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Abstract

This paper presents a new Quantum Stirred CuckaocBe\lgorithm (QSCSA) for
solving optimal reactive power dispatch problemisTdne is new framework relying
on Quantum Computing principles and Cuckoo Sealgbrithm. The contribution
consists in defining an appropriate representaioheme in the cuckoo search
algorithm that allows applying successfully on cémalorial optimization problems
some quantum computing principles like qubit repngstion, superposition of states,
measurement, and interference. This hybridizatietwben quantum inspired
computing and bio inspired computing has led toeffitient hybrid framework
which achieves better balance between exploratiah exploitation capabilities of
the search process. In order to evaluate the @fiigi of the proposed algorithm it has
been tested in IEEE 57 bus system and comparedhts algorithms .Simulation
results show that QSCSA is more efficient in redgdhe real power loss and also
voltage deviations are minimized.

1. Introduction

Reactive power optimization places a significante ron optimal operation of
power systems. Various numerical methods like ttaslignt method [1-2], Newton
method [3] and linear programming [4-7] have bemplemented to solve the
optimal reactive power dispatch problem. Both thadgnt and Newton methods
have the intricacy in managing inequality constiinThe problem of voltage
stability and collapse play a key role in powerteys planning and operation [8].
Evolutionary algorithms such as genetic algorithaveh been already projected to
solve the reactive power flow problem [9-11]. Exa@uoary algorithm is a heuristic
methodology used for minimization problems by miilg nonlinear and non-
differentiable continuous space functions. In [1Bfybrid differential evolution
algorithm is projected to increase the voltage iktabndex. In [13] Biogeography
Based algorithm is projected to solve the reaghower dispatch problem. In [14], a
fuzzy based method is used to solve the optimaitineapower scheduling method.
In [15], an improved evolutionary programming isedsto elucidate the optimal
reactive power dispatch problem. In [16], the oplimeactive power flow problem is
solved by integrating a genetic algorithm with aliveear interior point method. In
[17], a pattern algorithm is used to solve ac-dtinoal reactive power flow model
with the generator capability limits. In [18], Fafitanescu proposes a two-step
approach to calculate Reactive power reservesresipect to operating constraints
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and voltage stability. In [19], a programming based T

approach is used to solve the optimal reactive powe u= (Vgy, ..., Vang Ti,--, Tne Qerr--» Qene) (6)
dispatch problem. In [20], A. Kargarian et al prasa

probabilistic  algorithm for optimal reactive power Yhere Ng, Nt and Nc are the number of generators,
provision in hybrid electricity markets with uncairt loads. "umber of tap ftransformers and the number of shunt
This paper proposes presents a new inspired aigorit COMPensators respectively.

called Quantum Stirred Cuckoo Search Algorithm (@3¢

to solve reactive power dispatch problem. The psedo 3. Objective Function

algorithm combines Cuckoo Search algorithm [21, &%)
quantum [25-30] computing in new on&he cuckoo’s
behaviour and the mechanism of Lévy flights [23) zave The objective of the reactive power dispatch is to

leading to design of an efficient inspired algamth inimize the active power loss in the transmissietwork,

performing - optimization search. The features of tgynich can be mathematically described as follows:
proposed algorithm consist in adopting a quantum

represen.tatlon _of the .search space. The otherr(’zeatp F =PL=Yenor Ik (Viz + ij _ 2Vl-V]-cosei]-) @
QSCSA is the integration of the quantum operatorthe

cuckoo search dynamics to optimize the definedathbe Of
function. The QSCSA distinguishes with other eviolary Ng
algorithms in that it offers a large explorationtbé search I = L= Lieng Pgi = Pa = Postack + Lizsiack Por = Pa - (8)

space through intensification and diversificatiofihe Where g: is the conductance of branch between nodes i
proposed algorithm has been evaluated in stan@d# 67 5.4 i, Nbr: is the total number of transmissioredinin

bus test system. The simulation results show that 0p,,er systems. Pis the total active power demand;: s
proposed approach outperforms all the entitled mefo the generator active power of unit i, ang.R; is the
algorithms in minimization of real power loss. generator active power of slack bus.

3.1. Active Power Loss

2. Problem Formulation 3.2. Voltage Profile Improvement

The OPF problem is considered as a common For minimizing the voltage deviation in PQ busdwe t
minimization problem with constraints, and can bittan ~ OPJective function becomes:

in the following form: F=PL+w, XxVD 9
Minimize
Whereo,: is a weighting factor of voltage deviation.
fGow 1) vDisthe voltage deviation given by:
Subject to VD = YNPIV; — 1] (10)
g9(x,uw)=0 2) 3.3, Equality Constraint
and

The equality constraint g(x,u) of the ORPD problsm
h(x,u) <0 (3) represented by the power balance equation, wheréotal

power generation must cover the total power denad
Where f(x,u) is the objective function. g(x.u) amx,u)  the power losses:

are respectively the set of equality and inequality
constraints. x is the vector of state variables| aris the P =Pp+ P, (11)
vector of control variables.

The state variables are the load buses (PQ bus

voltages, angles, the generator reactive powersthad  The inequality constraints h(x,u) imitate the lignion

e35')4' Inequality Constraints

slack active generator power: components in the power system as well as the dimit
T created to ensure system security. Upper and |beends
X= (Pg1'92'--'eN'VLl'-'VLNL' le'--'ang) 4 on the active power of slack bus, and reactive poofe

. enerators:
The control variables are the generator bus vodtatie 9

shunt capacitors and the transformers tap-settings: min < P, max (12)

gslack slack =< gslack
T .
u= (Vg T,Qc) ©) M < Qg < QMY i € N, (13)

or Upper and lower bounds on the bus voltage magrstude
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Vimin S Vi S Vimax ,i € N (14)
Upper and lower bounds on the transformers tapsati

TN < T, < TM9* i € Ny (15)
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The last assumption can be approximated by a dmacti
pa of the n nests being replaced by new nests (wgth
random solutions at new locations). The generatfomew
solutions x(t+1) is done by using a Lévy flight (£9).
Lévy flights essentially provide a random walk vehtheir

Upper and lower bounds on the compensators reactiv@ndom steps are drawn from a Lévy distributionléoge

powers:
QIM" < Q. < QP i€ N, (16)

Where N is the total number of buses; N the total
number of Transformers; Ns the total number of shunt
reactive compensators.

4. Overview of Quantum Computing

Quantum computing is a new theory which has emerg
as a result of merging computer science and quant

mechanics. The qubit is the smallest unit of infation

stored in a two-state quantum computer. Contrary t

classical bit which has two possible values, either 1, a
qubit will be in the superposition of those twoued. The
state of a qubit can be represented by using thekbt
notation:

[W) = al0) + B1)

Where ¥) denotes more than a vecﬁrin some vector

(17)

space. [Dand |3 represent the classical bit values 0 and 1

respectively; a and b are complex numbers such that

la]* + b|? =1 (18)

a and b are complex number that specify the prdibabi
amplitudes of the corresponding states. When wesunea
the qubit's state we may have ‘0’ with a probaili|?
and we may have ‘1’ with a probabilify|?. A system of
m-qubits can represent 2mstates at the same tioent@m
computers can perform computations on all theseegaht
the same time. It is this exponential growth of #iate
space with the number
exponential speed-up of computation
computers over classical computers.

on

5. Cuckoo Search

One of the recent developed bio inspired algorithisns
the Cuckoo Search (CS) which is based on styledffe
Cuckoo bird. The Cuckoo Search is based on theviitig
three idealized rules:

« Each cuckoo lays one egg at a time, and dumipsat
randomly chosen nest;

« The best nests with high quality of eggs (sohsjowill
carry over to the next generations;

» The number of available host nests is fixed, artbst
can discover an alien egg with a probabilityep0, 1]. In
this case, the host bird can either throw the eggyaor
abandon the nest so as to build a completely nestvinea
new location.

of particles that sugges
quantu

steps which has an infinite variance with an inénnean
(eq.20). Here the consecutive jumps/steps of a amick
essentially form a random walk process which obays

power-law step-length distribution with a heavy tai
x{tt = x{ + a®Lévy (D) (19)
Lévy~u = t™* (20)

Whereo > 0 is the step size which should be related to
scales of the problem of interest. Generalljtakea =

et e
L‘%(‘1). The productdd means entry-wise multiplications.

is entry-wise product is similar to those use®$80, but
gere the random walk via Lévy flight is more effiot in
exploring the search space as its step length @hrwnger
in the long run.

The proposed cuckoo search algorithm can be destrib
as follow:
Obijective function f(x), x =(x1,.., xd)T ;
Initial a population of n host nests xi (i = 1,.2, n);
while (t < MaxGeneration) or (stop criterion);
 Get a cuckoo (say i) randomly by Lévy flights;
« Evaluate its quality/fitness Fi;
» Choose a nest among n (say j) arbitrarily;
« if (Fi > Fj),
Replace j by the new solution;
end
» Abandon a fraction (pa) of worse nests
* build new ones at new locations via Lévy flights;
» Keep the best solutions (or nests with qualitytons);
* Rank the solutions and find the current best;
end while

. Quantum Stirred Cuckoo Search

The proposed algorithm called Quantum Stirred Cacko
Search (QSCSA) which integers the quantum computing
principles such as qubit representation, measuezatipn
and quantum mutation, in the core the cuckoo search
algorithm. Our architecture contains three esskentia
modules. The first module contains a quantum
representation of cuckoo swarm. The particularity o
quantum inspired cuckoo search algorithm stems filoen
quantum representation it adopts which allows sgrEng
the superposition of all potential solutions forgaven
problem. Moreover, the generation of a new cuckoo
depends on the probability amplitudes a and b efdghbit
function ¥ (eq.24). The second module contains the
objective function and the selection operator. $ékection
operator is similar to the elitism strategy usedgémetic
algorithms. Finally, the third module, which is theost
important, contains the main quantum cuckoo dynamic
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This module is composed of 4 main operations iespir 6.5. Mutation Operator
from quantum computing and cuckoo search algorithm: ) o ] )
Measurement, Mutation, Interference, and Lévy ftigh This operator is inspired from the evolutionary atian.

operations. QSCSA uses these operations to evbige {t allows moving from the current solution to oné its
entire swarm through generations. neighbours. This operator allows exploring new tohs

and thus enhances the diversification capabilibéshe
search process. In each generation, the mutatiappbed
with some probability.

6.1. Quantum Representation of Cuckoo
Solution

In terms of quantum computing, each binary solut®on
represented as a quantum register of length N (khas

solution size). Each column represents a singlet carid o ) : ]
corresponds to the binary digit 1 or 0. For eachitqa positions to represent all possible solutions. alg®rithm

binary value is computed according to its probtibfa;|2  Progresses through a number of generations acgptdin
and|b;|? , which can be interpreted as the probabilities '€ QSCSA dynamics. During each iteration, theofeing
have respectively 0 or 1. Consequently, all poanti Main ta}sks are performed. A new cuckoo is bwlngghe
solutions can be represented by a Quantum Vectott@y L€V flights operator followed by the quantum midat
contains the superposition of all possible soluionhis Which is applied with some probability. The nextpsis to
quantum vector can be viewed as a probabilisti@valua.te the current cuckoo._ For that, we app_lymnhasure
representation of all the problem solutions. lypléhe role  OP€ration in order to get a binary solution whiepresents
of a quantum cuckoo in the QSCSA algorithm. A quemt & Potential solution. After this step, we apply the
representation offers a powerful way to represérd t interference operation according to the best ctekyment.

solution space and reduces consequently the requird/e replace some worst nests by the current cudkiasi
number of cuckoos. Only one cuckoo is needed tesept  C€tter or by new random nests generated by the flighy.
the entire swarm. The selection phase in QSCSA of the best nestslatians
ajjay|..ay
<b1 b2|--bn>

is comparable to some form of elitism selectionduse
Fig. 1. Quantum representation of the cuckoo solution

6.6. Skeleton of the Proposed Algorithm

Firstly, a swarm of p host nest is created at ramdo

genetic algorithms, which ensures the best solusdept
always in the next iteration. Finally, the globakbsolution
is then updated if a better one is found and thelevh
process is repeated until reaching a stoppingrmite The
particularity of QSCSA algorithm stems from the ojuem
representation it adopts which allows representihg
superposition of all potential solutions for a givaroblem.
Moreover, the position of a nest depends on théabhitity
amplitudes a and b of the qubit function. The pholistic
nature of the quantum measure offers a good diyetsi
the cuckoo search algorithm, while the interference

The binary values for a qubit are computed accortiin  operation helps to intensify the search around gbed
its probabilities|a;|?> and |b;|?> . This operation is solutions.

6.2. Quantum Operators

We have integrated in the cuckoo search algorigome
of quantum operations. This integration helps tcréase
the optimization capacities of the cuckoo search.

6.3. Measurement

accomplished as follows: for each qubit, we gererat

QSCSA algorithm for reactive power dispatch problem

random number Pr between 0 and 1; the value of the Construct an initial population of p host nests

corresponding bit is 1 if the valli|? is greater than Pr,
and otherwise the bit value is 0. Moreover,
measurement operation can be seen also as a floatign
operator. Indeed, two successive measurements tdgiveo
necessarily the same solution which increases
diversification capacities of our approach.

6.4. Quantum Interference

This operation amplifies the amplitude of the best

solution and decreases the amplitudes of the bad.dh
primarily consists in moving the state of each gimithe
direction of the corresponding bit value in thettssution
in progress. The operation of interference is uUsédu
intensify research around the best solution andaiys the
role of local search method.

while (stop criterion)

the < Apply Lévy flights operator to get cuckoo randgml

* Apply randomly a quantum mutation
* Apply measurement operator;

the * Evaluate the quality/fitness of this cuckoo;

* Apply Interference operator;

» replace some nests among n randomly by the new

solution according to its fitness;
« A fraction (pa) of the worse nests is abandomatirew
ones are built via Lévy flights;
» Keep the best solutions (or nests with qualitytons);
* Rank the solutions and find the current best;
end while

7. Simulation Results
The proposed QSCSA algorithm for solving ORPD
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problem is tested in standard IEEE-57 bus powetegsys
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Table Il shows the various system control varialles

The IEEE 57-bus system data consists of 80 branchesgenerator bus voltages, shunt capacitances ansfdrarer
generator-buses and 17 branches under load tapgsetttap settings obtained after QSCSA based optimizatio

transformer branches. The possible
compensation buses are 18, 25 and 53. Bus 2,83,%and
12 are PV buses and bus 1 is selected as slackrbtis
case, the search space has 27 dimensions, i.esethem
generator voltages, 17 transformer taps, and ttapacitor
banks. The system variable limits are given in &dblThe
preliminary conditions for the IEEE-57 bus powestgyn
are given as follows:

Tablel. Variables limits for |EEE-57 bus power system (p.u.)

reactive power generation limits

busno 1 2 3 6 8 9 12
Qgmin -1.1 -.010 -.01 -0.01 -11 -0.02 -0.2
Cgma> 1 0.1 0.1 0.23 1 0.01 1.50
voltage and tap setting limits

ngin nga> qumir quma) tkmin tkma)r

0.5 1.0 0.91 1.01 0.5 1.0

shunt capacitor limits

busno 18 25 53

c]cmin 0 0 0

qua) 10 51 62

Pload: 12.423 p.u. Qad: 3.332 p.u.

The total initial generations and power losses a

obtained as follows:
Y P; =12.7724 p.uy, Q; = 3.4555 p.u.
Pioss= 0.27443 p.u. Q.= -1.2245 p.u.

TableIl. Control variables obtained after optimization by QSCSA method

Control Variables QSCSA
V1 1.1

V2 1.063
V3 1.054
V6 1.042
V8 1.063
V9 1.035
V12 1.043
Qc18 0.0844
Qc25 0.335
Qc53 0.0624
T4-18 1.017
T21-20 1.056
T24-25 0.964
T24-26 0.936
T7-29 1.076
T34-32 0.933
T11-41 1.017
T15-45 1.059
T14-46 0.928
T10-51 1.035
T13-49 1.053
T11-43 0.919
T40-56 0.906
T39-57 0.962
T9-55 0.973

reactive powevhich are within their acceptable limits. TabledHows the

comparison of real power loss with other optimizati
techniques. Over all Simulation results indicatee th
robustness of proposed QSCSA approach for providing
better optimal solution in case of IEEE-57 bus&yst

TableIIl. Comparison of real power loss

S No Optimization Best Wor st Average
" Algorithm Solution Solution Solution
1 NLP [31] 0.25902 0.30854 0.27858
2 CGA[31] 0.25244 0.27507 0.26293
3 AGA [31] 0.24564 0.26671 0.25127
4 PSO-w [31] 0.24270 0.26152 0.24725
5 PSO-cf [31] 0.24280 0.26032 0.24698
6 CLPSO [31] 0.24515 0.24780 0.24673
7 SPSO-07 [31] 0.24430 0.25457 0.24752
8 L-DE [31] 0.27812 0.41909 0.33177
9 L-SACP-DE [31] 0.27915 0.36978 0.31032
10 L-SaDE [31] 0.24267 0.24391 0.24311
11 SOA[31] 0.24265 0.24280 0.24270
12 LM [32] 0.2484 0.2922 0.2641
13 MBEP1 [32] 0.2474 0.2848 0.2643
14 MBEP2 [32] 0.2482 0.283 0.2592
15 BES100 [32] 0.2438 0.263 0.2541
16 BES200 [32] 0.3417 0.2486 0.2443
17 Proposed QSCSA 0.22345 0.23465 0.23114

8. Conclusion

In this paper a novel approach QSCSA algorithm tsed
solve optimal reactive power dispatch problem ahd t
proposed algorithm has been tested on the stari&#
57 -bus system. From the simulation results itesy\clear
that QSCSA algorithm demonstrated its effectiversrsd
robustness in minimization of real power loss aadous
system control variables are well within the acabfs
limits.
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