuzzy vector b  according to some criteria resulted from the 

necessary and sufficient conditions. It is proved that the max-

Schweizer-Sklar fuzzy relational equations constructed by 

this method is not empty. Moreover, a comparison is made 

between the proposed GA and the genetic algorithms 

presented in [66] and [65]. 

The remainder of the paper is organized as follows. 

Section 2 takes a brief look at some basic results on the 

feasible solutions set of problem (1). In section 3, the 

proposed GA and its characteristics are described. A 

comparative study is presented in section 4 and, finally in 

section 5 the experimental results are demonstrated. 

2. Some Basic Properties of Max-

Schweizer-Sklar FREs 

2.1. Characterization of Feasible Solutions 

Set 

This section describes the basic definitions and structural 

properties concerning problem (1) that are used throughout 

the paper. For the sake of simplicity, let ( , )p
SS

i iT
S a b  denote 

the feasible solutions set of i ‘th equation, that is, 

{ }
1

( , ) [0,1] : max ( , )p
SS

n
pn

i i ij j iSST j
S a b x T a x b

=

 = ∈ = 
 

. Also, let 

( , )p
SST

S A b  denote the feasible solutions set of problem (1). 

Based on the foregoing notations, it is clear that 

( , ) ( , )∩p p
SS SS

i iT T

i I

S A b S a b

∈

= . 

Definition 1. For each i I∈ , we define 

{ }:i ij iJ j J a b= ∈ ≥ . 

According to definition 1, we have the following lemmas. 

Lemma 1. Let i I∈ . If ij J∉ , then ( , )
p

ij j iSST a x b< , 

[0,1]jx∀ ∈ . 

Proof. From the monotonicity and identity law of t-norms, 

we have ( , ) ( ,1)
p p

ij j ij ijSS SST a x T a a≤ = , [0,1]jx∀ ∈ . Now, the 

result follows from the assumption (i.e., ij J∉ ) and 

definition 1. 

Lemma 2. Let i I∈  and ij J∈ . 

(a) If ( )1

1
p

p p
j i ijx b a> + − , then ( , )

p
ij j iSST a x b> . 

(b) If ( )1

1
p

p p
j i ijx b a= + − , then ( , )

p
ij j iSST a x b= . 

(c) If 0p > , ( )11
p

p p
j i ijx b a< + −  and 0ib ≠ , then 

( , )
p

ij j iSST a x b< . 

(d) If 0p > , ( )11
p

p p
j i ijx b a≤ + −  and 0ib = , then 

( , )
p

ij j iSST a x b= . 

(e) If 0p <  and ( )11
p

p p
j i ijx b a< + − , then 

( , )
p

ij j iSST a x b< . 

Proof. The proof is easily obtained from the definition of 

Schweizer-Sklar t-norm and definition 1. 

Lemma 3 below gives a necessary and sufficient condition 

for the feasibility of sets ( , )p
SS

i iT
S a b , i I∀ ∈ . 

Lemma 3. For a fixed i I∈ , ( , )p
SS

i iT
S a b ≠ ∅  if and only if 

iJ ≠ ∅ . 

Proof. Suppose that ( , )p
SS

i iT
S a b ≠ ∅ . So, there exists 

[0,1]nx ∈  such that { }
1

max ( , )
n

p
ij j iSS

j
T a x b

=
= . Therefore, we 

must have 
0 0

( , )
p

ij j iSST a x b=  for some 0j J∈ . Now, lemma 1 

implies 0 ij J∈  that means iJ ≠ ∅ . Conversely, suppose that 

iJ ≠ ∅  and let 0 ij J∈ . We define 1 2[ , ,..., ] [0,1]ɺ ɺ ɺ ɺ n
nx x x x= ∈  

where 

( )1 0

0

1

0

ɺ

p
p p

i ij
j

b a j j
x

j j

 + − == 
 ≠

, j J∀ ∈  

By this definition, we have 
0 0

( , )ɺ
p

ij j iSST a x b=  and 

( , ) 0ɺp
ij j iSST a x b= ≤  for each 0{ }j J j∈ − . Therefore, 

{ } { }
0 0 0 0

0

1
max ( , ) max ( , ) , max ( , ) ( , )

= ∈
≠

 
 = = = 
  

ɺ ɺ ɺ ɺ
n

p p p p
ij j ij j ij j ij j iSS SS SS SS

j j J
j j

T a x T a x T a x T a x b  

The above equality shows that ( , )ɺ p
SS

i iT
x S a b∈ . This 

completes the proof. □ 

Definition 2. Suppose that i I∈  and ( , )p
SS

i iT
S a b ≠ ∅  

(hence, iJ ≠ ∅  from lemma 3). Let 

1 2
ˆ ˆ ˆ ˆ[( ) , ( ) ,..., ( ) ] [0,1]n
i i i i nx x x x= ∈  where the components are 

defined as follows: 

( )11
ˆ( )

1

p
pp

i iik
i k

i

b a k J
x

k J

 + − ∈= 
 ∉

, k J∀ ∈  

Also, for each ij J∈ , we define 

1 2( ) [ ( ) , ( ) ,..., ( ) ] [0,1]
⌣ ⌣ ⌣ ⌣ n

i i i i nx j x j x j x j= ∈  such that 
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( )11 0
( )

0

⌣
p

p p
i ij i

i k

b a b and k j
x j

otherwise

 + − ≠ == 


, k J∀ ∈  

The following theorem characterizes the feasible region of 

the i ‘th relational equation ( i I∈ ). 

Theorem 1. Let i I∈ . If ( , )p
SS

i iT
S a b ≠ ∅ , then 

ˆ( , ) [ ( ) , ]
⌣

∪p
SS

i

i i i iT
j J

S a b x j x

∈

= . 

Proof. Let 0p >  (if 0p < , the proof is similarly attained 

by a simpler argument). Firstly, we show that 

ˆ[ ( ) , ] ( , )
⌣

∪ p
SS

i

i i i iT
j J

x j x S a b

∈

⊆ . Then, we prove that 

ˆ[ ( ) , ]
⌣

∪
i

i i

j J

x x j x

∈

∉  implies ( , )p
SS

i iT
x S a b∉ . The second 

statement is equivalent to ˆ( , ) [ ( ) , ]
⌣

∪p
SS

i

i i i iT
j J

S a b x j x

∈

⊆ , and 

then the result follows. Let, ˆ[ ( ) , ]
⌣

ɺ ∪
i

i i

j J

x x j x

∈

∈ . Thus, there 

exists some 0 ij J∈  such that 0
ˆ[ ( ) , ]

⌣
ɺ

i ix x j x∈  (i.e., 

0
ˆ( )

⌣
ɺ

i ix j x x≤ ≤ ). In the first case, suppose that 0ib ≠ . So, 

definition 2 implies ( )0 0

1

1ɺ
p

pp
j i ij

x b a= + − , 

( )1[ 0 , 1 ]ɺ
p

p p
j i ijx b a= + − , 0{ }ij J j∀ ∈ − , and [0,1]ɺ

jx ∈ , 

ij J∀ ∉ . Therefore, ( , )ɺ
p

ij j iSST a x b< , ij J∀ ∉  (resulted from 

lemma 1), and then { }max ( , )ɺ
i

p
ij j iSS

j J
T a x b

∉
< . Also, 

( , )ɺ
p

ij j iSST a x b≤ , 0{ }ij J j∀ ∈ − (resulted from lemma 2, parts 

(b) and (c)), which implies { }
0{ }

max ( , )ɺ
i

p
ij j iSS

j J j
T a x b

∈ −
≤ . 

Additionally, 
0 0

( , )ɺ
p

ij j iSST a x b=  from lemma 2 (part (b)). 

Hence, we have 

{ } { }
0 0

01 { }
max ( , ) max ( , ) , max ( , ) ,max ( , )

i i

n
p p p p

ij j ij j ij j ij j iSS SS SS SS
j j J j j J

T a x T a x T a x T a x b
= ∈ − ∉

 = = 
 

ɺ ɺ ɺ ɺ  

Otherwise, suppose that 0ib = . In this case, definition 2 

implies ( )1[ 0 , 1 ]ɺ
p

p p
j i ijx b a= + − , ij J∀ ∈ , and [0,1]ɺ

jx ∈ , 

ij J∀ ∉ . By similar arguments we have 

{ }max ( , )ɺ
i

p
ij j iSS

j J
T a x b

∉
<  Also, { }max ( , )ɺ

i

p
ij j iSS

j J
T a x b

∈
=  (resulted 

from lemma 2, part (d)). Therefore, 

{ } { }
1

max ( , ) max max ( , ) ,max ( , )ɺ ɺ ɺ
i i

n
p p p

ij j ij j ij j iSS SS SS
j j J j J

T a x T a x T a x b
= ∈ ∉

 = = 
 

. Thus, for each case ( , )ɺ p
SS

i iT
x S a b∈  that implies 

ˆ[ ( ) , ] ( , )
⌣

∪ p
SS

i

i i i iT
j J

x j x S a b

∈

⊆ . Conversely, assume that 

ˆ[ ( ) , ]
⌣

ɺ ∪
i

i i

j J

x x j x

∈

∉ . Hence, either ɺx  is not less than îx  (i.e., 

ˆɺ
ix x≤/ ) or ɺx  is not greater than ( )

⌣
ix j , ij J∀ ∈  (i.e., 

( )
⌣

ɺ
ix x j≥/ , ij J∀ ∈ ). If ˆɺ

ix x≤/ , there must exists some k J∈  

such that ˆ( )ɺ
k i kx x> . Therefore from definition 2 we must 

have 1ɺ
kx > , for ik J∉ , and ( )1

1ɺ
p

pp
k i ikx b a> + − , for 

ik J∈ . In the former case, the infeasibility of ɺx  is obvious. 

In the latter case, lemma 2 (part (a)) implies ( , )ɺp
ik k iSST a x b> . 

Therefore, { }
1

max ( , )ɺ
n

p
ij j iSS

j
T a x b

=
>  that means 

( , )ɺ p
SS

i iT
x S a b∉ . Otherwise, suppose that ( )

⌣
ɺ

ix x j≥/ , ij J∀ ∈ . 

Since each solution ( )
⌣

ix j  ( ij J∈ ) has at most one positive 

component ( )
⌣
i jx j  (from definition 2), we conclude 

( )
⌣

ɺ
j i jx x j<  ( ij J∀ ∈ ). So, for each ij J∈  we have 0ɺ

jx < , 

if 0ib = , and ( )11ɺ
p

p p
j i ijx b a< + − , if 0ib ≠ . In the 

former case, the result trivially follows. In the latter case, 

lemma 2 (part (c)) implies ( , )ɺ
p

ij j iSST a x b<  ( ij J∀ ∈ ). 

Therefore, { }max ( , )ɺ
i

p
ij j iSS

j J
T a x b

∈
< , and then we have 

{ } { }
1

max ( , ) max max ( , ) , max ( , )ɺ ɺ ɺ
i i

n
p p p

ij j ij j ij j iSS SS SS
j j J j J

T a x T a x T a x b
= ∈ ∉

 = < 
 

 

Thus, ( , )ɺ p
SS

i iT
x S a b∉  that completes the proof. □ 

From theorem 1, îx  is the unique maximum solution and 

( )
⌣

ix j ‘s ( ij J∈ ) are the minimal solutions of ( , )p
SS

i iT
S a b . 

Definition 3. Let îx  ( i I∈ ) be the maximum solution of 

( , )p
SS

i iT
S a b . We define ˆmin{ }i

i I
X x

∈
= . 

Definition 4. Let : ie I J→  so that ( ) ie i j J= ∈ , i I∀ ∈ , 

and let E  be the set of all vectors e . For the sake of 

convenience, we represent each e E∈  as an m –dimensional 

vector 1 2[ , ,..., ]me j j j=  in which ( )kj e k= . 

Definition 5. Let 1 2[ , ,..., ]me j j j E= ∈ . We define 

1 2( ) [ ( ) , ( ) ,..., ( ) ] [0,1]n
nX e X e X e X e= ∈ , where 

{ } { }( ) max ( ( )) max ( )
⌣ ⌣

j i j i i j
i I i I

X e x e i x j
∈ ∈

= = , j J∀ ∈ . 

Theorem 2 below completely determines the feasible 

solutions set of problem (1). 

Theorem 2. ( , ) [ ( ) , ]∪p
SST

e E

S A b X e X

∈

= . 

Proof. Since ( , ) ( , )∩p p
SS SS

i iT T

i I

S A b S a b

∈

= , from theorem 1 

we have 
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{ } { }

ˆ ˆ ˆ( , ) [ ( ) , ] [ ( ( )) , ] [ ( ( )) , ]

ˆ[ max ( ( )) ,min ] [ ( ) , ]

⌣ ⌣ ⌣

⌣

∩∪ ∩∪ ∪∩

∪ ∪

p
SS

i

i i i i i iT

i I j J i I e E e E i I

i i
i Ii I

e E e E

S A b x j x x e i x x e i x

x e i x X e X

∈ ∈ ∈ ∈ ∈ ∈

∈∈
∈ ∈

= = =

= =
 

where the last equality is obtained by definitions 3 and 5. 

As a consequence, it turns out that X  is the unique 

maximum solution and ( )X e ‘s ( e E∈ ) are the minimal 

solutions of ( , )p
SST

S A b . Moreover, we have the following 

corollary that is directly resulted from theorem 2. 

Corollary 1 (first necessary and sufficient condition). 

( , )p
SST

S A b ≠ ∅  if and only if ( , )p
SST

X S A b∈ . 

The following example illustrates the above-mentioned 

definitions. 

Example 1. Consider the problem below with Schweizer-

Sklar t-norm 

0.9 0.4 0.6 0.7 0.4 0.4 0.7

0.5 0.1 0.2 0.3 0.5 0.2 0.5

0.2 0.8 0.4 0.4 0.6 0.9 0.6

0.9 0.7 0.3 0.8 0.8 0.5 0.8

0.0 0.0 0.1 0.2 0.0 0.7 0.0

xϕ

   
   
   
   =
   
   
     

 

where { }2 2 2( , ) ( , ) max 1,0SSx y T x y x yϕ = = + − (i.e.,

2p = ). By definition 1, we have { }1 1,4J = , { }2 1,5J = , 

{ }3 2,5,6J = , { }4 1,4,5J =  and { }5 1,2,3,4,5,6J = . The 

unique maximum solution and the minimal solutions of each 

equation are obtained by definition 2 as follows: 

1̂ [0.8246 , 1 , 1 , 1 , 1 , 1]x = , 2
ˆ [1 , 1 , 1 , 1 , 1 , 1]x = ,

3
ˆ [1 , 0.8485 , 1 , 1 , 1 , 0.7416]x = , 

4
ˆ [0.9110 , 1 , 1 , 1 , 1 , 1]x = , 

5
ˆ [1 , 1 , 0.9950 , 0.9798 , 1 , 0.7141]x = . 

1(1) [0.8246 , 0 , 0 , 0 , 0 , 0]
⌣
x = , 

1(4) [0 , 0 , 0 , 1 , 0 , 0]
⌣
x = , 

2 (1) [1 , 0 , 0 , 0 , 0 , 0]
⌣
x = , 2 (5) [0 , 0 , 0 , 0 , 1 , 0]

⌣
x =  

3(2) [0 , 0.8485 , 0 , 0 , 0 , 0]
⌣
x = ,

3 (5) [0 , 0 , 0 , 0 , 1 , 0]
⌣
x = , 3(6) [0 , 0 , 0 , 0 , 0 , 0.7416]

⌣
x =  

4 (1) [0.9110 , 0 , 0 , 0 , 0 , 0]
⌣
x = , 

4 (4) [0 , 0 , 0 , 1 , 0 , 0]
⌣
x = , 4 (5) [0 , 0 , 0 , 0 , 1 , 0]

⌣
x =  

{ }5 ( ) [0 , 0 , 0 , 0 , 0 , 0] , 1,2,3,4,5,6
⌣
x j j= ∈  

Therefore, by theorem 1 we have 

1 1 1 1 1 1
ˆ ˆ( , ) [ (1) , ] [ (4) , ]

⌣ ⌣
∪p

SST
S a b x x x x= , 

2 2 2 2 2 2
ˆ ˆ( , ) [ (1) , ] [ (5) , ]

⌣ ⌣
∪p

SST
S a b x x x x= , 

3 3 3 3 3 3 3 3
ˆ ˆ ˆ( , ) [ (2) , ] [ (5) , ] [ (6) , ]

⌣ ⌣ ⌣
∪ ∪p

SST
S a b x x x x x x=  and

4 4 4 4 4 4 4 4
ˆ ˆ ˆ( , ) [ (1) , ] [ (4) , ] [ (5) , ]

⌣ ⌣ ⌣
∪ ∪p

SST
S a b x x x x x x=  and 

5 5 1 6 5
ˆ( , ) [ , ]0p

SST
S a b x×=  where 1 60 ×  is a zero vector. From 

definition 3, 

[0.8246 , 0.8485 , 0.995 , 0.9798 , 1 , 0.7141]X = . It is easy 

to verify that ( , )p
SST

X S A b∈ . Therefore, the above problem 

is feasible by corollary 1. Finally, the cardinality of set E  is 

equal to 36 (definition 4). So, we have 36 solutions ( )X e  

associated to 36 vectors e . For example, for [1,5 ,5 ,5 ,6]e = , 

we obtain { }1 2 3 4 5( ) max (1), (5) , (5) , (5), (6)
⌣ ⌣ ⌣ ⌣ ⌣

X e x x x x x=  from 

definition 5 that means ( ) [0.8246 , 0 , 0 , 0 , 1 , 0]X e = . 

2.2. Simplification Processes 

In practice, there are often some components of matrix A  

that have no effect on the solutions to problem (1). Therefore, 

we can simplify the problem by changing the values of these 

components to zeros. For this reason, various simplification 

processes have been proposed by researchers. We refer the 

interesting reader to [15] where a brief review of such these 

processes is given. Here, we present two simplification 

techniques based on the Schweizer-Sklar t-norm. 

Definition 6. If a value changing in an element, say ija , of 

a given fuzzy relation matrix A  has no effect on the 

solutions of problem (1), this value changing is said to be an 

equivalence operation. 

Corollary 2. Suppose that 
0 0

( , )
p

ij j iSST a x b< ,

( , )p
SST

x S A b∀ ∈ . In this case, it is obvious that 

{ }
1

max ( , )
n

p
ij j iSS

j
T a x b

=
=  is equivalent to 

{ }
0

1
max ( , )

n
p

ij j iSS
j
j j

T a x b
=
≠

= , that is, “resetting 
0ija  to zero” has no 

effect on the solutions of problem (1) (since component 
0ija  

only appears in the i ‘th constraint of problem (1)). 

Therefore, if 
0 0

( , )
p

ij j iSST a x b< , ( , )p
SST

x S A b∀ ∈ , then 

“resetting 
0ija  to zero” is an equivalence operation. 

Lemma 4 (first simplification). Suppose that 0 ij J∉ , for 

some i I∈  and 0j J∈ . Then, “resetting 
0ija  to zero” is an 

equivalence operation. 

Proof. From corollary 2, it is sufficient to show that 

0 0
( , )

p
ij j iSST a x b< , ( , )p

SST
x S A b∀ ∈ . But, from lemma 1 we 

have 
0 0

( , )
p

ij j iSST a x b< , 
0

[0,1]jx∀ ∈ . Thus, 

0 0
( , )

p
ij j iSST a x b< , ( , )p

SST
x S A b∀ ∈ . □ 
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Lemma 5 (second simplification). Suppose that 
10 ij J∈ , 

where 1i I∈  and 0j J∈ . 

(a) For 0p > , if 
1

0ib ≠ , 
20 ij J∈  for some 2i I∈ ( 1 2i i≠ ) 

and ( ) ( )
2 2 0 1 1 0

1 1

1 1
p p

p p p p

i i j i i j
b a b a+ − < + − , then “resetting 

1 0i ja  to zero” is an equivalence operation. 

(b) For 0p < , if 
20 ij J∈  for some 2i I∈ ( 1 2i i≠ ) and 

( ) ( )
2 2 0 1 1 0

1 1

1 1
p p

p p p p

i i j i i j
b a b a+ − < + − , then “resetting 

1 0i ja  to 

zero” is an equivalence operation. 

Proof. (a) Similar to the proof of lemma 4, we show that 

1 0 0
( , )

p
i j j iSST a x b< , ( , )p

SST
x S A b∀ ∈ . Consider an arbitrary 

feasible solution ( , )p
SST

x S A b∈ . Since ( , )p
SST

x S A b∈ , it turns 

out that 
1 0 0 1

( , )
p

i j j iSST a x b>  never holds. So, assume that 

1 0 0 1
( , )

p
i j j iSST a x b= , that is, { }( )1 0 0 1

1

max 1,0
p

p p
i j j ia x b+ − = . 

Since 
1

0ib ≠ , we conclude that ( )
1 0 0 1

1

1
p

p p
i j j ia x b+ − = , or 

equivalently ( )0 1 1 0

1

1
p

p p
j i i j

x b a= + − . Now, from 

( ) ( )
2 2 0 1 1 0

1 1

1 1
p p

p p p p

i i j i i j
b a b a+ − < + − , we obtain 

( )0 2 2 0

1

1
p

p p
j i i j

x b a> + − . Therefore, from lemma 2 (part (a)), 

we have 
2 0 0 2

( , )
p

i j j iSST a x b> that contradicts ( , )p
SST

x S A b∈ . 

(b) The proof is quite similar to the proof of part (a). □ 

We give an example to illustrate the above two 

simplification processes. 

Example 2. Consider the problem presented in example 1. 

From the first simplification (lemma 4), “resetting the 

following components ija  to zeros” are equivalence 

operations: 12a , 13a , 15a , 16a ; 22a , 23a , 24a , 26a ; 31a , 33a , 34a ;

42a , 43a , 46a ; in all of these cases, ij ia b< , that is, ij J∉ . 

Moreover, from the second simplification (lemma 5, part (a)), 

we can change the values of components 14a , 21a , 36a , 41a  

and 44a  to zeros with no effect on the solutions set of the 

problem. For example, since 41 4a b>  (i.e., 41 J∈ ), 4 0b ≠ , 

11 1a b>  (i.e., 11 J∈ ) and 

2 2 2 2
1 11 4 410.8246 1 1 0.911b a b a= + − < + − =  

“resetting 41a  to zero” is an equivalence operation. 

In addition to simplifying the problem, a necessary and 

sufficient condition is also derived from lemma 5. Before 

formally presenting the condition, some useful notations are 

introduced. Let ɶA  denote the simplified matrix resulted from 

A  after applying the simplification processes (lemmas 4 and 

5). Also, similar to definition 1, assume that 

{ }:ɶ ɶ
i ij iJ j J a b= ∈ ≥  ( i I∈ ) where ɶija  denotes ( , )i j ‘th 

component of matrix ɶA . The following theorem gives a 

necessary and sufficient condition for the feasibility of 

problem (1). 

Theorem 3 (second necessary and sufficient condition). 

( , )p
SST

S A b ≠ ∅  if and only if ɶiJ ≠ ∅ , i I∀ ∈ . 

Proof. Let 0p >  (if 0p < , the proof is similarly attained 

by a simpler argument). Since ( , ) ( , )ɶp p
SS SST T

S A b S A b=  from 

lemmas 4 and 5, it is sufficient to show that ( , )ɶp
SST

S A b ≠ ∅  if 

and only if ɶiJ ≠ ∅ , i I∀ ∈ . Let ( , )ɶp
SST

S A b ≠ ∅ . Therefore, 

( , )ɶp
SS

i iT
S a b ≠ ∅ , i I∀ ∈ , where ɶia  denotes i ‘th row of 

matrix ɶA . Now, lemma 3 implies ɶiJ ≠ ∅ , i I∀ ∈ . 

Conversely, suppose that ɶiJ ≠ ∅ , i I∀ ∈ . Again, by using 

lemma 3 we have ɶiJ ≠ ∅ , i I∀ ∈ . By contradiction, suppose 

that ( , )ɶp
SST

S A b = ∅ . Therefore, ( , )ɶp
SST

X S A b∉  from 

corollary 1, and then there exists 0i I∈  such that 

0 0
( , )ɶp

SS
i iT

X S a b∉ . Since { }
0 0

max ( , )
ɶ

ɶ
i

p
ji j iSS

j J
T a X b

∉
<  (from 

lemma 1), we must have either { }
0 0

max ( , )
ɶ

ɶ
i

p
ji j iSS

j J
T a X b

∈
>  or 

{ }
0 0

max ( , )
ɶ

ɶ
i

p
ji j iSS

j J
T a X b

∈
< . Anyway, since 

0
ˆ
iX x≤  (i.e., 

0
ˆ( )j i jX x≤ , j J∀ ∈ ), we have 

{ } { }
0 0 0 0

0 0

ˆmax ( , ) max ( ,( ) )
ɶ ɶ

ɶ ɶ
i i

p p
ji j i j i j iSS SS

j J j J
T a X T a x b

∈ ∈
≤ = , and then 

the former case (i.e., { }
0 0

max ( , )
ɶ

ɶ
i

p
ji j iSS

j J
T a X b

∈
> ) never holds. 

Therefore, { }
0 0

max ( , )
ɶ

ɶ
i

p
ji j iSS

j J
T a X b

∈
<  that implies 

0
0ib ≠  and 

0 0
( , )ɶp

ji j iSST a X b< , 
0

ɶ
ij J∀ ∈ . Hence, by lemma 2, we must 

have ( )
0 0

1

1 ɶ
p

p p
j i i j

X b a< + − , 
0

ɶ
ij J∀ ∈ . On the other hand, 

( )
0 0

1

1 1ɶ
p

p p

i i j
b a+ − ≤ , 

0

ɶ
ij J∀ ∈ . Therefore, 1jX < , 

0

ɶ
ij J∀ ∈ , 

and then from definitions 2 and 3, for each 
0

ɶ
ij J∈ there must 

exists ji I∈  such that ɶ
jij J∈  and 

( )1ˆ( ) 1 ɶ
j j j

p
p p

j i j i i j
X x b a= = + − . Until now, we proved that 

0
0ib ≠  and for each 

0

ɶ
ij J∈ , there exist ji I∈  such that 

ɶ
jij J∈  and ( ) ( )

0 0

1 1

1 1ɶ ɶ
j j

p p
p p p p

i i j i i j
b a b a+ − < + −  (because, 

( ) ( )
0 0

1 1

1 1ɶ ɶ
j j

p p
p p p p

ji i j i i j
b a X b a+ − = < + − ). But in these 

cases, we must have 
0

0ɶ
i ja =  (

0

ɶ
ij J∀ ∈ ) from the second 

simplification process (part (a)). Therefore, 
0 0

0ɶ
i j ia b< ≠  
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(
0

ɶ
ij J∀ ∈ ) that is a contradiction. 

Remark 1. Since ( , ) ( , )ɶp p
SS SST T

S A b S A b=  (from lemmas 4 

and 5), we can rewrite all the previous definitions and results 

in a simpler manner by replacing ɶiJ  with iJ ( i I∈ ). 

3. The Proposed GA for Solving 

Problem (1) 

Genetic algorithms (GAs) are metaheuristics inspired by 

the process of natural selection that belongs to the larger 

class of evolutionary algorithms (EA). In a genetic algorithm, 

a population of solutions (called individuals) to an 

optimization problem is iteratively evolved toward better 

solutions (the population in each iteration called a 

generation). The evolution usually starts from a population of 

randomly generated individuals and progress to improve 

solutions by emulating some bio-inspired operators such as 

mutation, crossover and selection. In each generation, the 

fitness (performance) of every individual in the population is 

evaluated, and based on the performance, the relatively good 

solutions are retained and the relatively bad solutions are 

replaced with some newly generated offsprings. The fitness is 

usually the value of the objective function in the optimization 

problem being solved. The new generation of solutions is 

then used in the next iteration of the algorithm. 

In this section, a genetic algorithm is presented for solving 

problem (1). Since the feasible region of problem (1) is non-

convex, a convex subset of the feasible region is firstly 

introduced. Consequently, the proposed GA can easily 

generate the initial population by randomly choosing 

individuals from this convex feasible subset. The mutation 

and crossover operators are also designed to keep the 

feasibility of the individuals without checking the feasibility 

of the new generated solutions. Solutions with better 

objective values will have higher opportunities to survive and 

the algorithm terminates after taking a pre-determined 

number of generations. At the last part of this section, a 

method is presented to generate random feasible max-

Schweizer-Sklar fuzzy relational equations. 

3.1. Representation 

Similar to the mentioned related literatures [65, 66], we 

use the floating-point representation in which each variable 

(gene) jx  in a solution (individual) 1 2[ , ,..., ]nx x x x=  

belongs to the interval [0,1] . There are several reasons for 

using the floating-point representation instead of binary 

strings. For example, all components of every solution in 

problem (1) are nonnegative numbers that are less than or 

equal to one. Also, the floating-point representation is faster, 

more consistence, and provides high precision [65]. 

3.2. Initialization 

As mentioned before, GAs randomly generate the initial 

population. This strategy works well when dealing with 

unconstrained optimization problems. However, for a 

constrained optimization problem, randomly generated 

solutions may not be feasible. In the proposed GA, the initial 

population is given by randomly generating the individuals 

inside the feasible region. For this purpose, we firstly find a 

convex subset of the feasible solutions set, that is, we find set 

F  such that ( , )p
SST

F S A b⊆  and F  is convex. Then, the 

initial population is generated by randomly selecting 

individuals from set F . 

Definition 7. Suppose that ( , )ɶp
SST

S A b ≠ ∅ . For each i I∈ , 

let 1 2[( ) , ( ) ,..., ( ) ] [0,1]
⌣ ⌣ ⌣ ⌣ n

i i i i nx x x x= ∈  where the components 

are defined as follows: 

( )11 0
( )

0

ɶ⌣
p

pp
i i iik

i k

b a b and k J
x

otherwise

 + − ≠ ∈= 


, k J∀ ∈  

Also, we define { }max
⌣

i
i I

X x
∈

= . 

Remark 2. According to definition 2 and remark 1, it is 

clear that for a fixed i I∈  and ɶ
ij J∈ , ( ) ( )
⌣ ⌣

i k i kx j x≤  

( k J∀ ∈ ). Therefore, from definitions 5 and 7 we have 

{ } { } { }( ) max ( ( )) max ( ) max ( )
⌣ ⌣ ⌣

k i k i i k i k k
i I i I i I

X e x e i x j x X
∈ ∈ ∈

= = ≤ =

, k J∀ ∈  and e E∀ ∈ . Thus, ( )X e X≤ , e E∀ ∈ . 

Lemma 6 (a Convex subset of the feasible region). 

Suppose that ( , )ɶp
SST

S A b ≠ ∅  and 

{ }[0,1] :n
F x X x X= ∈ ≤ ≤ . Then, ( , )ɶp

SST
F S A b⊆  and F  

is a convex set. 

Proof. Let 0p >  (if 0p < , the proof is similarly attained 

by a simpler argument). From theorem 2, we have 

( , ) ( , ) [ ( ) , ]ɶ ∪p p
SS SST T

e E

S A b S A b X e X

∈

= = . To prove the lemma, 

we show that ( )X e X X≤ ≤ , e E∀ ∈ . Then, we can 

conclude [ , ] [ ( ), ]X X X e X⊆ , e E∀ ∈ , that implies both 

( , )p
SST

F S A b⊆  and the convexity of F . But from remark 2, 

( )X e X≤ , e E∀ ∈ . Therefore, it is sufficient to prove 

X X≤ . By contradiction, suppose that 
0

0
jjX X>  for some 

0j J∈ . So, from definitions 2, 3 and 7, there must exist 

1i I∈  and 2i I∈  such that ( )1 00 1 1 0

1

( ) 1
⌣

ɶ
p

p p
i jj i i j

X x b a= = + − , 

( )0 2 0 2 2 0

1
ˆ( ) 1 ɶ

p
p p

j i j i i j
X x b a= = + −  and 

0
0

j jX X<  (i.e., 

( ) ( )
2 2 0 1 1 0

1 1

1 1ɶ ɶ
p p

p p p p

i i j i i j
b a b a+ − < + − ). But these cases occur 

only when 
1

0ib ≠  and 
1 20
ɶ ɶ∩i ij J J∈ . These facts together 

with the inequality ( ) ( )
2 2 0 1 1 0

1 1

1 1ɶ ɶ
p p

p p p p

i i j i i j
b a b a+ − < + −

imply 
1 0

0ɶ
i ja =  from the second simplification process (part 
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(a)). Therefore, 
1 0 1
ɶ
i j ia b<  that contradicts 

10
ɶ
ij J∈ . 

To illustrate definition 7 and lemma 6, we give the 

following example. 

Example 3. Consider the problem presented in example 1, 

where [0.8246 , 0.8485 , 0.995 , 0.9798 , 1 , 0.7141]X = . 

Also, according to example 2, the simplified matrix ɶA  is 

0.9  0       0    0       0    0

0     0       0    0    0.5    0

0     0.8    0    0    0.6    0

0     0       0    0    0.8    0

0     0    0.1    0.2    0    0.7

ɶA

 
 
 
 =
 
 
 
 

 

From definition 7, we have 

1 [0.8246 , 0 , 0 , 0 , 0 , 0]
⌣
x = , 2 [0 , 0 , 0 , 0 , 1 , 0]

⌣
x = , 

3 [0 , 0.8485 , 0 , 0 , 1 , 0]
⌣
x = , 4 [0 , 0 , 0 , 0 , 1 , 0]

⌣
x = , 

5 [0 , 0 , 0 , 0 , 0 , 0]
⌣
x = ,  

and then { }
5

1
max [0.8246 , 0.8485 , 0 , 0 , 1 , 0]

⌣
i

i
X x

=
= = . 

Therefore, set [ , ]F X X=  is obtained as a collection of 

intervals: 

[ , ] [0.8246 , 0.8485 , [0,0.995] , [0,0.9798] , 1 , [0,0.7141]]F X X= =  

By generating random numbers in the corresponding 

intervals, we acquire one initial individual: 

[0.8246 , 0.8485 , 0.4 , 0.9 , 1 , 0.6 ]x = . 

According to lemma 6, the algorithm for generating the 

initial population is simply obtained as follows: 

Algorithm 1 (Initial Population). 

1. Get fuzzy matrix , fuzzy vector and population size .

2. If ( , ), then stop; the problem is infeasible (corollary1).

3. For i 1,2,...,

Generate a random dimensional solution ( )

p
SS

pop

T

pop

A b S

X S A b

S

n pop i

∉

=

− in the interval [ , ].

End

X X

 

3.3. Selection Strategy 

Suppose that the individuals in the population are sorted 

according to their ranks from the best to worst, that is, 

individual ( )pop r  has rank r . Therefore, the first individual 

is the best one with the smallest objective value in problem 

(1). The weight of the individual ( )pop r  is calculated by the 

following formula: 

2

1 1

21

2

pop

r

q S

r

pop

W e
q Sπ

 −
 −
 
 =                        (2) 

which essentially defines the weight to be a value of the 

Gaussian function with argument r , mean 1 , and standard 

deviation popq S , where q  is a parameter of the algorithm. 

When q  is small, the best-ranked individuals are strongly 

preferred, and when it is large, the probability becomes more 

uniform. Based on relation (2), the probability rP  of 

choosing the r ‘th individual is given by: 

1

pop

r
r S

kk

W
P

W
=

=
∑

                                 (3) 

A more detailed analysis of the influence of the parameter 

q  is presented in section 4. 

3.4. Mutation Operator 

Although various mutation operators have been proposed 

for handling the constrained optimization problems, there 

seldom is any mutation operator available for the non-convex 

problem [38]. In this section, a mutation operator is 

presented, which preserves the feasibility of new individuals 

in the non-convex feasible domain. As usual, suppose that 

( , )p
SST

S A b ≠ ∅ . So, from theorem 3 we have ɶiJ ≠ ∅ , 

i I∀ ∈ , where { }:ɶ ɶ
i ij iJ j J a b= ∈ ≥ , i I∀ ∈ (see definition 1 

and remark 1). 

Definition 8. Let { }: 0iI i I b+ = ∈ ≠ . So, we define 

{ }: if  such that 1ɶ ɶ
i iD j J i I j J J+= ∈ ∃ ∈ ∈ ⇒ > , where 

ɶ
iJ  denotes the cardinality of set ɶiJ . 

For a given individual 1 2[ , ,..., ]nx x x x= , we define an 

operator that mutates the individual by randomly choosing an 

element 0j D∈  and decreasing 
0j

x  from its current value to 

zero. Therefore, for the new individual 1 2[ , ,..., ]nx x x x′ ′ ′ ′=  we 

have 
0

0jx′ = , and j jx x′ = , 0{ }j J j∀ ∈ − . If x′  is infeasible, 
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the mutation operator will neglect this decreasing operation 

and find another jx  ( j D∈  and 0j j≠ ) to decrease. 

Remark 3. Suppose that 0i I +∈ , 
00
ɶ
ij J∈  and 

0
1ɶ

iJ = . 

Therefore, { }
0 0
ɶ
iJ j=  and according to definition 8 we have 

0j D∉ . So, if we decide to set 
0

0jx = , then from lemma 1 

{ } { } { }

{ }

{ }

0 0 0

0 0

0 0 0 0

0

0 0 0 0

0

1

1

1

max ( , ) max max ( , ) , max ( , )

max ( , ) ,max ( , )

max ( ,0) ,max ( , )

ɶ ɶ
ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

i i

n
p p p

i k k i k k i k kSS SS SS
k j J j J

n
p p

i j j i k kSS SS
k
k j

n
p p

i j i k k iSS SS
k
k j

T a x T a x T a x

T a x T a x

T a T a x b

= ∈ ∉

=
≠

=
≠

  =  
  

 
 =  
  

 
 = < 
  

 

In this case, the new individual violates 0i ‘th equation. 

This is the reason why the reduction process only selects 

those elements j  belonging to the set D . 

Based on definition 8 and remark 3, we present the 

mutation operator as follows: 

Algorithm 2 (Mutation operator). 

0

1

0

1. Get the matrix , vector and a selected solution [ ,..., ].

2. While  

     2.1. Set .

     2.2. Randomly choose  ,and set 0.

2.3. IF   is feasible, go to Crossover operator;

ɶ ɺ ɺ ɺ
n

j

A b x x x

D

x x

j D x

x

=
≠ ∅
′ ←

′∈ =

′
0 otherwise, set { }. D D j= −

 

Remark 4. From theorem 2, if ( , )p
SST

x S A b∈ , then there 

exists some e E∈  such that [ ( ), ]x X e X∈ . Therefore, if 

( )x X e≠ , it is always possible for algorithm 2 to find an 

element 0j D∈  and generate a feasible solution x′  by 

setting 
0

0jx = . The only exceptions are the minimal 

solutions. The minimal solutions are actually the lower 

bounds of the feasible region, and therefore any reduction in 

their variables results in an infeasible point. Hence, if the 

While-loop of the above algorithm is terminated with 

D = ∅ , it turns out that ɺx  must be a minimal solution. 

3.5. Crossover Operator 

In section 2, it was proved that X  is the unique maximum 

solution of ( , )p
SST

S A b . By using this result, the crossover 

operator is stated as follows: 

Algorithm 3 (Crossover operator). 

1 1 1 1

2

1. Get the maximum solution , the new solution (generated by algorith 2) 

    and one parent ( ) (for some 1,2,..., ).

2. Generate a random number [0,1]. Set  (1 ) .

3. Let mi

pop

new

X x

pop k k S

x x Xλ λ λ

λ

′
=

′∈ = + −

=

{ }

1

2 2

n ( ) ( )  and  ( ).

    Set  ( ) min ,1 .

popS

j
j k

new

pop k pop j d X pop k

x pop k dλ

=
≠

− = −

= +

 

Remark 6. From the above algorithm, the new individual 

1newx  is generated by the convex combination of x′  and X . 

Since ( , )p
SST

x S A b′∈ , theorem 2 implies [ ( ) , ]x X e X′∈ , for 

some e E∈ . Thus, since [ ( ), ]X e X  is a closed cell, the 

generated offsprings 1newx  is always feasible, and therefore 

we have no need to check its feasibility. Similar argument is 

also true for 2newx . The only difference is that the offspring 

2newx  usually locates close to its parent (i.e., ( )pop k ). It is 

because of the step length 2λ  computed as the minimum 

distances between the parent ( )pop k  and other individual. 

This strategy increases the ability of the algorithm to find the 

optima around a good solution. 

3.6. Construction of Test Problems 

There are usually several ways to generate a feasible FRE 

defined with different t-norms. In what follows, we present a 

procedure to generate random feasible max- Schweizer-Sklar 

fuzzy relational equations: 

Algorithm 4 (construction of feasible Max-Schweizer-

Sklar FRE). 
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{ }

{ }

1 21. Randomly select  columns { , ,..., }from = 1,2,..., .

2. Generate vector  whose elements are random numbers from [0,1].

3. For 1,2,...,

Assign a random number from [ ,1] to .

End

4. If  

i

m

i ij

m j j j J n

b

i m

b a

p

∈

{ }
{ }

{ }

0

        For 1,2,...,

        For each 1,2,..., { }

        Assign a random number from [ ,1] to .

    If  0

       For 1,2,...,

          If  0

               For each 1,2

ii

p ppp
i k jk ij

i

i m

k m i

b b a a

p

i m

b

k

<
∈

∈ −

− +

>
∈

≠

∈{ }

{ } 1 2

,..., { }

               Assign a random number from [0 , ] to .                       

   End

5. For each 1,2,..., and each { , ,..., }         

          Assign a random numb

ii

p ppp
i k jk ij

m

m i

b b a a

i m j j j j

−

− +

∈ ∉
er from [0,1] to .            

   End

ija

 

From step 4 of the above algorithm, we note that if 0p <  

and 0p > , then we will have [ ,1]
i i

p ppp
k j ik ij

a b b a∈ − +  and 

[0 , ]
i i

p ppp
k j ik ij

a b b a∈ − + , respectively. In both cases, we 

have ( ) ( )1 1

1 1
i i

p p
p p pp

ik k j ij
b a b a+ − ≥ + − . By the following 

theorem, it is proved that algorithm 4 always generates 

random feasible max-Schweizer-Sklar fuzzy relational 

equations. 

Theorem 4. The solutions set ( , )p
SST

S A b  of FRE (with 

Schweizer-Sklar t-norm) constructed by algorithm 4 is not 

empty. 

Proof. Let 0p >  (if 0p < , the proof is similarly attained 

by a simpler argument). According to step 3 of the algorithm, 

i ij J∈ , i I∀ ∈ . Therefore, iJ ≠ ∅ , i I∀ ∈ . To complete the 

proof, we show that ɶ
i ij J∈ , i I∀ ∈ . By contradiction, 

suppose that the second simplification process reset 
iija  to 

zero, for some i I∈ . Hence, 0ib ≠  and there must exists 

some k I∈ ( k i≠ ) such that i kj J∈  and 

( ) ( )1 1

1 1
i i

p p
p p pp

ik k j ij
b a b a+ − < + − . But in this case, we 

must have 
i i

p ppp
k j ik ij

a b b a> − + , that contradicts step 4. 

4. Comparative Study 

As mentioned, GAs emulate the natural evolution by 

simulating mutation, crossover and selection operators. In 

this section, to see how the current GA is situated comparing 

the other GAs designed for FRE problems, we compare 

theoretically our algorithm with the GAs presented in [66] 

and [65]. In addition, an experimental comparison is given in 

the next section. 

As the selection strategy, Lu and Fang [65] used the 

normalized geometric ranking method in which the 

probability of the r ‘th individual being selected is defined 

by 
1(1 )r

rP q q
−′= − , where is the probability of selecting the 

best individual, r  is the rank of the individual, 

(1 (1 ) )popS
q q q′ = − −  and popS  is the population size. In a 

similar way, authors in [66] used the normalized arithmetic 

ranking method. In contrast, we use Gaussian function as the 

selection strategy, which makes the search more diversified. 

Following equations (2) and (3), for given parameters q  and 

popS , the probability 
popq SP  of choosing one of the popq S  

highest ranking individuals is 0.68
popq SP ≈  (and 

2 0.95
popq SP ≈ ). This is due to the characteristic of the 

normal distribution: around 0.68%  of the individuals fall 

inside the interval ( , )σ σ−  around the mean and respectively 

0.95%  in the interval ( 2 , 2 )σ σ− . For example, for 0.1q =
and 50popS =  (as used in experiments in section 5), one of 

the 5 highest ranking individuals will be used with 

probability 0.68 , and one of the 10 highest ranking 

individuals with probability 0.95 . 

In [65], the proposed mutation operator decreases one 
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variable of vector x  to a random number between [0, )jx  

each time (the same mutation operator has been used in [66]). 

In this mutation operator, a decreasing variable often 

followed by increasing several other variables to guarantee 

the feasibility of a new solution. However, in the current GA, 

the feasibility of the new solution x′  is simultaneously 

obtained by decreasing a proper variable to zero. Therefore, 

we have no need to revise the new solution to make it 

feasible. Moreover, since the proposed mutation operator 

decreases the selected variables to zeros, the new individuals 

are more likely to have greater distances from the maximum 

solution X , especially x′  may be even a minimal solution 

(see remark 4). This strategy increases the ability of the 

algorithm to expand the search space for finding new 

individuals. 

Finally, authors in both [65] and [66] used the same “three-

point” crossover operator. The three-point crossover is 

defined by three points (two parents 1x , 2x , and the 

maximum solution X ) and two operators called 

“contraction” and “extraction”. Both contraction and 

extraction operators are employed between 1x  and 2x , and 

between ix  ( 1,2i = ) and X . However, from the four 

mentioned cases, only one case certainly results in a feasible 

offspring (i.e., the contraction between ix  ( 1,2i = ) and X ). 

Therefore, for the other three cases, the feasibility of the new 

generated solutions must be checked by substituting them 

into the fuzzy relational equations as well as the constraints 

[0,1]jx ∈ , j J∀ ∈ . In contrast, the current crossover 

operator uses only one parent each time. Offspring 1newx  is 

obtained as a random point on the line segment between x′  
and X . But, offspring 2newx  lies close to its parent. This 

difference between 1newx  and 2newx  provides a suitable 

tradeoff between exploration and exploitation. Also, as is 

stated in remark 6, the new solutions 1newx  and 2newx  are 

always feasible. 

By Theorem 2, the feasible region of problem (1), 

( , )p
SST

S A b , is the set of all points between one maximum 

solution, X , and a finite number of minimal solutions, 

( )X e . If ( , )p
SST

S A b  is a subset of k − dimensional space, 

then each interval [ ( ) , ]iX e X  is actually a k − cell (each cell 

is a closed convex set). The intersection of these cells, that is 

clearly a cell, can be always determined by two points X  

(see Definition 7) and X . More precisely, the intersection 

cell consists of all solutions in interval [ , ]F X X=  (see 

Lemma 6). 

Our GA uses set F  to generate an initial population (max-

min GA uses a similar manner to find multi-dimensional 

intervals). However, in max-product GA, an initial 

population is obtained by generating random points in the 

interval [ , ]0 X , where 0  is the zero vector. The second 

strategy is less efficient. Because a random point [ , ]0x X∈  

is more likely to be infeasible. On the other hand, the first 

strategy has also some disadvantages. The preference of this 

strategy is mainly based on the finding of region [ , ]F X X=  

without calculating the minimal solutions. But, in order to 

accomplish this purpose, we have actually no way except to 

maximization on the all elements of set 

{ ( ) : ( ) }S X e e E and X e X= ∈ ≤ . Consequently, F  is 

usually a small region that decreases the diversity of 

individuals in an initial population. If it is possible to 

generate an initial population with no need to construct any 

convex subset or any multi-dimensional intervals, we can 

increase the efficiency of the algorithm. As a future work, we 

aim to improve the performance of the algorithm by utilizing 

another way instead of using set F  for generating the initial 

population. 

5. Experimental Results 

In this section, we present the experimental results for 

evaluating the performance of our algorithm. Firstly, we 

apply our algorithm to 8 test problems described in Appendix 

A. The test problems have been randomly generated in 

different sizes by algorithm 4 given in section 3. Since the 

objective function is an ordinary nonlinear function, we take 

some objective functions from the well-known source: Test 

Examples for Nonlinear Programming Codes [67]. In section 

5.2, we make a comparison against the related GAs proposed 

in [65] and [66]. To perform a fair comparison, we follow the 

same experimental setup for the parameters 0.5θ = , 

0.01ξ = , 0.995λ = and 1.005γ =  as suggested by the 

authors in [65] and [66]. Since the authors did not explicitly 

reported the size of the population, we consider 50popS =  

for all the three GAs. As mentioned before, we set 0.1q =  in 

relation (2) for the current GA. Moreover, in order to 

compare our algorithm with max-min GA [65] (max-product 

GA [66]), we modified all the definitions used in the current 

GA based on the minimum t-norm (product t-norm). For 

example, we used the simplification process presented in [65] 

for minimum, and the simplification process given in [38, 66] 

for product. Finally, 30 experiments are performed for all the 

GAs and for eight test problems reported in Appendix B, that 

is, each of the preceding GA is executed 30 times for each 

test problem. All the test problems included in Appendix A, 

have been defined by considering 2p =  in 
p

SST . Also, the 

maximum number of iterations is equal to 100 for all the 

methods. 

5.1. Performance of the Max-Schweizer-Sklar 

GA 

To verify the solutions found by the max-Schweizer-Sklar 

GA, the optimal solutions of the test problems are also 

needed. Since ( , )p
SST

S A b  is formed as the union of the finite 

number of convex closed cells (theorem 2), the optimal 

solutions are also acquired by the following procedure: 

1. Computing all the convex cells of the Schweizer-Sklar 
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FRE. 

2. Searching the optimal solution for each convex cell. 

3. Finding the global optimum by comparing these local 

optimal solutions. 

The computational results of the eight test problems are 

shown in Table 1 and Figures 1-8. In Table 1, the results are 

averaged over 30 runs and the average best-so-far solution, 

average mean fitness function and median of the best 

solution in the last iteration are reported. 

Table 2 includes the best results found by the max-

Schweizer-Sklar GA and the above procedure. According to 

Table 2, the optimal solutions computed by the max-

Schweizer-Sklar GA and the optimal solutions obtained by 

the above procedure match very well. Tables 1 and 2, 

demonstrate the attractive ability of the max-Schweizer-Sklar 

GA to detect the optimal solutions of problem (1). Also, the 

good convergence rate of the max-Schweizer-Sklar GA could 

be concluded from Table 1 and figures 1-8. 

Table 1. Results of applying the max-Schweizer-Sklar GA to the eight test problems. The results have been averaged over 30 runs. Maximum number of 

iterations=100. 

Test problems Average best-so-far Median best-so-far Average mean fitness 

A.1 35.55507 35.55506 35.55517 

A.2 -0.910299 -0.910299 -0.910121 

A.3 -1.296127 -1.296127 -1.296038 

A.4 6.143955 6.143955 6.144213 

A.5 19.90318 19.90295 19.92654 

A.6 -0.425579 -0.425579 -0.425565 

A.7 -0.004842 -0.004842 -0.004815 

A.8 56.297718 56.297715 56.300085 

Table 2. Comparison of the solutions found by Max-Schweizer-Sklar GA and the optimal values of the test problems. 

Test problems Solutions of max-Schweizer-Sklar GA Optimal values 

A.1 35.5550 35.5544 

A.2 -0.910299 -0.910299 

A.3 -1.296127 -1.296127 

A.4 6.143955 6.143955 

A.5 19.9029 19.9019 

A.6 -0.425579 -0.425580 

A.7 -0.004842 -0.004842 

A.8 56.297715 56.297715 

 

 

Figure 1. The performance of the max-Schweizer-Sklar GA on test problem 

1. 

 

Figure 2. The performance of the max- Schweizer-Sklar GA on test problem 

2. 
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Figure 3. The performance of the max-Schweizer-Sklar GA on test problem 

3. 

 

Figure 4. The performance of the max- Schweizer-Sklar GA on test problem 

4. 

 

Figure 5. The performance of the max-Schweizer-Sklar GA on test problem 

5. 

 

Figure 6. The performance of the max- Schweizer-Sklar GA on test problem 

6. 

 

Figure 7. The performance of the max-Schweizer-Sklar GA on test problem 

7. 

 

Figure 8. The performance of the max- Schweizer-Sklar GA on test problem 

8. 
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5.2. Comparisons with Other Works 

As mentioned before, we can make a comparison between 

the current GA, max-min GA [65] and max-product GA [66]. 

For this purpose, all the test problems described in Appendix 

B have been designed in such a way that they are feasible for 

both the minimum and product t-norms. 

The first comparison is against max-min GA, and we apply 

our algorithm (modified for the minimum t-norm) to the test 

problems by considering ϕ  as the minimum t-norm. The results 

are shown in Table 3 including the optimal objective values 

found by the current GA and max-min GA. As is shown in this 

table, the current GA finds better solutions for test problems 1, 5 

and 6, and the same solutions for the other test problems. 

Table 4 shows that the current GA finds the optimal values 

faster than max-min GA and hence has a higher convergence 

rate, even for the same solutions. The only exception is test 

problem 8 in which all the results are the same. In all the 

cases, results marked with “*” indicate the better cases. 

The second comparison is against the max-product GA. In 

this case, we apply our algorithm (modified for the product t-

norm) to the same test problems by considering ϕ  as the 

product t-norm (Tables 5 and 6). 

The results, in Tables 5 and 6, demonstrate that the current 

GA produces better solutions (or the same solutions with a 

higher convergence rate) when compared against max-

product GAs for all the test problems. 

Table 3. Best results found by our algorithm and max-min GA. 

Test problems Lu and Fang Our algorithm 

B.1 8.4296755 8.4296754* 

B.2 -1.3888 -1.3888 

B.3 0 0 

B.4 5.0909 5.0909 

B.5 71.1011 71.0968* 

B.6 -0.3291 -0.4175* 

B.7 -0.6737 -0.6737 

B.8 93.9796 93.9796 

 

Table 4. A Comparison between the results found by the current GA and max-min GA. 
Test problems  Max-min GA Our GA 

B.1 

Average best-so-far 8.4297014 8.4296796* 

Median best-so-far 8.4296755 8.4296755 

Average mean fitness 8.4308865 8.4298745* 

B.2 

Average best-so-far -1.3888 -1.3888 

Median best-so-far -1.3888 -1.3888 

Average mean fitness -1.3877 -1.3886* 

B.3 

Average best-so-far 0 0 

Median best-so-far 0 0 

Average mean fitness 7.1462e-07 0* 

B.4 

Average best-so-far 5.0909 5.0909 

Median best-so-far 5.0909 5.0909 

Average mean fitness 5.0910 5.0908* 

B.5 

Average best-so-far 71.1011 71.0969* 

Median best-so-far 71.1011 71.0968* 

Average mean fitness 71.1327 71.1216* 

B.6 

Average best-so-far -0.3291 -0.4175* 

Median best-so-far -0.3291 -0.4175* 

Average mean fitness -0.3287 -0.4162* 

B.7 

Average best-so-far -0.6737 -0.6737 

Median best-so-far -0.6737 -0.6737 

Average mean fitness -0.6736 -0.6737* 

B.8 

Average best-so-far 93.9796 93.9796 

Median best-so-far 93.9796 93.9796 

Average mean fitness 93.9796 93.9796 

Table 5. Best results found by our algorithm and max-product GA. 

Test problems Hassanzadeh et al. Our algorithm 

B.1 13.61740269 13.61740246* 

B.2 -1.5557 -1.5557 

B.3 0 0 

B.4 5.8816 5.8816 

B.5 45.0650 45.0314* 

B.6 -0.3671 -0.4622* 

B.7 -2.470232 -2.470232 

B.8 38.0195 38.0150* 
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Table 6. A Comparison between the results found by the current GA and max-product GA. 

Test problems  Max-product GA Our GA 

B.1 

Average best-so-far 13.61745044 13.61740502* 

Median best-so-far 13.61740371 13.61740260* 

Average mean fitness 13.61785924 13.61781613* 

B.2 

Average best-so-far -1.5557 -1.5557 

Median best-so-far -1.5557 -1.5557 

Average mean fitness -1.5524 -1.5557* 

B.3 

Average best-so-far 0 0 

Median best-so-far 0 0 

Average mean fitness 1.5441e-05 0* 

B.4 

Average best-so-far 5.8816 5.8816 

Median best-so-far 5.8816 5.8816 

Average mean fitness 5.8823 5.8816* 

B.5 

Average best-so-far 45.0650 45.0315* 

Median best-so-far 45.0650 45.0314* 

Average mean fitness 45.1499 45.0460* 

B.6 

Average best-so-far -0.3671 -0.4622* 

Median best-so-far -0.3671 -0.4622* 

Average mean fitness -0.3668 -0.4614* 

B.7 

Average best-so-far -2.470232 -2.470232 

Median best-so-far -2.470232 -2.470232 

Average mean fitness -2.470175 -2.470213* 

B.8 

Average best-so-far 38.0195 38.0150* 

Median best-so-far 38.0195 38.0150* 

Average mean fitness 38.0292 38.0171* 

 

6. Conclusion 

In this paper, we studied the resolution of FREs defined by 

the Schweizer-Sklar family of t-norms and introduced a 

nonlinear problem with the max-Schweizer-Sklar fuzzy 

relational equations. In order to determine the feasibility of 

the problem, two necessary and sufficient conditions were 

derived. Also, we presented two simplification approaches 

depending on the Schweizer-Sklar t-norm to simplify the 

problem. A genetic algorithm was proposed for solving the 

nonlinear optimization problems constrained by the max-

Schweizer-Sklar FRE. Moreover, we presented a method for 

generating feasible max-Schweizer-Sklar FREs. These 

feasible FREs were utilized as test problems for the 

performance evaluation of the proposed algorithm. 

Experiments were performed with the proposed method in 

the generated feasible test problems. We conclude that the 

proposed GA can find the optimal solutions for all the cases 

with a great convergence rate. Moreover, a comparison was 

made between the proposed method and max-min and max-

product GAs, which solve the nonlinear optimization 

problems subjected to the FREs defined by max-min and 

max-product compositions, respectively. The results showed 

that the proposed method finds better solutions compared 

with the solutions obtained by the other algorithms. 

As future works, we aim at testing our algorithm in other 

type of nonlinear optimization problems whose constraints 

are defined as FRE or FRI with other well-known t-norms. 

Appendix 

Appendix A 

Test Problem A.1: 

2 2 4 4
1 2 3 4 2 3 1 4( ) ( 10 ) 5( ) ( 2 ) 10( )f x x x x x x x x x= + + − + − + −  

[0.4646 , 0.3592 , 0.3469]Tb =  

0.5457    0.5925    0.1615    0.6961

0.2094    0.8441    0.9433    0.1298

0.6983    0.9016    0.4902    0.3107

A

 
 =  
  

 

Test Problem A.2: 

1 2 3 1 3 1 4 2 3 2 4 4 5( )f x x x x x x x x x x x x x x= − − − + + − + , 

[0.5313 , 0.0012 , 0.8734 , 0.4730]Tb =  

0.3158    0.3698    0.6233    0.0750    0.5410

0.1226    0.3907    0.3600    0.8423    0.0704

0.5651    0.1270    0.9670    0.4624    0.4763

0.6212    0.4140    0.0033    0.6167    0.3477

A

 
 
 =
 
 
 

 

Test Problem A.3: 

1 2 3 4 5 6( ) (1 )f x x x Ln x x x x= − + − , 

[0.1237 , 0.2802 , 0.3052 , 0.4799]Tb =  

0.8095    0.7531    0.5305    0.1189    0.7034    0.0075

0.4360    0.6144    0.6026    0.3143    0.8185    0.3739

0.2695    0.9453    0.6607    0.2049    0.3545    0.5292

0.6796    0.9627    0.0060    

A =

0.4994    0.9311    0.2776

 
 
 
 
 
 

 

Test Problem A.4: 
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1 4 6
1 2 5( ) 2 4

x x x
f x x x x e

−= + + + , 

[0.7090 , 0.7118 , 0.9065 , 0.1470 , 0.9376]Tb =  

0.1954    0.7990    0.1869    0.4563    0.4313    0.0809

0.1891    0.6477    0.9119    0.3579    0.5253    0.0942

0.5960    0.7273    0.2800    0.8430    0.1629    0.9135

0.9339    0.2117    0.4270    

A =
0.6244    0.0960    0.1093

0.6351    0.3175    0.4281    0.2607    0.9599    0.9010

 
 
 
 
 
 
 
 

 

Test Problem A.5: 

6
2 2 2

1

1

( ) [100( ) (1 ) ]k k k

k

f x x x x+
=

= − + −∑ , 

[0.4627 , 0.3682 , 0.1586 , 0.9738 , 0.3308]Tb =  

0.1688    0.4913    0.5702    0.3613    0.4362    0.3914    0.0684

0.3787    0.0100    0.0975    0.3790    0.0779    0.6998    0.2738

0.1086    0.4713    0.2875    0.0846    0.2467    0.8557    0.3821A =
0.9829    0.0230    0.0761    0.5206    0.7372    0.9144    0.1360

0.0727    0.0625    0.3211    0.0960    0.4134    0.4866    0.2718

 
 
 
 
 
 
 
 

 

Test Problem A.6: 

1 4 2 3 2 6 5 6 5 4 6 7( ) 0.5( )f x x x x x x x x x x x x x= − − + − + − , 

[0.9376 , 0.0579 , 0.6169 , 0.7539 , 0.2394 , 0.7527]Tb =  

0.9468    0.5051    1.2612    0.9940    0.5526    0.1663    0.1690

0.2722    0.8960    0.9842    0.0883    0.0074    0.3155    0.2937

0.3153    0.3506    0.7221    0.4751    0.1460    0.9534    0.6495
A =

0.8179    0.1452    1.1202    0.6468    0.3530    1.0244    0.0532

0.3225    0.4215    0.4520    0.2832    0.2494    0.4175    0.3216

0.3392    0.0913    0.6254    0.8157    0.4337    0.1072    0.8844






 
 
 
 
 
 
 
 

 

Test Problem A.7: 

1 2 3 4 5 3 3 3 2
1 2 6 7 8( ) 0.5( 1) 2

x x x x x
f x e x x x x x= − + + + + , 

[0.8415 , 0.0457 , 0.7491 , 0.6058 , 0.3493 , 0.9568]Tb =  

0.7958    0.0812    0.4143    0.8587    0.2906    0.5313    0.2956    0.8126

0.0404    0.1845    0.9297    0.0033    0.8359    0.7556    0.2214    0.4874

0.3113    0.4673    0.9791    0.5050    0.9097
A =

    1.0541    0.4859    0.9159

0.2185    0.1851    0.3937    0.4134    0.7231    0.3566    0.7246    0.6129

0.9857    0.2791    0.3806    0.3277    0.4495    0.2418    0.3903    0.0427

0.4183    0.9835    0.7993    0.1119    0.8357    0.7373    0.8776    0.0327

 
 
 
 
 
 
 
 
  

 

Test Problem A.8: 

7
2 2 2 2

1 7 1

1

( ) ( 1) ( 1) 10 (10 )( )k k

k

f x x x k x x +
=

= − + − + − −∑
[0.2235 , 0.3475 , 0.4739 , 0.1328 , 0.4788 , 0.0163 , 0.2283]Tb =

 

0.3937    0.2372    0.4513    0.3860    0.2277    0.6380    0.7531    0.4817

0.5974    0.3687    0.4158    0.0403    0.3316    0.9390    0.8440    0.3536

0.6171    0.5829    0.3588    0.3178    0.0344

A =
    0.9683    0.0226    0.7211

0.5633    0.0769    0.0979    0.3276    0.3442    0.2711    0.1937    0.2618

0.1654    0.0704    0.5820    0.0502    0.5766    0.4708    0.7445    0.7098

0.1976    0.2769    0.7885    0.2353    0.3052    0.8182    0.3438    0.3721

0.2897    0.4605    0.5192    0.3646    0.1443    0.9708    0.5984    0.0733

 
 
 
 
 
 
 
 
 
 
 

 

Appendix B 

Test Problem B.1: 

2 2 4 4
1 2 3 4 2 3 1 4( ) ( 10 ) 5( ) ( 2 ) 10( )f x x x x x x x x x= + + − + − + −  

[0.2077 , 0.4709 , 0.8443]Tb =  

0.4302    0.4464    0.0741    0.0751

0.1848    0.1603    0.4628    0.5929

0.9049    0.1707    0.8746    0.4210

A

 
 =  
  

 

Test Problem B.2: 

1 2 3 1 3 1 4 2 3 2 4( )f x x x x x x x x x x x x= − − − + + − , 

[0.4228 , 0.9427 , 0.9831]Tb =  

0.1280    0.7390    0.2852    0.2409

0.9991    0.7011    0.1688    0.9667

0.1711    0.6663    0.9882    0.6981

A

 
 =  
  

 

Test Problem B.3: 

1 2 3 4 5( )f x x x x x x= , 

[0.6714 , 0.5201 , 0.1500]Tb =  

0.4424    0.3592    0.6834    0.6329    0.9150

0.6878    0.7363    0.7040    0.6869    0.2002

0.6482    0.3947    0.4423    0.0769    0.0175

A

 
 =  
  

 

Test Problem B.4: 

1 4
1 2 5( ) 2 4 x xf x x x x e= + + + , 

[0.6855 , 0.5306 , 0.5975 , 0.2992]Tb =  

0.1025    0.7780    0.3175    0.9357    0.7425

0.0163    0.2634    0.5542    0.4579    0.9213

0.7325    0.2481    0.8753    0.2405    0.4193

0.1260    0.2187    0.6164    0.7639    0.2962

A

 
 
 =
 
 
 

 

Test Problem B.5: 

6
2 2 2

1

1

( ) [100( ) (1 ) ]k k k

k

f x x x x+
=

= − + −∑ , 
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[0.5846 , 0.8277 , 0.4425 , 0.8266]Tb =  

0.1187    0.4147    0.8051    0.3876    0.3643    0.7031

0.4761    0.8606    0.4514    0.0311    0.5323    0.1964

0.6618    0.2715    0.3826    0.0302    0.7117    0.1784

0.9081    0.1459    0.7896    

A =

0.9440    0.8715    0.1265

 
 
 
 
 
 

 

Test Problem B.6: 

1 4 2 3 2 6 5 6 5 4 6 7( ) 0.5( )f x x x x x x x x x x x x x= − − + − + − , 

[0.9879 , 0.6321 , 0.8082 , 0.6650]Tb =  

0.0832    0.3312    0.4580    0.7001    0.8287    0.9978    0.1876

0.3904    0.4277    0.2302    0.1373    0.4850    0.3495    0.8831

0.2393    0.8619    0.2734    0.8265    0.6598    0.4328    0.9315
A =

0.4863    0.3787    0.6748    0.9301    0.4564    0.5893    0.8943

 
 
 
 
 
 

 

Test Problem B.7: 

1 2 3 4 5 3 3 3 2
1 2 6( ) 0.5( 1)

x x x x x
f x e x x x= − + + + , 

[0.9521 , 0.0309 , 0.8627 , 0.8343 , 0.6290]Tb =  

0.9869    0.0805    0.8373    0.1417    0.9988    0.6320

0.0139    0.0169    0.0182    0.4379    0.0295    0.5095

0.2497    0.6914    0.8961    0.3504    0.8225    0.2433

0.9691    0.6170    0.5921    

A =
0.4785    0.5994    0.5714

0.6197    0.6298    0.2372    0.5874    0.2560    0.9817

 
 
 
 
 
 
 
 

 

Test Problem B.8: 

6
2 2 2 2

1 7 1

1

( ) ( 1) ( 1) 10 (10 )( )k k

k

f x x x k x x +
=

= − + − + − −∑

[0.7840 , 0.4648 , 0.8864 , 0.8352 , 0.9839]Tb =  

 0.8522    0.2376    0.3586    0.7260    0.8891    0.2771    0.1316

 0.4673    0.8176    0.1173    0.5350    0.1426    0.0020    0.2892

 0.9707    0.4058    0.7248    0.1826    0.6193    0.8108    0.9A = 630

 0.8412    0.4663    0.7011    0.1124    0.6848    0.9434    0.4656

 0.0785    0.9515    0.9997    0.0028    0.4982    0.6384    0.3852
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