
 

American Journal of Science and Technology 

2016; 3(1): 17-24 

Published online February 2, 2016 (http://www.aascit.org/journal/ajst) 

ISSN: 2375-3846 

 

 

 
 
 
 
Keywords 
Gesture Detection,  

Kinect Sensor,  

Graphical Interface and Robotic 

Arm 

 

 

 

Received: December 11, 2015 

Revised: December 26, 2015  

Accepted: December 28, 2015 

 

Development of a Gesture 
Detection System for the Control of 
a Robotic Arm 

Osahor Uche, L. O. Kehinde 

Department of Electronic and Electrical Engineering, Obafemi Awolowo University, Ile-Ife, 

Nigeria 

Email address 
ucheosahor@gmail.com (O. Uche) 

Citation 
Osahor Uche, L. O. Kehinde. Development of a Gesture Detection System for the Control of a 

Robotic Arm. American Journal of Science and Technology. Vol. 3, No. 1, 2016, pp. 17-24. 

Abstract 
This study developed a gesture detection system for the control of a robotic arm. This 

was achieved with the view of developing a simple and user friendly approach for 

robotic arm manipulation. A Microsoft Xbox™ Kinect sensor was used as the input 

device for retrieving real-time joint information from the user. Kinematic algorithms 

were developed by applying Denavit-Hartenberg parameters and geometric equations. 

The acquired gestures from the human subject were used to carry out various kinematic 

routines as deemed fit by the user. A graphical interface was also developed to provide 

real time feedback to the user. The robot was able to execute basic gestures as instructed 

by the user rated at about 80% success rate. Most gestures developed were effective 

enough for the scope of this project. However, minimal gesture detection errors were 

recorded averaging below 20%. A standard deviation error of 3.8 at a variance error of 

approximately 14.1 was recorded. The study implemented an effective gesture system 

that was capable of executing the basic routines required for robotic arm manipulation in 

real time. 

1. Introduction 

The ability to interact with technology has become one of the greatest achievements in 

recent times. A myriad of techniques have been developed by engineers and scientists to 

manipulate, instruct and communicate with electrical/electromechanical devices. This 

form of interaction is mostly established between human and machine or machine to 

machine (M2M). Most devices that process information require some form of human 

interaction to manipulate the content of their memory. Various interfaces have been 

developed to act as a link between man and machine [1]. The basic means of interaction 

include keyboards, touch screens, joysticks, touch pads etc. In recent times, Human 

machine interaction (HMI) has experienced significant development over the years and 

has integrated to all areas of life from computer gaming to more sensitive roles like 

robotic surgery, unmanned aerial vehicle maneuvering and Automobile manufacturing 

[2]. The proposed project is aimed at adapting one of the latest technologies known as 

gesture control. A sensor known as the “Kinect”, developed by Microsoft was used to 

acquire gesture commands from the user. The Kinect is a sensor that comprises of an 

RGB (red green blue) camera, 3-D depth camera and a multi array microphone. The 3-D 

depth camera is designed to monitor the gestures from the human skeletal system by 

processing the data from the depth camera. Hence, the gestures acquired from the human 

is processed into instructional code for various applications. 

 



18 Osahor Uche and L. O. Kehinde:  Development of a Gesture Detection System for the Control of a Robotic Arm  

 

 

2. Review 

The typical approach that govern robotic arm manipulation 

apply principles which include muscular control, angular 

displacement, embedded control, mind control, gesture 

control etc. A brief review of previous works that are related 

to this work are described in this section.  

Steven [3] developed a “Natural User Interface for Robot 

Task Assignment”. The robotic system they employed 

performed object detection, grasp and motion planning, while 

the human operator handled high-level tasks. Their method 

tracked a human hand from a specified virtual reality 

workstation using a Kinect. The data acquired by the user 

interface is used to manipulate virtual objects in the robots 

workspace as detected by the perception system via a second 

Kinect sensor. However, this approach was computationally 

intensive and complex to implement and quite expensive for 

mass deployment. 

Shobhitha [4] made use of an electromyogram to acquire 

electrical signals by mounting surface electrodes on the users 

forearm. The recorded muscular activity was processed and 

used to control a robotic arm. They acquired results from a 

user by executing flexion and extension motions within a 

duration of 10 seconds for 10 consecutive times. The signals 

are then processed in LabVIEW. They also incorporated 

haptic technology that transmitted stimulus signals from the 

human arm. A CAD model of the robotic arm was developed 

using Solid works software (Solid-Works, 2015). Other 

components that make up the system include an Arduino 

UNO and Arduino Mega for transmitting wireless signals to 

the robotic arm  

Olawale [5] adapted the most widely used means for the 

control of robotic arms. Their work interfaced a robotic arm 

(PUMA 560) with a pre-programmed 8051 microcontroller. 

Most of the algorithms required to execute the routines were 

programmed into the processor. The configuration of their 

design incorporated an MCU 8051 that coordinates the 

operation of the robotic arm by collecting information from 

other components of the design, which include a LATCH 

74LS373, an 8255 PIO and an EPROM 2732.  

The knowledge gained from the aforementioned 

techniques summarize the key approaches in robot control 

with regards to human-machine interaction. However, a 

closer insight into the various concepts reveal loop holes that 

were addressed in this research. A key area that was 

improved upon was the graphical interface. A more user 

friendly interface providing real time view of the three 

dimensional data of the robotic arm as well as the values 

generated from the inverse and forward kinematic algorithms 

was implemented. 

The entire work was designed to ensure that the user has 

full control of the robotic arm without any previous 

programming knowledge. Finally, a gesture recognition 

algorithm was developed that filtered unwanted gesture 

commands, so as to prevent bottlenecks that might arise as a 

result of false gesture commands 

3. The Gesture Detection System  

 

Figure 1. A graphical user interface. 

A Microsoft Kinect 3-D depth camera acquires skeletal 

images of the human skeletal frame, the images were 

captured at 15fps for this experiment. The data acquired 

contain key information that represent the movements of 

tracked joints generated from the arm gestures. This gestures 

represent arm movements that are preprogrammed to activate 

commands if successfully executed. An inverse and forward 

kinematics algorithm was developed by applying the 

Denavit-Hartenberg (D-H) parameters and geometric 

equations that represent the joints of a five degree of freedom 

(DOF) robotic arm. 

The gestures from the human subject were mapped to the 



 American Journal of Science and Technology 2016; 3(1): 17-24 19 

 

equivalent joint of the robotic arm and converted to distance 

and degrees by adapting various mathematical principles that 

represent respective joints of the robotic arm. The acquired 

information from the human subject was used to execute 

control commands. These commands were adapted into 

routines that imitate real life scenarios. A graphical user 

interface was also developed to provide a user friendly 

interface for the user as shown in Figure 1. 

The gesture detection system comprises of four major 

sections as illustrated in the configuration schematic of 

Figure 2. The sections include:  

i. Gesture Input.  

ii. Image Acquisition Device - Kinect.  

iii. Computer System.  

iv. Robotic Arm.  

3.1. Gesture Input  

This form of communication depends on the discussion 

context (the type of discussion determines the hand gesture 

maneuvers) of the individual. Every conversation has a 

specific set of gestures that are dependent on the user’s 

discretion. The gesture inputs from the humans were 

captured by the Kinect at a set speed of 15 frames per second 

for both color and depth images and the frame speeds can be 

changed to suit the design specifications. The time frame of 

15fps was sufficient to acquire relevant inputs from the arm 

movements [6]. The two main properties that are acquired 

from the human joints are the speed and displacement of each 

joint with respect to their distance from the root joint (Hip 

Centre). Reference joints were set as markers to ensure that 

gestures don’t conflict each other. 

 

Figure 2. The gesture detection system. 

3.2. Skeletal Image Acquisition Device  

The skeletal images were acquired with the Microsoft 

Kinect® sensor version 1414. The sensors were designed to 

track skeletal data at a maximum vertical angle of 47 degrees 

and a horizontal angle of 57 degrees [7] However in order to 

suit the design configuration, the angles from the human arm 

were rescaled to lie within a workable range of the Kinect 

sensors maximum angles [8].  

3.3. Computer System 

The computer system plays a key role in the gesture 

detection system. It should be noted that due to the frame 

speed (30 fps) the Kinect sensor acquires the images, a lot of 

system resources was demanded from the computer. For this 

work, the major system specifications are listed below.  



20 Osahor Uche and L. O. Kehinde:  Development of a Gesture Detection System for the Control of a Robotic Arm  

 

i. Intel® Dual core processor - 2.4 GHz Pentium ® CPU.  

ii. RAM – 4.0 GB.  

iii. Operating System - Widows 7 Ultimate 32 bit.  

All essential system drivers such as the Video Graphics 

Array (VGA), Universal Serial Bus USB, Bus controller etc. 

were in use in the course of the project. For the software 

components, A Microsoft Visual Studio 2012 was installed. 

A version 1.8 Software Development Kit (SDK) was also 

installed as part of the libraries for the project.  

3.4. Robotic Arm  

An RA-01 robotic arm with 5 degrees of freedom was 

connected to an SMC-05 controller board. The controller 

board was connected to the computer via an RS232 serial 

port and the microcontroller handled. The pulse width 

modulation for controlling the five motors of the robotic 

arm. The microprocessor receives instructions in the 

following format: [7, #, #, #, #, #] where “7” is the 

initialization/start code that informs the processor that the 

next set of 5 bytes represent the desired angular 

displacements for the robotic arm joints. The first ‘#’ 

specifies the desired angular position for the base motor, the 

second for the shoulder motor, the third for the elbow 

motor, the fourth for the wrist motor and fifth for the 

gripper motor. A baud rate of 9600 was prescribed for the 

serial communication of the robotic arm by the 

manufacturers. However several trials confirmed that a 

baud rate 0f 19200 would provide better results [8]. A baud 

rate of 19200 implies that 19200/54bits = 355.56 commands 

are transmitted per second where 54 bits represent the six 

command bytes plus a stop byte [(6+1) x 8 = 54]. This 

means that one command is transmitted every (1/355.56ms) 

= 28milliseconds. However, the manufacturers specified 

that commands should be sent to the motors every 18 

milliseconds. If this is followed, it connotes that at a baud 

rate of 19200, a command is sent at for 18milliseconds 

while no command is sent for about 10 milliseconds i.e. for 

only 2/3 the required time. Although this configuration was 

not perfect as per the specification requirements, it was 

sufficient for transmissions. A higher baud rate of 38400 

did not produce any improvement in outcome. 

4. Forward Kinematics 

The forward kinematics of the end-effector with respect to 

the base frame was determined by multiplying all the	 T	����  

Matrices, where T	���_�

�������� � T	 T …	 T	���� 	�� 	��                     (1) 

Alternatively, it can be represented as 

T		���_�

�������� �	 �r�� r�� r�� p�r�� r�� r�� p�r�� r�� r�� p�0 0 0 1 �	                   (2) 

Where r� ′s  represent the rotational elements of 

transformation matrix (k and j = 1, 2 and 3). p�, p�,p� denote 

the elements of the position vector. For the joint axes of RA-

01 where r� ′s  represent the rotational elements of 

transformation matrix (k and j = 1, 2 and 3). p�, p�,p� denote 

the elements of the position vector. For the joint axes of RA-

01 robotic arm (Figure 3). 

The transformation from frame to the base frame is given 

as: 

T	 �	�� 	$	cos θ� ( sin	θ� 0 0sin	θ� cos θ� 0 00 0 0 00 0 0 1	$                 (3) 

 

Figure 3. Robotic Arm Joint Axes. 

Equation 3.5 shows the transformation matrix of the 

shoulder to the joint. 

	 T	 �	�� 	 $cos+90 - θ�. ( sin	+ 90 - θ�. 0 00 0 (1 0sin	+ 90 - θ�. cos+90 - θ�. 0 00 0 0 1$	 
�	 $	( sin	θ� cos θ� 0 00 0 (1 0	cos θ� ( sin	θ� 0 00 0 0 1	$                        (4) 

Equation 3.6 shows the transformation matrix of the elbow 

to shoulder joint 

T	 �	�� 	$	cos θ� ( sin	θ� 0 L�sin	θ� cos θ� 0 00 0 1 00 0 0 1 	$              (5) 

Equation 3.7 shows the transformation matrix of the base 

to elbow joint 



 American Journal of Science and Technology 2016; 3(1): 17-24 21 

 

T	 �		0� 	 $cos+180 - θ0. ( sin	+ 180 - θ0. 0 L�0 0 (1 0sin	+ 180 - θ0. cos+180 - θ0. 0 00 0 0 1 $ 
�	 $	( cos	θ0 sin θ0 0 L�0 0 (1 0(sin θ0 ( cos	θ0 0 00 0 0 1 	$	                       (6) 

Equation 3.7 shows the transformation matrix of the 

gripper to wrist joint.	 
T	 �	20 	$	(1 0 0 00 (1 0 00 0 1 00 0 0 1	$                        (7) 

Hence, the forward Kinematics of the robotic arm from 

gripper to the base frame is given as: T	 �	2	� 	 T	 T	�� T	 T	0� T	20�� 	��                          (8) 

This implies that: 

x = cos θ�[L0	 cos+θ� - θ0. – L0	 sin+θ� - θ�. (	L0	 sin θ�3  (9) 

y = sin θ�[L0	 cos+θ� - θ�. - L�	 sin+θ� - θ�. (	L�	 sin θ�3  (10) 

z = sin+θ� - θ0. – L�	 cos+θ� - θ�. - 	L�	 cos θ�3    (11) 

Where x, y, z are the Cartesian coordinates of the gripper. 

5. Inverse Kinematics 

The inverse kinematics of a robotic arm determines the 

joint angles and joint displacements of the robotic arm when 

the end effectors coordinates are known (Figure 4). The 

inverse kinematics is computationally expansive and 

generally takes a very long time in the real time control of 

manipulators. 

The inverse kinematic problem can be resolved by two 

major approaches, namely: 

i. The Geometric Solution Approach. 

ii. The Algebraic Solution Approach. 

The Geometric solution approach was adapted in this work 

by breaking down the spatial geometry of the manipulator 

into several plane geometry equations. The joint rotations are 

for base (θ�), shoulder (θ�), elbow (θ�), and wrist (θ4). To 

obtain the +x, y, z.  coordinate at the top of the object, it 

implies that: rdist = Usin θ� + Lsin θ�� + G               (12) z � B - U cos θ� 	( 	Lsin θ��               (13) 

Where θ�� � 180 (	+θ� -	θ�. and U, L, and G are the 

lengths of the upper arm, lower arm and gripper links 

respectively, θ4	 is the wrist angle.  

��	 	� 	 �� <=��� <=	 	⟹ 	θ�	= tan��	 ��		               (14) 

θ�		= sin�� @��AB�C�0���� D                       (15) 

 

Figure 4. Robotic Arm Geometry. 

where	b	 � 	2kL�L0		, a � 	4L�	�L�	� - 	4kL�	�L0	�	c� 	4+k	� ( 	4L�	�L�	�. 

k � +x	� - y	� - 	z	�	. 	(	(L�	� -	L�	� -	L0	�)  (16) 

And 

	θ�		= sin�� @��AB�C�0
L�
 D                    (17) 

where	f � 	 k�	� -	k�	�, e � 	2zk�	g � 	4+	z� (k�	�.+	k�	�-	k�	�	. 



22 Osahor Uche and L. O. Kehinde:  Development of a Gesture Detection System for the Control of a Robotic Arm  

 

k� �	L0	 sin θ� -	L�	 cos θ�	 	- 	L�	 k� �	L0	 cos θ� (	L�	 sin θ�	                         (18) 

6. Software Design Concept 

The software for the robotic arm was designed to present 

an efficient approach to the recognition of gestures for the 

control of a robotic arm. Earlier works related to robotic arm 

gesture control lacked basic design blocks and this prevented 

their design from being robust and adaptable by other 

software programmers. 

Three main sections summarize the design approach 

adapted in this work, namely: 

i. Gesture Recognition Engine. 

ii. Arm Controller Engine and 

iii. Graphical User Interface. 

6.1. Gesture Recognition Engine 

The gesture recognition engine was designed to process 

the gesture inputs from the user. The gesture recognition is 

actually a library written in C# code. When a gesture is 

being executed, the location of the joints with respect to 

time and distance is of key importance to the recognition 

engine.  

6.2. Gesture Tracking Algorithm 

The gesture tracking algorithm is at the heart of this 

project, the algorithm is responsible for tracking the required 

skeletal joint data of the human of interest. To confirm that a 

gesture has being correctly executed, a set of defined rules 

must be established to confirm that the gestures are valid and 

this is shown in Figure 5.  

Three phases have being incorporated in the algorithm 

design to ensure that tracked gestures are executed 

according to preset standards. Due to the complexity of 

human gestures performed in a discussion context, it is 

imperative that all the incorporated detecting phases are 

linked to each other. This is to ensure that inter phase 

communication is not breached [9].  

Stage one of the algorithm determines if a gesture start 

mode has being initiated. To establish the initialization, it 

checks if the joints location falls within set limits. The limits 

are dependent on joint markers such as the spine, shoulder 

joint etc. If successfully executed, the flow of command 

swings to stage two. 

Stage two monitors the joints to ensure that the gestures 

still lie within the discussion context of the specified gesture 

command (e.g. Swipe Left, Swipe Right etc.). In an event the 

gesture fall out of place the command returns to stage one to 

await the next gesture command. 

Stage three checks to confirm that the gesture has not 

violated any of the constraints set by the previous stages and 

it also confirms that the gesture command was executed 

within 15 frames. At this final stage, an Event Handler is 

fired to trigger the Arm Controller Engine into action. The 

Arm controller Engine verifies the gesture type and executes 

the relevant command which is transmitted to the robotic arm 

via serial communication. 

6.3. Arm Controller Engine 

The arm controller engine is responsible for controlling the 

robotic arm. All the algorithms that define the forward and 

inverse kinematics of the robotic arm are stored in the arm 

controller library. The serial communication protocol of the 

robotic arm is also part of the arm controller engine.  

	
Figure 5. Flow Chart of Gesture Detection System. 

The gestures that are processed by the gesture recognition 

engine generates set of commands that are passed to the arm 

controller. The various directions include:  

i. Swipe To Right 

ii. Swipe To Left 

iii. Arm Forward  

iv. Arm Backward 

v. Shoulder Up  

vi. Shoulder Down  

vii. Arm Trigger  

7. Hardware Communication 

In order to achieve a smooth operation of the entire 

experiment, the hardware interaction between devices must 

be taken into consideration. Figure 6 depicts four stages that 

summaries the data flow of the setup. Human skeletal 

positional data was acquired at a set value of 15fps by a 



 American Journal of Science and Technology 2016; 3(1): 17-24 23 

 

Kinect XBOX360
®
 sensor (Model no: 1414), powered 

externally. The skeletal data acquired is converted to binary 

values and transmitted via a -5v to +5v powered USB cable 

to the computer system. The acquired data stream from the 

Kinect sensor matches the USB port of the computer system 

powered by the Kinect USB “plug n play” preinstalled driver 

software.  

The connection between the computer and the robotic 

arm is via a USB-Serial converter cable (with installed 

prolific USB-Serial driver). The data transmission is 

achieved by transmitting signals generated from the 

computer system via the USB port to the serial port of the 

controller board of the robotic arm. The serial port data is 

usually sent as a packet at 20ms intervals with 8 bit word, 

start, stop, parity bits. The Start bit is usually between +5v 

to +7v followed by data bits and finished by stop bit 

between -5v and -7v [8]. 

8. Results 

Table 1 shows a set of data that depicts the respective 

values of the robotic arm for fourteen (14) tested routines. 

The table is divided into five (5) major sections; the xyz 

coordinates, expected joint angles, actual joint angles, the 

joint angle errors and error calculations. 

The xyz coordinates of the tracked users’ arm was 

imputed into the inverse kinematics equation so as to 

provide the expected joint location of the respective joints 

(shoulder, base and elbow). The acquired values were 

recorded and compared with the xyz coordinates of the 

arm acquired in real time for the same xyz coordinates. 

Slight changes were recorded in the real time computed 

values as compared to the computed values. This 

inconsistences were expected because the xyz value 

acquired in real time are subject to various factors such as 

light visibility, line of sight , poor gesture event handling, 

motor rotational speed, serial communication and the 

multi-threaded response of the robotic arm controller 

engine [10]. A set of graphical diagrams (Figures 7a, b, c) 

show expected (dotted lines) and actual (solid lines) for 

each monitored joint (base, shoulder and elbow joints). 

 

Figure 6. Hardware Interaction. 

Table 1. Error Test for Cartesian Position of the Robotic Base from 90 t0 180 degrees. 

Hand Cartesian Position (mm) Expected Joint Angles (Degrees) Actual Joint Angles (Degrees) Error in Joint Angles (Degrees) 

X Y Z Base Shoulder Elbow Base Shoulder Elbow Base Shoulder Elbow 

0.3 0.1 1.3 72 19 90 68 22 80 4 3 10 

0.4 0.1 1.3 77 20 89 57 18 90 20 2 1 

0.1 0.2 0.8 63 39 -76 65 42 -69 2 3 7 

0.1 0 0.7 90 5 -90 88 0 -83 2 5 7 

0.5 0.3 1.1 59 60 96 54 45 92 5 15 4 

0.5 0.3 1.6 59 58 84 60 60 81 1 2 3 

0.2 0.4 0.9 26 75 -80 22 78 -75 4 3 5 

0.2 0.5 1.0 21 90 10 24 90 10 3 0 0 

-0.1 0.2 1.2 -26 40 38 -30 38 35 4 2 3 

-0.6 -0.2 1.3 -90 -40 62 -89 -35 58 1 5 4 

-0.2 1.4 1.6 -18 90 90 -20 70 84 2 6 6 

-0.3 0.4 0.9 -36 39 -80 -32 40 -75 4 1 5 

-0.1 0.3 1.1 -18 60 15 -19 58 20 1 2 5 

-0.5 -0.2 0.4 -90 -38 -90 -90 40 -90 0 2 0 

                                                                                                             Mean Error (mm)                                         3.79             3.64             4.30 

Overall Mean Error(mm) = 3.9 

Variance of Error(mm) = 14.1 

Standard Dev. of Error(mm) = 3.8 



24 Osahor Uche and L. O. Kehinde:  Development of a Gesture Detection System for the Control of a Robotic Arm  

 

 

    

Figure 7a. Elbow Joint gesture response. 

    

Figure 7b. Shoulder Joint gesture response. 

    

Figure 7c. Base Joint gesture response. 

9. Conclusion 

A few glitches were experienced with the gesture 

recognition engine, and this was caused by an overlapping of 

detected gestures and the lighting of the room in which the 

control routines was tested. The system showcased the 

importance of gesture control in human machine interaction. 

However, further work needs to be done to apply machine 

learning algorithms to expand the flexibility of the gesture 

detection system.  

References 

[1] Cannan, J. & Huosheng Ho, 2010. Human-Machine 
Interaction (HMI): A Survey, Essex: School of Computer 
Science & Electronic Engineering. 
[Online]http://cswww.essex.ac.uk/staff/hhu/Papers/CES-
508%20HMI-Survey.pdf 

[2] Johannsen, G., (2007). Human Machine Interaction. Control 
Systems,Robotics and Automation, Volume XXI, p. 1. 

[3] Steven J, L., Shawn, S. & Neal, C., (2014). Natural User 
Interface for Robot Task Assignment [Online] 
http://hci.cs.wisc.edu/workshops/RSS2014/wp-
content/uploads/2013/12/ levine2014 natural.pdf 

[4] Shobhitha, A. J., Jegan, R. & Melwin, A., (2013). OWI-535 
EDGE Robotic Arm Control Using ElectroMyoGram (EMG) 
Signals. International Journal of Innovative Technology and 
Exploring Engineering (IJITEE), II(6), pp. 282 - 286. 

[5] Olawale, J., Oludele, A., Ayodele, A. & Miko, N., (2007). 
Development of a Microcontroller Based Robotic Arm. 
American Journalof Engineering Research (AJER), IV(2), pp. 8. 

[6] Jana, A., (2012). Kinect for Window SDK programming 
guide. 1st ed. Birmingham: Pack Publishing Press. [Online] 
http://www.pactpub.com/game-development/kinect-windows-
sdk-programming-guide 

[7] Clement, G. and Massimo, F., (2013). Kinect in Motion - 
Audio and Visual Tracking by Example. 1st ed. Birmingham: 
Packt Publishing Press. [Online] 
http://www.pactpub.com/game-development/kinect-motion-
%E2%80%93-audio-and-visual-tracking-example 

[8] Akinwale, O. B., L. O. Kehinde, K. P. Ayodele, A. M. Jubril, 
O. P. Jonah, O. Ilori, and X. Chen, " (2009). A LabVIEW-
based on-line robotic arm for students’ laboratory", 2009 
ASEE Annual Conference & Exposition, Austin, Texas, ASEE, 
pp. Paper 2009-1179. 

[9] Catuhe, D., (2012). Programming with the Kinect for 
Windows. Redmond,Washington: Microsoft Press. [Online] 

[10] https://books.google.com/books/about/Programming_with_the
_Kinect_for_Windows.html ?id=66kgXfDKdYwC 

[11] Microsoft, (2015). Chapter 18. Threading and 
Synchronization. [Online] 
msdn.microsoft.com/enus/library/ff652496(d=default,l=enus,v
=orm.10).aspx[Accessed 9 July 2015]. 

 


