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Abstract 
Surface roughness is strongly affected by machining parameters. In the past few decades, 
many researchers have established the relationship between the surface roughness and 
the machining parameters. But less attention has been paid to the sensitivity of the 
surface roughness to the parameters. In addition, the number of tool flutes was ignored, 
which affects the vibration period and values of the machining system and consequently 
influences the surface roughness of the machined parts too. Therefore, this study first-
time includes the tool flutes in addition to cutting speed, depth of cut and feed rate as 
independent input variables. Firstly, a set of machining tests were conducted using 
AA6061 aluminum alloy as work piece material to provide original data, and Response 
Surface Model (RSM) was adopted to establish the relationship model between the 
surface roughness and the parameters using Minitab 16. Then, based on analysis of 
variance (ANOVA), the sensitivities of the surface roughness to the parameters were 
analyzed. The results show that cutter flutes has high significant influence on surface 
roughness followed by feed rate and depth of cut, while cutting speed has less significant 
influence. Finally, the parameters were optimized according to desired surface roughness, 
and the optimization error (residual) has limited values between -0.02 and 0.02µm. 

1. Introduction 

Quality of products is very much concerned in manufacturing industry. Surface 
roughness is one of the crucial performance parameters that have to be controlled within 
suitable limits for a particular process. Therefore, prediction or monitoring of the surface 
roughness of machined components is an important area of research.  

Previous researches have indicated that cutting parameters such as cutting speed, feed 
rate and depth of cut strongly influence the surface roughness of the machined product 
[3-5, 8-11]. Researchers are trying to develop a robust and accurate model, which can 
describe correlations between the cutting parameters and the surface roughness of the 
machined products. Many researchers made quite good efforts on controlling the surface 
roughness using different type of techniques. However, the tool flute is not taken into 
account. In this work, we consider the tool flute, cutting speed, feed rate and depth of cut as  
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machining parameters to study their relationship (sensitivity) 
with the surface roughness in end-milling. An experimental 
work was conducted by using full factorial design. Response 
Surface Methodology (RSM) was adopted to establish the 
relationship model between the parameters and corresponding 
surface roughness by Minitab 16. Based on analysis of 
variance (ANOVA), the sensitivities of the surface roughness 
to the parameters were analyzed to show that cutter flutes has 
high significant influence on surface roughness followed by 
feed rate and depth of cut, while cutting speed has less 
significant influence. Based on the prediction model, the 
parameters were optimized according to the desired surface 
roughness. 

In this study, full quadratic model is applied based on 
response surface method (RSM) to express the surface 
roughness in term of cutting parameters including linear, 
interaction and squares of the cutting parameters. The result 
shows that interaction and squares of cutting parameters are 
insignificant, only linear model is significant. Therefore, 

linear model is adopted in this work. The verification test of 
the linear model gives good results, and the error is so limited. 
Hence we can judge that this model is so accurate and 
reliable. Verification of cutting parameters optimization gives 
very good results, the residuals of optimization is so limited, 
which indicates the robust techniques used. 

2. Literature Review 

Surface roughness is affected by many factors such as; 
machining parameters, cutting tool properties, work piece 
properties and cutting phenomena [1] as show in fish bone 
diagram Fig.1. Surface roughness is known to be significantly 
affected by depth of cut, spindle speed, and feed rate [2]. 
Therefore, surface roughness can be optimized if the 
appropriate cutting conditions are selected. Statistical 
prediction methods, such as the response surface methodology 
(RSM), are frequently utilized to model the surface roughness, 
so that the desired levels of machining parameters are achieved. 

 

Fig. 1. Fish bone diagram for surface roughness. 

There are many works reporting the success of 
implementing different techniques to predict surface 
roughness. Ahmed Murat [3] studied the effects of cutting 
speed, feed rate, tool path and depth of cut process 
parameters on the surface roughness in the pocket machining 
of AA5083 aluminum alloy materials by Taguchi method. It 
is found that surface roughness correlates positively with 
feed rate and depth of cut, but negatively with cutting speed 
while the tool path pattern factor is not significant. Noordin 
et al. [4] conducted an experiment on the turning process of 
AISI 1045 steel, investigated the effects of cutting speed, 
feed rate and side cutting angle on the multi-responses 
(tangential force and surface roughness) using the RSM, and 
finally built a second order regression model to predict these 
two responses. Singh and Rao [5] conducted an experiment 
to determine the effects of cutting conditions and tool 
geometry on the surface roughness in the finish hard turning 
of the bearing steel (AISI 52100).  

Advance manufacturing technology offers effective means 
to achieve good quality, quality and productivity are two 
important measures that are conflicting criteria in any 
machining operations. Surface roughness is not only a quality 
indicator but also determines the machining performance and 
the operation cost [6]. In modern manufacturing, the end-
milling is one of the most widely used metal removal 
operations in industry because of its ability to remove 
material faster and giving reasonably good surface finish [7].  

Several researchers have studied the effect of machining 
parameters on the surface roughness in end milling of steels 
and aluminum. Huang and Chen [8] studied an empirical 
approach to investigate surface roughness in controllable and 
uncontrollable factors in end milling operation, the effect of 
cutting tool geometry on milling of AISI 1045 steel for 
surface roughness model has been studied, and then several 
studies were also carried out to predict surface roughness 
based on artificial neural networks (ANN) model. Öktem [9] 
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has developed an integrated study of surface roughness 
model and optimization of the cutting parameters for end 
milling with AISI1040 steel material. Kim and Kang [10] 
investigated the machining of AA2024 alloy with 
polycrystalline diamond end mill using the criteria of surface 
roughness, as a result of the experiments conducted at 
different values of cutting speed, axial and radial depths of 
the cut, and feed per tooth parameters, it was found that, axial 
depth of cut is the most significant factor affecting surface 
roughness while radial depth of cut has a low effect. Yang 
and Chen [11] studied the effects of depth of cut, spindle 
speed, feed rate and tool diameter factors on surface 
roughness in the milling of AA6061 via Taguchi method, the 
experiments based on L18 orthogonal array were evaluated 
with analysis of variance (ANOVA) and S/N ratio analysis 
and it was seen that all the factors except tool diameter were 
significant. In addition, optimal factor levels with lowest 
surface roughness were determined and predicted. Lo et al. 
[12] investigated the high speed milling of AA6061 in two 
parts. In the first part, an experimental model was developed 
for the quick measurement of surface roughness using laser 
speckle method and digital image processing. In the second 
part, the effects of feed rate, spindle speed, depth of cut and 
tool material process parameters on surface roughness were 
evaluated via Taguchi technique. The tests based on L9 
orthogonal array (OA) were analyzed with signal to noise 
(S/N) ratio and ANOVA, based on the results achieved, it was 
seen that depth of cut has the most dominant effect (40 %) 
followed by tool material (30 %) and spindle speed (21 %) in 
terms of order of significance, while feed rate does not have a 
significance effect. Sahin and Motorcu [13] utilized RSM to 
construct a surface roughness model for the turning process 
of AISI 1040 mild steel coated with TiN, three machining 
parameters, depth of cut, cutting speed and feed rate, were 
included in the predicted model based on central composite 
design (CCD). Öktem et al. [14] studied the surface 
roughness of the mould surfaces obtained by machining 
AA7075-T6 material with AlTiN-coated solid carbide end 
mill. The effects of cutting speed, feed per tooth, radial/axial 
depth of cut and machining tolerance were evaluated with 
Taguchi and full factorial methods. The surface roughness 
was modeled by regression analysis with a correlation 
coefficient of 0.96. The effects of factors and optimal surface 
roughness were determined by assessing the experiments 
based on L18 OA with S/N ratio and ANOVA. Finally, it was 
observed that the machining tolerance is the most dominant 
factor (96 %) followed by radial depth of cut (2.5 %), axial 
depth of cut (1.5 %), feed per tooth (0.177 %) and cutting 
speed (0.09 %). 

Recently, some other factors were added to simulation 
models, such as; vibration and cutting forces during 
machining as well as cutting geometry. These parameters 
made the models more realistic and accurate. Lou and Chen 
[15] studied the effects of spindle speed, feed rate, depth of 
cut and vibration on surface roughness during the end milling 
of AA6061. The analysis of data and modeling were achieved 
via a neural fuzzy method; they predicted surface roughness 

with 96 % accuracy by the use of the proposed system. Chen 
and Savage [16] predicted the effects of feed rate, spindle 
speed, tool material type, work piece diameter and vibration 
factors on surface roughness in the milling of AA6061 and 
AISI 1018 steel materials. The proposed neural fuzzy 
approach modeled the surface roughness during milling 
operation with 90% accuracy. Yang et al. [17] proposed an 
adaptive system that can modify the table feed during 
machining to obtain the desired surface roughness in the face 
milling of AA6061. The system was constructed by 
combining two subsystems as fuzzy-nets in process surface 
roughness recognition and fuzzy-nets adaptive feed rate 
control. As a result of the 25 test experiments, the desired 
surface roughness was obtained by modifying the feed rate of 
the CNC machine tool instantaneously by the use of the 
proposed system. Zhang and Chen [18] developed an in 
process surface roughness adaptive control system in the end 
milling of AA6061 alloy. They conducted experiments in all 
combinations of spindle speed, feed rate and depth of cut 
factor levels by the use of full factorial experimental design 
method. The surface roughness was predicted with 91.5% 
accuracy with the system that can recognize cutting force 
signals collected during machining and the feed rate was 
modified in terms of desired surface roughness. 

Brezocnik et al. [19] predicted the effects of spindle speed, 
feed rate, depth of cut and vibrations on surface roughness 
via genetic programming method, the specimens were 
obtained by machining AA6061 aluminum with four-flute 
high speed steel, they observed that high vibration increases 
the prediction accuracy and feed rate has the most influence 
on surface roughness. In this paper the author used only four-
flute tool. New idea is come to my mind, what is the effect of 
the tool-flute number in the surface roughness. 

To answer this question, an experimental work is carried 
out based on selected cutting parameters: cutting speed, 
depth of cut, feed rate and tool flute number. Tool flute 
number is selected as a new factor in this study to express its 
affect on surface roughness quality with other machining 
parameters which known as control factors.  

3. Overall Scheme 

Fig.2 shows the overall scheme of this work. At the first, a 
series of physical experimental works are carried out based 
on full factorial design with four cutting parameters (spindle 
speed, depth of cut, feed rate and cutter flutes). Each cutting 
parameter has three levels. Carry out cutting test under each 
parameters combination, and measure the surface roughness 
of the work piece. Then, according to the experimental data, 
on one hand, the sensitivities of the surface roughness to each 
parameter are analyzed though analysis of variance 
(ANOVA); on the other hand, surrogate model (RSM) is 
adopted to establish the mathematical model between the 
four cutting parameters and the surface roughness. Based on 
the model, the surface roughness can be predicted with 
cutting parameters as inputs. Inversely, the cutting 
parameters can be optimized with given desired surface 
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roughness. 

 

Fig. 2. Flow diagram of the overall scheme. 

4. Experimental Work 

The experimental work was conducted on a vertical 
machining center (DMC 635V) based on full factorial design. 
Four cutting parameters, cutting speed (v), feed rate (f), depth 
of cut (d) and tool flutes number (z) were taken into account 
as inputs, with three levels as shown in Table (1). According 
to the full factorial rule, (level parameters) there are (34) = 81 
cutting tests are carried out. The levels of the cutting 
parameters are selected based on shop floor after valuable 
preliminary works.  

The work piece material used is AA6061 aluminum alloy 

in cubic shape, dimensions 60mm x 60mm x 60mm. CNC 
vertical milling has spindle speed up 14000 rpm, and motor 
drive power 40kw with air coolant. Calculations of cutting 
speed are selected based on the work piece material and 
cutting tool type. High speed steel (HSS) tool with diameter 
16 mm and flutes 2, 3 and 4 perform cutting speed (150 – 
250 m/min) with corresponding (3000 – 5000 rev/min). 
Arithmetic surface roughness Ra is measured in this work 
according to widely used in industry and manufacturing field, 
the measuring device is portable TR200 with display range: 
0.005-16µm and maximum display resolution 0.001µm.  

Table 1. Cutting parameters and levels. 

No. Cutting parameter Low level Medium level High level 

1 Cutting speed (v). rev/min 3000 4000 5000 
2 Feed rate (f). mm/rev 0.05 0.10 0.15 
3 Depth of cut (d). mm 0.4 0.6 0.8 
4 Tool flutes number (z) 2.0 3.0 4.0 

 
Physical experimental work is carried out in institute’s 

workshop (Advance Design and Manufacturing Institute) at 
southwest jiaotong university. Table 2 shows 27 experimental 
results of the tool has 2 flutes, measuring the surface 

roughness three times and calculates the average values. 
There are other two tables for 3 & 4 tool flutes (not attached) 
with total 54 experiments.  

Table 2. An experimental result of the tool has 2 flutes. 

Std 

Order 

Run 

Order 

cutting 

speed (v) 

depth of 

cut (d) 

feed rate 

(f) 

tool flute 

(z) 

Reading 

(1) 

Reading 

(2) 
Reading (3) 

average surface 

reading 

1 5 4000 0.6 0.05 2 0.429 0.393 0.4270 0.416 
2 7 5000 0.6 0.15 2 0.606 0.589 0.5980 0.598 
3 11 3000 0.6 0.15 2 0.590 0.538 0.5560 0.561 
4 13 5000 0.6 0.10 2 0.471 0.479 0.4830 0.478 
5 17 5000 0.4 0.05 2 0.550 0.526 0.5290 0.535 
6 19 5000 0.4 0.10 2 0.492 0.600 0.5870 0.560 
7 20 3000 0.6 0.05 2 0.234 0.233 0.2400 0.236 
8 21 4000 0.4 0.15 2 0.613 0.603 0.6120 0.609 
9 22 4000 0.4 0.05 2 0.438 0.466 0.4540 0.453 
10 23 5000 0.6 0.05 2 0.276 0.290 0.2600 0.275 
11 28 5000 0.8 0.05 2 0.526 0.503 0.5410 0.523 
12 30 5000 0.8 0.15 2 0.742 0.742 0.7620 0.749 
13 33 3000 0.4 0.10 2 0.304 0.332 0.2970 0.311 
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Std 

Order 

Run 

Order 

cutting 

speed (v) 

depth of 

cut (d) 

feed rate 

(f) 

tool flute 

(z) 

Reading 

(1) 

Reading 

(2) 
Reading (3) 

average surface 

reading 

14 34 5000 0.8 0.10 2 0.511 0.528 0.4940 0.511 
15 35 4000 0.8 0.10 2 0.392 0.381 0.3400 0.371 
16 38 4000 0.4 0.10 2 0.275 0.261 0.2480 0.261 
17 46 4000 0.6 0.10 2 0.231 0.236 0.2500 0.239 
18 48 5000 0.4 0.15 2 0.298 0.259 0.2790 0.279 
19 52 3000 0.6 0.10 2 0.328 0.341 0.3000 0.323 
20 55 3000 0.8 0.15 2 0.546 0.539 0.5450 0.543 
21 65 4000 0.8 0.05 2 0.246 0.238 0.2200 0.235 
22 69 3000 0.4 0.05 2 0.288 0.244 0.2410 0.258 
23 70 3000 0.8 0.10 2 0.306 0.262 0.2990 0.289 
24 76 4000 0.8 0.15 2 0.601 0.686 0.6040 0.630 
25 77 3000 0.4 0.15 2 0.440 0.498 0.4930 0.477 
26 79 3000 0.8 0.05 2 0.336 0.344 0.3690 0.350 
27 80 4000 0.6 0.15 2 0.384 0.375 0.3900 0.383 

 

5. Surrogate Model Establishment 

General model of Response surface method (RSM) is 
defined as a procedure to express the quantitative form of the 
relationship between the desired response (dependant) and 
independent variables using statistical and mathematical 
model [20-23], general model of response surface can be 
express as equation (1).  

1 2 3( , , ,..., )
a n

R f x x x x=                            (1) 

Where Ra is surface roughness; x1, x2, x3, …xn are 
independent variables.  

Full quadratic model equation (2) is selected in this study 
(include first and second order equation with interaction), to 
express the real mathematical model to the response and 
cutting parameters. Investigation of the cutting parameters to 

the surface roughness is carried out based on independents 
parameters.  

1
2

0
1 1 1 1

ˆ
n n n n

i i ii i i j i j

i i i j i

y b b x b x b x x ε
−

= = = = +

= + + + +∑ ∑ ∑∑           (2) 

Where ŷ is predicted surface roughness value; b0, bi, bii and 
bij are regression coefficients; xi, xj are independent variables; 
ε is the error.  

Experimental data fitted to the Minitab based on response 
surface method (RSM) full quadratic model. The estimation 
model for prediction is appear as equation (3), this equation 
include all the parameters in equation (2), which is not 
practical model. Based on statistical analysis, ANOVA 
technique is used to modify it. Modification of the parameter 
depends on the significant of each component. 

                        (3) 

Some component of this equation may be not significant, 
to investigate the significant of all cutting parameters and 
their interaction, ANOVA analysis is adopted, then 
modification of this model is obtained. Sensitivity analysis 
shows the regression modification. 

6. Sensitivity Analysis 

It is well known that the cutting parameters affect the 

surface roughness. But little is known about the degree of 
influence of each parameter on the roughness, which has 
great practical significance for process planning. In this study, 
according to the experimental data, ANOVA is adopted to 
determine the significant cutting parameters. In table (3), 
ANOVA analysis shows that linear regression is significant, 
while square and intersection of cutting parameters are 
insignificant. In intersection state, only cutting speed with 
tool flutes is significant at 95% confidence interval. 

Table 3. Analysis of Variance (ANOVA) for surface roughness. 

Source DF Seq. SS Adj. SS Adj. MS  F- value  P- value 

Regression 14 0.74672 0.746721 0.053337  3.81  0.000a 
Linear  4 0.59882 0.598824 0.149706  10.69  0.000a 
cutting speed - v  1 0.03375 0.033750 0.033750  2.41  0.125 
depth of cut - d  1 0.04559 0.045588 0.045588  3.25  0.076 
feed rate - f  1 0.09601 0.096013 0.096013  6.85  0.011a 
tool flutes - z  1 0.42347 0.423473 0.423473  30.23  0.000a 
Square  4 0.02431 0.024314 0.006079  0.43  0.784 
cutting speed × cutting speed- v2  1 0.00080 0.000800 0.000800  0.06  0.812 
depth of cut × depth of cut - d2  1 0.01243 0.012429 0.012429  0.89  0.350 
feed rate × feed rate - f2  1 0.00420 0.004201 0.004201  0.30  0.586 
tool flutes × tool flutes - z2  1 0.00688 0.006884 0.006884  0.49  0.486 

6 10 2 2 2

2 6 6 7

-0.95 1.7 10 0.019 0.026 0.0001413 1.96 10 0.01044 0.116

0.00046 2.45 10 5.7 10 2.49 10 0.0045 0.004 0.003

aR v d f z v d f

z vd vf vz df dz fz

− −

− − −

= + × + − + + × + +

+ − × − × − × + − +
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Source DF Seq. SS Adj. SS Adj. MS  F- value  P- value 

Interaction 6 0.12358 0.123582 0.020597  1.47  0.202 
cutting speed × depth of cut- v × d  1 0.00147 0.001469 0.001469  0.10  0.747 
cutting speed × feed rate - v × f  1 0.00011 0.000114 0.000114  0.01  0.928 
cutting speed × tool flutes - v × z  1 0.07803 0.078027 0.078027  5.57  0.021a 
depth of cut × feed rate - d × f  1 0.00540 0.005402 0.005402  0.39   0.537 
depth of cut × tool flutes - d × z  1 0.00853 0.008525 0.008525  0.61   0.438 
feed rate × tool flutes - f × z  1 0.03004 0.030044 0.030044  2.14   0.148 
Residual Error  66 0.92458 0.924576 0.014009   
Total 80 1.67130     

a:significant at 95% confidence interval.  
DF: degree of freedom 
Seq.SS: sequential sum square 
Adj.SS: adjusted sum square 
Adj.MS: adjusted mean square 

ANOVA Summary table (4) shows the regression analysis 
of full quadratic model equation (3). Modification is carried 

out, only significant parameters will be analyzed again to 
perform new model. 

Table 4. ANOVA summary analysis. 

Source DF Seq. SS Adj. SS Adj. MS  F- value  P- value 

Regression 14 0.74672 0.746721 0.053337  3.81  0.000a 
Linear  4 0.59882 0.598824 0.149706  10.69  0.000a 
Square  4 0.02431 0.024314 0.006079  0.43  0.784 
Interaction 6 0.12358 0.123582 0.020597  1.47  0.202 
Residual Error  66 0.92458 0.924576 0.014009   
 Total 80 1.67130     

a: significant at 95% confidence interval. 

New regression is obtained after remove all insignificant 
parameters. ANOVA table (5) shows the analysis of the 
modified regression, cutting speed is insignificant, but it 
selected because of its interaction with the tool flute. To build 
the new model, Table (6) shows the coefficients of the cutting 

parameters. New model for surface roughness prediction 
estimation is adopted, as show in equation (4). 

3 -50.577 0.165 10 0.145 0.843 +0.257 -4.66 10aR v d f z vz−= − + × + + ×  (4) 

Table 5. ANOVA analysis of variance (modify model). 

Source DF Seq. SS Adj. SS Adj. MS  F-value  P- value 

Regression  5 0.67685  0.676851  0.135370  10.21  0.000a 
Linear 4 0.59882  0.598824  0.149706  11.29  0.000a 
cutting speed  1 0.03375  0.033750  0.033750  2.55  0.115 
depth of cut  1 0.04559  0.045588  0.045588  2.55  0.068 
feed rate  1 0.09601  0.096014  0.096014  7.24  0.009a 
tool flutes  1 0.42347  0.423473  0.423473  31.94  0.000a 
Interaction 1 0.07803  0.078027  0.078027  5.88  0.018a 
cutting speed × tool flutes  1 0.07803  0.078027  0.078027  5.88  0.018a 
Residual Error  75 0.99445  0.994446  0.013259   
Total 80 1.67130     

a: significant at 95% confidence interval.  

Table 6. ANOVA regression coefficients. 

parameters coefficient SE. Coefficient T-value P-value 

Constant -0.576574 0.01279 40.585 0.000a 
cutting speed -v  0.000165 0.01567  1.595  0.115 
Depth of cut-d 0.145278 0.01567  1.854  0.068 
Feed rate-f 0.843333 0.01567  2.691  0.009a 
Tool flutes-z 0.274778 0.01567  5.651  0.000a 
Cutting speed × tool flutes –v × z -4.66E-05 0.01919  -2.426  0.018a 

a: significant at 95% confidence interval.  

Equation (4) includes significant parameters and cutting 
speed, as mentioned before cutting speed cannot be deleted 
from the model, because it has interaction with tool flute. 

Based on ANOVA analysis, correlations of regression R 
square has value 90.8% for analysis. This value shows the 
correlation of regression is good. According to the ANOVA 
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analysis table (5), tool flutes has highest significant value (P 
= 0.000), then feed rate, depth of cut and cutting speed has 
lowest significant. 

The new model equation (4) predicts good results. Fig.3 
shows the residual plots of surface roughness after 
modification, the normal probability plot is very close to 
straight line, histogram of residual and frequency has normal 
distribution shape. Predicted value and residuals plot show 
scatter distribution points, since the scatter points didn’t 
make specific shape, this indicates to the good model. 

In order to investigate the sensitivity analysis, contour plot 
shows interaction of cutting parameters and their effect in 
machining process. Fig.4 shows interactions between cutting 
parameters to the surface roughness. From the results of feed 

rate and depth of cut plot, minimum surface roughness can be 
achieved (0.44 – 0.48) if the depth of cut in the rage of 0.4 to 
0.6mm, with feed rate less than 0.1mm. In the second plot 
tool flute with depth of cut, minimum surface roughness 
obtained, if depth of cut less than 0.6 and tool has 2 flutes. In 
the last plot tool flute with feed rate, minimum surface 
roughness can be achieved, if the feed rate less than 0.1 with 
and 2 flutes tool. 

From the results of contour plots, low levels of the cutting 
parameters lead to the minimum surface roughness, while 
high levels produce high surface roughness (positive relation). 
The minimum surface roughness < 0.4 is achieved only with 
minimum tool flutes, this is indicates to the significant of the 
tool flutes. 

 

Fig. 3. Residual plots for surface roughness. 

 

Fig. 4. Contour plots of cutting parameters. 

In surface plots, Fig. 5-7 show machining parameters 
interactions results. Fig. 5 shows the effect of tool flutes and 

feed rate, tool flute has great effect in surface roughness, 
while feed rate has less. Fig. 6 shows the effect of tool flute 
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to the surface roughness has big change than depth of cut. In 
Fig 7 effect of feed rate and depth of cut, feed rate has more 
effect in the surface roughness than the depth of cut. From all 

surface plots, it is very clear that tool flute has great influence 
in surface roughness machining, followed by feed rate and 
depth of cut. 

 

Fig. 5. Surface plots of tool flutes and feed rate. 

 

Fig. 6. Surface plots of tool flutes and depth of cut. 

 

Fig. 7. Surface plots of feed rate and depth of cut. 
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Fig. 8. Main affects plots for surface roughness. 

Fig. 8 shows the main effect of machining parameters in 
surface roughness. Tool flute number has highest significant 
effects in surface roughness, hence the low number of tool 
flutes lead to low surface roughness, while higher number of 
flutes produces high values of surface roughness (positive 
relation). Feed rate and depth of cut are also affecting the 
surface roughness but less than tool flutes effects. Finally 
from the plots observations cutting speed has less effect in 
surface roughness. 

From surface, contour and main effect plots. Tool flute has 
higher effect in surface roughness machining. Therefore; 
high attention should be consider in tool selection for 
machining process. Contribution of this paper is highlighting 
new factor to the surface roughness (tool flute). Paper results 
show the tool flute is very important factor in surface finish 
machining process, this work study gives more options to 
compare tool flutes to the other factors affecting in surface 
roughness, in order to express the rate factor of each 
parameters. 

7. Cutting Parameter Optimization 

Optimization of the machining parameters has been great 
concerned in manufacturing environments, where economy 
of machining operation plays a key role in competitiveness in 
the market. In this study, based on aforementioned model, the 
machining parameters (cutting speed, depth of cut, feed rate 
and tool flutes) were optimized using Minitab based on 
response surface method. The goal of the optimization is to 
find the optimal machining parameters combination to ensure 
desired surface roughness. Minitab displays the design 
parameters (cutting variables) for the response (surface 
roughness) by checking the target, lower and upper values for 
response, and gives the cutting parameters in optimized 
values by its inner algorithm.  

Experimental work shows the maximum and minimum 
observation data for surface roughness are 0.751µm and 

0.235µm respectively. Optimization strategy implemented in 
this study is to divide the surface roughness range into three 
levels: low (<0.3µm), medium (0.4 - 0.5µm) and high 
(>0.5µm). Table 7 shows optimization results of surface 
roughness and corresponding cutting parameters in three 
levels. The low level Fig. 9 has minimum surface roughness 
value 0.2545µm with corresponding cutting parameters 
(3000rpm cutting speed, 0.4525mm depth of cut, 0.05mm 
feed rate and tool has 2 flutes).  

In optimization figures 9-11, the vertical red lines on the 
graph represent the current factor settings (cutting 
parameters), horizontal blue dotted lines represent the current 
response values, and gray regions indicate to factor settings 
where the corresponding response has zero desirability. 
Desirability function translates each response scale to (zero-
to-one) in desirability scale. The most desirable values of the 
response have desirability is one, which means very close to 
the target, while zero means very far from target. Figure 10 
and 11 shows the medium and high surface roughness 
optimization values respectively. Optimization results 
obtained should be tested physically to verify the validity of 
these results and to confirm the robust degree of the 
technique used in this work.  

In order to test and verify the optimization result, 
experimental work was carried out based on the optimized 
cutting parameters. In each cutting test, the surface roughness 
was measured three times and the mean of the readings is 
registered. Table 8 shows optimization and experimental 
results, the error values is so limited, it varied approximately 
between +0.02 and -0.02µm, which express the efficient and 
robust of the technique used in this work. 

8. Results and Discussion 

From the results obtained for the machining parameters 
used in this study, tool flute has higher significant followed 
by feed rate, depth of cut and cutting speed. From contour 
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and surface plots, optimization of surface roughness could be 
carried out based on surface roughness values. Residual plots 
of the errors show the normal distribution shape with 95% 

confidence intervals values. Sensitivity analysis of the 
machining parameters is carried out based on ANOVA results 
with 95% confidence intervals. 

Table 7. Optimizations results. 

Parameter Name  Low level Medium level High level 

Predicted Surface roughness in µm 0.2545 0.4977 0.5299 

Cutting speed (v) in rpm 3000 5000 5000 

Depth of cut (d) in mm 0.4525 0.570 0.40 

Feed rate (f) in mm 0.05 0.05 0.15 

Tool flutes (z) 2.00 3.00 2.00 

 

Fig. 9. Optimization results in low level of surface roughness (Ra < 0.3). 

 

Fig. 10. Optimization results in medium level of surface roughness (0.4 < Ra < 0.5). 
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Fig. 11. Optimization results in high level of surface roughness (Ra > 0.5). 

Table 8. Experimental and optimization results. 

No. of 

test 

Cutting speed 

(v) - rpm 

Depth of cut 

(d) - mm 

Feed rate (f) - 

mm 
Tool flutes (z) 

Optimization 

results - (µm) 

Experimental 

results - (µm) 
Error (µm) 

1 3000 0.453 0.05 2 0.2545 0.2350 - 0.0195 

2 5000 0.570 0.05 3 0.4977 0.5170 + 0.0193 

3 5000 0.400 0.15 2 0.5299 0.5410 + 0.0111 

 
Optimization of machining parameters used in this study is 

carried out based on surface roughness values, the values are 
divided in to three ranges. The optimization strategy 
implemented in this study is to divide the surface roughness 
range into three levels: low (<0.3µm), medium (0.4 - 0.5µm) 
and high (>0.5µm). Optimization results obtained in each 
range in verified. Verification results obtained in this study 
show the errors are very limited, hence we can say the 
technique used in this study is reliable and robust.  

9. Conclusions 

This paper presents an experimental investigation of 
surface roughness, based on response surface methodology 
(RSM) and sensitivity analysis, which describes the 
relationship between the cutting parameters (cutting speed. 
depth of cut, feed rate and tool flutes number) and surface 
roughness. According to the results analysis, tool flutes has 
highest significant, followed by feed rate, depth of cut while 
cutting speed has less significant. Modified regression model 
achieved in this study is reduced to first order equation. 
Regression correlation R square were 90.8% for analysis, 
which indicates that the correlation of regression has high 
value and the residuals plot is much closer to straight line. 
Residual plots follow normal distribution shape, with scatter 
residual plots which indicate to the good results. In contour 

plots, tool flute, feed rate and depth of cut all these 
parameters have positive relation affect to the surface 
roughness. Paper results show the tool flute is a very 
important factor in surface finish machining process, 
therefore, this study gives more options to compare tool 
flutes with other factors affecting in surface roughness to 
express their effect levels. Verification test show the 
optimization results obtained are useful and reasonable, and 
from the observations, optimization error has limited values -
0.02 to 0.02. From the results achieved we can judge that 
RMS is an efficient and robust technique.  
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