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Abstract 
Galois Theory is one of the interesting subjects in Mathematics. It constitutes a link 
between Polynomials, Fields and Groups. This paper considers manipulation of 
polynomials, studies and investigates some applications of groups and Fields and their 
extensions. Polynomials are regarded as an essential tools in the construction of rings 
and fields. Consequently the ring theory plays the basic role in the study of Galois 
groups, particular attention has been given to the algebraic polynomials, in terms of their 
reducible or irreducible properties. This has led to the study of Fields, Extension Fields 
and the Galois groups. The subject was extensively studied by the great mathematician 
Galois first. Subsequently many other mathematicians contributed in this field, 
appreciating Galois' great achievement in this area of mathematics. 

1. Introduction 

In this paper some properties have been studied in order to find out about the basic 
relationships between the fields, rings and polynomials. Some results have been stated 
and used from [1], [2], [3] and [4]. The main objective of this paper is to investigate the 
Automorphisms of the field extensions. 

In section one, the basic principles and properties have been covered in order to make 
the consequent progress as smooth as possible. 

Section two deals with the basic properties of the polynomial rings, the nature and the 
structure of the extension fields. 

Section three tackles some important results discovered by many other researchers.  
Section four deals with some applications of the Galois Groups, their nature, and their 

structural properties and characteristics. 
The conclusion of this paper is to investigate the relationship between the roots of 

unity and the Galois Groups Gal (ℚ���/ℚ). Also to prove that for � ∈ � and � ∈ 	ℚ, the 
Galois group will not be necessary abelian. 

2. Basics 

In this section we cover the basic terminologies required as a background knowledge 
in the latter sections. These are mainly given in other reference, such as [1], [2], etc.  

Definition 1.1: Let F be a field. Then F[x] denotes the ring of polynomials with 
coefficients in F. i.e. 
��� � �� �⋯� ��� � �� Where �� � 0, where ��, … , � ∈ �. 

Let f and g be polynomials in F[x], with 
 � 0 . Then there exist polynomials 
�	���	� ∈ ����  such that ���� � ����
��� � ����,	where either r = 0 or deg���  
deg�
�. 

Definition 1.2: Let f, g, h be polynomials in F(x). Then g divides f, ie (g | f) if there 
exists � ∈ � such that f = q g. 

The polynomial f is reducible if it is non-constant and whenever we have factorization  
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f = g h, either g or h is a unit. In this case 

�. ". �	�
, �� � # 
								$
	
|�1	'()*�	+$,* 

Proposition 1.3: Suppose - � � ,⁄ 	∈ /  where �	���	,	 ∈
	0  are co-prime is a root of 
��� � �� �⋯� ��� �
��	�� ∈ 0. Then �|�� and ,|� 

Proof						- � � ,	 ⟹ 
�-� � 02  

0 � 	 ,	
	�	� ,⁄ � � �� � �3��3�	, � ⋯� ���3�,
� ��, 

Since r divides each term in this expression, then �|��,. 
Also r and s are co-prime, therefore �|��. Also ,|�� and 

since r and s are co-primes, then s divides	�. 
Example 1: let 
��� � 3�5 6 3� 6 1  
Then the only possible roots are 7	1, 7 1 32  


��� � 61, 
�61� � 5, 
91 32 : � 65 32 	���	
961 32 : � 1 32  

Therefore f is irreducible.  
Definition 1.3: A field is a set F with two binary operations 

"+" and "." such that  
(a) ��, �� is a commutative group 
(b) (�; , . � is a commutative group, where �; � �\	=0> 
(c) The distribution law holds. 
An example of a field is Q[√2]. The set of all numbers 

which can be written a+b√2 for a and b rational numbers. 
Definition (Algebraic Number): f α is a real number with 

the property that p(α)=0 for some polynomial p(x), then we 
say that α is an algebraic number. 

If α is an algebraic number then Q[α] is a field. Q[α] 
consists the set of elements of the form 
a0+a1α+…+an−1αn−1 where each ai is a rational number 
and n is the smallest integer such that there is a polynomial 
p(x) of degree n with p(α)=0. Q[α] is the smallest field 
extension of Q containing α. Q[2√3]={a+b2√3+c2√3.2:a,b,c 

∈	 Q} is another example of a field. This idea can be extended 
to define, for α, β both algebraic, Q[α,β] to be the set of all 
expressions like 2αβ, α+α2β, and so on. 
[√2,√3]={a+b√2+c√3+d√6: a, b, c, d ∈Q} is an example of a 
Field. 

The characteristic of a field  

Definition 1.4: A field F is of finite characteristic p (Char 
(F) = p) if there is a least positive integer p such that 
(1+1+1+…+1) = 0 in F, (p-times). If there is no such integer, 
then F is said to have characteristic 0. 

3. Extension Fields 

Definition 2.1: Let F be a field. A field extension of F is a 
field E containing F. We write E/F as a field extension. E.g. 
C/R, Q/Q, Q√2 / Q 

If E is a field containing F then, for all * ∈ A	���	B ∈ �, 
then product B*  is defined in E ; thus we have a scalar 
multiplication by F on E. Looking at the axioms for E to be a 

vector space over F, we see that they are all special cases of 
the axioms for E to be a field. Hence E is indeed a vector 
space over F and it has a basis and dimension over F. 

Definition 2.2: Let E/F be a field extension. If E is finite 
dimensional as a vector space over F then we say that E/F is 
a finite extension, otherwise it is infinite. If it is finite then 
the degree of E/F is �A: �� � �$DE�A�. 

For example, in the extensions above we have: 
� F/G is finite of degree [F:G] = 2, because {1,i} is a 

basic for F as a G-vector space. 
� F/ℚ is finite; 
� F/ℚ is finite of degree [ℚ:ℚ]=1, because { q } is a 

basis for any � ∈ ℚ;; 
� ℚ9√62:/ℚ is finite of degree 2, because B = {1,	√62} 

is a basis. In this case it is clear that B spans ℚ9√62:, 
since ℚ9√62: � =� � H√62: �, H, ∈ ℚ	>. To see that B 

is linearly independent over ℚ, suppose � � H√62 � 0, 
for some �, H, ∈ ℚ. 

If H � 0 then √2 � �/H ∈ ℚ	which is absurd. Hence b = 0 
and so a = 0.  

Algebraic extensions  

Definition 2.3: Let E/F be a field extension and -	 ∈ A. - 
is algebraic over F if there is a non-zero polynomial 
 ∈ ���� 
such that �-� � 0; otherwise - is transcendental over F. 

Splitting Fields 

Definition 2.4: Let F be a field, let	
 ∈ ���� and let E/F be 
an extension.  

(i) We say that f splits over E if it factorizes completely in 
E[x], i.e it can be expressed as a product of linear 
factors  


��� � ���	I 6 -��… �	I 6 -�, +$()	-�, … , - ∈ A, �� ∈ �; 

(ii) We say that E is a splitting field for f over F if f splits 
over E but not over any intermediate extension 
J, A ⊇ J ⊇ �. 

Remark: If f splits over E as above, then we can describe a 
splitting filed for f over F quite easily. ��-�� is the subfield 
of E of rational functions in -�  with coefficients in F 
(equivalently, it is the smallest subfield of E containing F 
and	-�). Inductively we can define:  
�	�-�, … , -� � ��-�, … , -3���-� , since E is a field 

extension of ��-�, … , -3�� , then �	�-�, … , -�  is the 
smallest field containing F and all the root -�, … , - of f. So 
it is a splitting for f over F. 

 

Figure (1). Isomorphism of two splitting fields E and AL of the field F. 
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Theorem 2.5: Let F be a field and 
 ∈ �[�] a polynomial 
of degree n. Then there exists a splitting filed E for f over F, 
and [A: �] ≤ �! 

Moreover if AL is another splitting filed for f over F then E 
is isomorphic to AL  as extensions of F, i.e. there is an 
isomorphism O: A →Q 	AL  such that the following diagram 
commutes: That is, O��� = �	
'�	�RR	�	 ∈ �. 

Proof of existence. By the remark above. It is sufficient to 
find an extension of degree at most n!, in which f splits. We 
proceed by induction on n, noting that when n = 1 the 
polynomial f already factorizes over F and [F:F] = 1. So we 
turn to the inductive step and start by factorizing f over F, 


��� = S����… ST���	$�	�[�] 
where each SU  is irreducible in F[x] and deg 	�S�� ≤ �S5� ≤
⋯ ≤ deg	�ST� 

Put �� = �[�]/�S����� , an extension of F of degree 
deg�S�� ≤ n which contains a root -� of S����. Since -� is 
also a root of f, we can factorize  


�I� = �I − -��
��I�	$�	��[I] 
Now deg�
�� = � − 1	  so we can apply the inductive 

hypothesis to find an extension E of �� of degree at most (n-
1)!, in which 	
�  splits. Then f also splits in E and by the 
Tower Law 
[A: �] = [A: ��][��: �] ≤ �� − 1�! � = �!, as required  
To prove the uniqueness we consider the following 

example: 
Example 2: Find the degree of the splitting field of 

IW − 1	'X*�	ℚ 
Solution: we have to factorize the polynomial first. We 

have IW − 1 = �I − 1��I5 + I + 1� and the second factor 
is irreducible as the only possible roots are ±1 but neither is 
a root.  

Let + = *5YU/W be a root of I5 + I + 1	in	ℂ then ℚ�+� is 
a splitting field, since IW − 1 = �I − 1��I + +��I + +5� 
and [ℚ�+�:ℚ] = 2 , since w has minimal polynomial 
I5 + I + 1	'X*�	ℚ	of degree 2. 

Normality 

Definition 2.6: finite extension E/F is normal if any 
irreducible polynomial 
 ∈ �	[I] which has a root in E splits 
completely over E.  

Note that normality is a property of the extension not of 
the field. Also note that, to show that an extension E/F is not 
normal, we need only find an irreducible polynomial in F[X] 
which has a root in E but does not split over E. On the other 
hand, to prove that an extension is normal, we need the 
following proposition which is stated in [4]. 

Proposition 2.7 Finite extension E/F is normal if and only 
if it is the splitting field over F of some polynomial in F[X]. 

Example 3:  

(i) ℚ�√2	[ ) is not a normal extension of ℚ: the irreducible 
polynomial 
��� = 	IW − 2  has a root √2[  in ℚ�√2	[ � 
but does not split in ℚ�√2	[ �, since the other roots of f in 
ℂ are not real. 

(ii) ℚ�√2	[ , \) is a normal extension of ℚ; since we have 
seen that it is the splitting field over ℚ of IW − 2. 

(iii) ℚ�√2	[ , √3) is a normal extension of ℚ; since it is the 
splitting field over ℚ of �IW − 2��I5 − 3�. 

4. Galois Theory 

Automorphisms of field extensions  

Definition 4.1 Let A/�  be a field extension. An � −
�]('D'�Sℎ$,D	'
	A is an isomorphism ^: A → A such that 
^��� = �	
'�	�RR	� ∈ �. We write Aut �A/�� for the set of 
� − �]('D'�Sℎ$,D of A. 

Note that Aut �A/�� is actually a group, with composition: 
� If ^, _	 ∈	Aut �A/��	then so is ^_ = ^	`	_.	It is certainly 

an isomorphism from A  to itself, where ^_��� =
^9_���: = �:	
'�	� ∈ �. 

� The map $: A → A,  given by $�*� = *  for all * ∈ A,  is 
the identity element of Aut�A/��. 

� If ^ ∈  Aut 	abEc  then ^3� ∈  Aut 	abEc  as ^3�9^���: =
$��� = �, for � ∈ �. 

Example 4 Let S��� = 	�5 − 2 be a polynomial, then: 
(a) The splitting field of p(x) is Q[ √2 ].(b) The 

automorphisms of p(x), which are the symmetries of the roots, 

are given by: f (a + b√2	) = a−b√2		and g (x) = x. 
Lemma 4.2 Let �E/F� be a field extension. Let α ∈ E be 

algebraic over F, and let σ	 ∈ Aut	�E/F�. Then σ�α�	 ∈ 	E is a 
root of the minimal polynomial of α over F. 

Proof: Let f�X� = 	Xj + aj3�Xj3� +⋯+ a�X	 + a� ∈
F[X] be the minimal polynomial over F of -. Then 

	
�^�-��	 	= �^�-��	 + �3��^�-��	3�+
= 	^�-� + ^��3��^�-3��	
+⋯^����^�-�	 + ^���� 	
= 	^�- + �3�-3� +⋯��- 	
+ ��� 	= 	^9
�-�: = ^�0� = 0 

Let A = ��-�, … , -�	is	finite	extensionof F. Then  
� Any ^ 	 ∈ Aut	�A/�� must map each -U  to a root of its 

minimal polynomial over �U. 
� ^ 	 ∈  Aut 	abEc  is uniquely determined by specifying 

^�-��, …^�-�, since	any	element	of	E	can	be	written  
in terms of -�, … -  and elements of F, while ^  is a 
homomorphism. 

Example 5:  

(i) Aut	�ℚ�√2		 /ℚ� has at most two elements, since √−2	  
must be mapped to either ±√−2 (as these are the roots of 
I5 + 2  the minimal polynomial of √−2	 	 over ℚ ), and 
specifying which one of these occurs determines the 
automorphism. Indeed, there are two: the identity map i, and 
the map ^ given by: ^	9	� + H√−2: = 	� − H√−2 

(ii) Aut	�ℚ�√2	[ /ℚ� has only the identity map, as √−2	[  has 
minimal polynomial IW + 2  over ℚ , whose only root in 
ℚ�√2	[ � is √2	[  and hence √2	[ 	 can only be mapped to itself. 

Example 6 For each of the following polynomial $�	ℤ[I], 
we find a splitting field E over ℚ, the Galois group of 
 over 
ℚ, and all intermediate fields: ℚ	 ⊆ J ⊆ A.	We also, identify 
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those subfields for which J/ℚ is Galois and in that case, find 
Gal(L/ℚ). 


��� = �x − 2 

The splitting field is E = ℚ�y, $�, where y = √2z , since the 
roots of Ix − 2 are ±y,±$y . This has degree 8 over ℚ,	so 
writing G = Gal (E / ℚ�. We have |{| = 8. 

Any automorphism is uniquely determind by its action on 
y and i. It it must map I to ±	$	 and y  to one of the roots of 
�x − 2.		 Hence there are 8 possible automorphims. Hence 
there are automorphisms ^, _	 ∈ {  such that: 	^  �$� = $,
^�y� = $y	; 	_�$� = 	−$, _�y� = y. Then we can easily check 
that { = =	1, ^, ^5, ^W, _, _^5, _^W> = =	^, _:	^x = 1, _5 =
1, _^ = ^W_	> ≃ ��. 

This is a dihedral group with 8 elements,  
Remark Since {  is a subgroup of �x , we could ask to 

identify it as such. Numbering the roots y, $y, −y, −y	 as 
1,2,3,4 respectively, we see that ^ = �1	2	3	4�	_ = �24� and 
G ={1, (1234), (13)(24), (1432), (24), (14)(23), (13), 
(12)(34)}. 

Example 7. Let S	��� = 	 �5 − 2	 be a polynomial, then 
{ = {�R	�S� = =
, �>, where, 


	9� + 	H	√2: = � − H√2		���	���� = �. 

g is the identity element of the group and 
. 
 = �, as 

�
. 
�9	� + 	H	√2: = 
 a
9� + 	H	√2	:c = 
9� −
H√2	: = �9� + 	H	√2	:  This group is cyclic of order 2 
isomorphic to �5. 

5. Applications 

We are now going to introduce some results about 
application of Galois Group. 

Proposition 5.1 Let F be a field with char ��� ≠ 2. 
Suppose P is an odd prime. There exists a field (up to 
homomorphism) with S5 elements. 

Proof Take a field of characteristic p. K contains �. So 
consider the quadratic extension ��. Define a homomorphism 
∅: �	�; 	→ 	�	�;	by ∅��� = �5. Then ker (∅� = =1, −1>.  
Therefore ∅	��	�;� has index two in �	�; 	so �	�;	is the only 

possible field which can be A = �[�]/�I5 − ��. 
Proposition 5.2 Let G be the Galois group of the 

polynomial I5 − 2 over Q, show that |{| = 20  
Proof: The splitting field Q[ �, - ], where �� = 1  and 

-� = 2 . This is generated by � = �1	2	3	4	5�	���	_ =
�2	3	5	4�  where ^- = �-  and _� = �5 . So the group has 
order 20. 

Proposition 5.3 			  Every field homomorphism ∅: � →
�	must be one – to –one and onto.  

Proof: ∅ acts as the identity map on ℤ and ℚ. ∅���� = ��. 
Therefore ∅ preserver the order Therefore if � ∈ ℝ we have 

=	� ∈ ℚ: � < �> = =� ∈ ℚ|∅	��� < �> resulting in ∅	��� = �. 
Theorem 5.4 If � = *5YU/ a primitive ��� root of unity is 

ℂ, with � ≥ 0, then Gal(ℚ���/ℚ) is abelian of deg. at most n 
- 1. 

Proof: Since �	is a root of I − 1 = �I − 1��I3� +⋯+
I + 1�  and �	 ≠ 1  the minimal polynomial of �	and ℚ  has 
degree at most n - 1. 

Also the roots of I − 1  are 1, �, �5 +⋯+ �3�  which 
are all in ℚ���. 

So this is the splitting field of I − 1 and so it is a Galois 
extension. 

Let � ∈ { = {�R	�ℚ��� /	ℚ� is gives by ���� = �U�Y�  for 
some $��� ∈ ℤ/�	ℤ. 

Since ����is a root of I − 1,  

Therefore _���� = 	_9�U�Y�: = 	_���U�Y� = �U���U�Y� =
�U�Y�U��� = �_���. Therefore _� = �_. 

Theorem 5.5 Let	� ∈ ℕ and � ∈ 	ℚ. Then the Galois group 
of Q is not necessarily abelian. 

Proof: Let 
�I� = I − �	���	A	 the splitting field of 

�I�	over ℚ  

If \ = √��  and �	 = *�YU/ then the root of 
��� in C are: 
\,\�	, \�5, … , \�3�	.Take A = ℚ�\, ��. Put � = ℚ��� the 
splitting field over ℚ of I − 1, then we have ℚ ⊂ � ⊂ A. 

Let { = {�R�A//�	and � = {�R�A/��. The subgroup of 

G with respect to the intermediate field K.  

Since K/Q is normal, then N is a normal subgroup of G 
and � ≃ {�R��/ℚ�.  

Also {�R��/ℚ� is abelian by theorem 5.4. 
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