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Abstract 
The purpose of this paper is to depict the effect of thermal and diffusion phase lags due 

to axisymmetric heat supply for a disc. The problem is discussed within the context of 

DPLT and DPLD models. The upper and lower surfaces of the disc are traction free and 

subjected to an axisymmetric heat supply. The solution is found by using Laplace and 

Hankel transform technique and a direct approach without the use of potential functions. 

The analytical expressions of displacements, stresses and chemical potential, temperature 

and mass concentration are computed in transformed domain. Numerical inversion 

technique has been applied to obtain the results in the physical domain. Numerically 

simulated results are depicted graphically. The effect of diffusion and thermal phase-lags 

are shown on the various components. Some particular cases of result are also deduced 

from the present investigation. 

1. Introduction 

Classical Fourier heat conduction law implies an infinitely fast propagation of a 

thermal signal which is violated in ultra-fast heat conduction system due to its very small 

dimensions and short timescales. Catteno [1] and Vernotte [2] proposed a thermal wave 

with a single phase lag in which the temperature gradient after a certain elapsed time was 

given by � � �� ���� � �	
�, where �� denotes the relaxation time required for thermal 

physics to take account of hyperbolic effect within the medium. Here when 	�� 
 0, the 

thermal wave propagates through the medium with a finite speed of �� ��� , where � is 

thermal diffusivity. when �� approaches zero, the thermal wave has an infinite speed and 

thus the single phase lag model reduces to traditional Fourier model. The dual phase lag 

model of heat conduction was proposed by Tzou [3] � � �� ���� � �	�
� � �� ��� 
��, 
where the temperature gradient 
� at a point P of the material at time � � �� corresponds 

to the heat flux vector �  at the same time at the time � � �� . Here � is thermal 

conductivity of the material. The delay time ��  is interpreted as that caused by the 

microstructural interactions and is called the phase lag of temperature gradient. The other  
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delay time �� interpreted as the relaxation time due to the fast 

transient effects of thermal inertia and is called the phase lag 

of heat flux. This universal model is claimed to be able to 

bridge the gap between microscopic and macroscopic 

approaches, covering a wide range of heat transfer models. If 

	�� � 0, Tzou [3] refers to the model as single phase model. 

Numerous efforts have been invested in the development of 

an explicit mathematical solution to the heat conduction 

equation under dual phase lag model. Quintanilla [4] 

compared two different mathematical hyperbolic models 

proposed by Tzou. Kumar and Mukhopadhyay [5] 

investigated the propagation of harmonic waves of assigned 

frequency by employing the thermoelasticity theory with 

three phase lags. Chou and Yang [6] discussed two 

dimensional dual phase lag thermal behaviour in single-

/multi-layer structures using CESE method. Zhou et. al [7] 

proposed an axisymmetric dual-phase-lag bio heat model for 

laser heating of living tissues. Kumar et. al [8] discussed 

effect of viscosity on wave propagation in anisotropic 

thermoelastic medium with three phase lag model. Abbas et. 

al [9] investigated two-dimensional problem in a transversely 

isotropic thermoelastic medium without energy dissipation 

and with two temperatures due to a thermal source. Liu et. al 

[10] analysed thermal damage in a laser-Irradiated based on 

non-Fourier model. Ying and Yun [11] built a fractional dual-

phase-lag model and the corresponding bio-heat transfer 

equation. Mondal et. al [12] investigated fractional order 

two-temperature dual-phase-lag thermoelasticity with 

variable thermal conductivity. Abdallah [13] used uncoupled 

thermoelastic model based on dual phase lag to investigate 

the thermoelastic properties of a semi-infinite medium. 

Bhattacharya and Kanoria [14] investigated the problem of 

elasto-thermo-diffusion inside a spherical shell. Kaushal et. al 

[15] analysed wave propagation in temperature rate 

dependent thermoelasticity with two temperatures. Kaushal 

et. al [16] discussed propagation of waves in generalized 

thermoelastic continua with two temperature. Rukolaine [17] 

investigated unphysical effects of the dual-phase-lag model 

of heat conduction. Tripathi et. al [18] analysed generalized 

thermoelastic diffusion problem in a thick circular plate with 

axisymmetric heat supply. 

Diffusion is defined as the spontaneous movement of the 

particles from high concentration region to the low 

concentration region, and it occurs in response to a 

concentration gradient expressed as the change in 

concentration due to change in position. Thermal diffusion 

utilizes the transfer of heat across a thin liquid or gas to 

accomplish isotope separation. The thermodiffusion in elastic 

solids is due to coupling of fields of temperature, mass 

diffusion and that of strain in addition to heat and mass 

exchange with the environment. Dual phase lag diffusion 

model was considered by Kumar and Gupta [19, 20], Chiriţă, 

et. al [21] study the propagation of plane time harmonic 

waves in the infinite space filled by a time differential dual-

phase-lag thermoelastic material. Sherief and Hamza [22] 

considered the two-dimensional problem of a thick plate 

whose lower and upper surfaces are traction free and 

subjected to a given axisymmetric temperature distribution is 

considered within the context of the theory of generalized 

thermoelasticity with one relaxation time. Kumar et. al [23] 

investigated thermomechanical interactions for dual –phase- 

lag in a homogeneous isotropic thick circular plate in the 

light of two-temperature thermoelasticity theory. 

Here in this investigation, a generalized form of mass 

diffusion equation is introduced instead of classical Fick's 

diffusion theory by using two diffusion phase-lags in 

axisymmetric form. One phase-lag of diffusing mass flux 

vector, represents the delayed time required for the diffusion 

of the mass flux and the other phase-lag of chemical 

potential, represents the delayed time required for the 

establishment of the potential gradient. The basic equations 

for the isotropic thermoelastic diffusion medium in the 

context of dual-phase-lag heat transfer (DPLT) and dual-

phase-lag diffusion (DPLD) models in axisymmetric form 

are presented. The components of displacements, stresses and 

chemical potential, Temperature and mass concentration are 

computed numerically. Numerically computed results are 

depicted graphically. The effect of diffusion and thermal 

phase-lags are shown on the various components. 

2. Basic Equations 

The basic equations of motion, heat conduction and mass 

diffusion in a homogeneous isotropic thermoelastic solid 

with DPLT and DPLD models in the absence of body forces, 

heat sources and mass diffusion sources are 

�� + ��∇�∇. �� + �∇�� − ��∇� − ��∇� = ���                                                       (1) 

 1 + �� ���"��,$$ =  1 + �� ��� + ��� �%��%" [��'�( + ���)*(++ + ,�)�(]                                      (2) 

 1 + �. ���" �/��∇��∇. �� + /,∇�� − /0∇��� + ���  1 + �1 ��� + �1� �%��%"� = 0                             (3) 

and the constitutive relations are 

2$3 = 2�*$3 + 5$3��*++ − ��� − ����                                                                 (4) 

��)6 =  1 + �� ��� + ��� �%��%" ���'� + ���)*++ + ,�)�)                                               (5) 

7 = −��*++ − ,� − 0�                                                                                (6) 
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Where � , �  are Lame's, �  is the density assumed to be 

independent of time, D is the diffusivity, P is the chemical 

potential per unit mass, C is the concentration, �$  are 

components of displacement vector u, K is the coefficient of 

thermal conductivity, �'  is the specific heat at constant 

strain, � = 8 − �)  is small temperature increment, 8  is the 

absolute temperature of the medium, �)  is the reference 

temperature of the body such that 9 ::;9 ≪ 1 , a and b are 

respectively, the coefficients describing the measure of 

thermodiffusion and mass diffusion effect respectively, 2$3 
and *$3 are the components of stress and strain respectively, *++ is dilatation, S is the entropy per unit mass, ��=	�3� +2���� , �� = 	�3� + 2���> , 	�> is the coefficient of linear 

diffusion expansion and �� is the coefficient of thermal linear 

expansion. �� , �� , �. , �1  are respectively phase lag of 

temperature gradient, the phase lag of heat flux, the phase lag 

of chemical potential, and phase lag of diffusing mass flux 

vector. In above equations, a comma followed by suffix 

denotes spatial derivative and a superposed dot denotes 

derivative with respect to time. 

3. Formulation and Solution of the 

Problem 

Consider a disc of diameter 2b occupying the space D 

defined by 	0 ≤ @ ≤ ∞,−0 ≤ B ≤ 0,  Let the ring be 

subjected to an axisymmetric heat supply depending on the 

radial and axial directions of the cylindrical co-ordinate 

system. The initial temperature of the disc is given by a 

constant temperature �),  and the heat flux C)D�@, B�  is 

prescribed on the upper and lower boundary surfaces. 

Under these conditions, the thermoelastic quantities for the 

disc are required to be determined. We take a cylindrical 

polar co-ordinate system �@, E, B� with symmetry about B –

axis. As the problem considered is plane axisymmetric, the 

field component 	�F = 0 , and �G , �H, �  and C are 

independent of E  and restrict our analysis to the two 

dimensional problem with 

� = ��G , 0, �H�                                    (7) 

Equations (1)-(6) with the aid of (7) take the form 

�� + �� �I�G + �  ∇� − �G%" �G − �� �:�G − �� �J�G = � �%KL	��%    (8) 

�� + �� �I�H + �∇��H − �� �:�H − �� �J�H = � �%KM��%          (9) 

(1+�� ���� K∇�� =  1 + �� ��� + NO%� �%��%" [��'�( +���) ��� PQR� + ,�) �J��]                    (10) 

(1+�. �����/��∇�PQ	R� + /,∇�� − /0∇��� + ���  1 +
�1 ��� + NS%� �%��%"� = 0                       (11) 

and Constitutive relations 

2GG = 2�*GG + �* − ��� − ���                  (12) 

2FF = 2�*FF + �* − ��� − ��                   (13) 

2HH = 2�*HH + �* − ��� − ���                  (14) 

2GH = �*GH, 2GF = 0, 2HF = 0                   (15) 

7 = −��* − ,� + 0�                          (16) 

where 

	* = �KL�G + KLG + �KM�H , *GG = �KL�G , *FF = KLG + �G �KT�U , *HH = �KM�H , *GH = ��  �KL�H + �KM�G "                              (17) 

To facilitate the solution, the following dimensionless 

quantities are introduced 

@V = WX∗>X @, BV = WX∗>X B, (�GV , �HV � = WX∗>X ��G , �H�, �V = Z�∗�, �2GGV , 2FFV , 2HHV , 2GHV � = �[X:; �2GG , 2FF , 2HH, 2GH� 
��V, �′� = [X]>X% ��, ��, ^��V , ��V , �.V , �1V _ = Z�∗��� , �� , �., �1�, Z�∗ = ]J`>X%a , b�� = cd�e]                      (18) 

Using (18) in equations (8)-(11) and after that suppressing 

the primes and then applying the Laplace transform defined 

by (19) 

f�̅@, B, h� = i f�@, B, ��*jk�P�l)                      (19) 

fm�ξ, B, h� = i fo�@, B, h�@pq�@ξ�P@l)                  (20) 

on the resulting quantities and simplifying we obtain 

∇��r + ∇��̅ − �∇� − s��*̅ = 0                      (21) 

(∇� − NOtNut 	h��r − av:;NOt k]J`[%Nut �̅ − a[X%:;]%J`>X%
NOtNut h*̅=0            (22) 

/,∇� ]>X%[X �r − w/0 ]>X%[% ∇� − kNSt +>X%Nxt [%J`y �̅ + /��∇�*̅ = 0    (23) 

where ��V = 1 + h�� + k%NO%� , �1V = 1 + h�1 + k%NS%� , �.V = 1 +h�., ��V = 1 + h�� 
Eliminating �r, �̅, *̅ from equations (21)-(23), we obtain 

�∇� − 	����∇� − 	����∇� − 	z����r, �̅, *̅� = 0             (24) 

The solutions of the equation (24) can be written in the 

form 

�r = ∑ �r$z$|� , *̅ = ∑ *̅$z$|� , �̅ = ∑ �$̅z$|�                 (25) 

where �r$, *̅$, and �$̅ are solutions of the following equation 

�∇� − 	$����r$ , *̅$, �$̅� = 0, Q = 1, 2, 3                (26) 

On taking Hankel transform defined by (20) on (26), we 

obtain 
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�/� − }� − 	$��^�r$∗, *̅$∗, �$̅∗_ = 0                 (27) 

�r∗ = ∑ ~$�}, h�cosh	��$B�z$|�                     (28) 

�̅∗ 	= ∑ P$~$�}, h�cosh	��$B�z$|�                   (29) 

*̅∗ = ∑ f$~$�}, h�cosh	��$B�z$|�                    (30) 

	P$ = �zz�$� − 6�����zz�$� + ��z�z�−�$������zz + ��z�z�� + ��z�′z� 

f$ = −�z��$� + ^�Vz� + ����z�_�$� − ����′z�−�$������zz + ��z�z�� + ��z�′z�  

�$ = �}� + 	$�, ��� = NOtNut 	h, ��� = av:;NOt k]J`[%Nut, ��z = a[X%:;]%J`>X%
NOtNut h, 

�z� = �v]>X%[X , �z� = /0 ]>X%[% , �′z� = kNSt +>X%Nxt [%J`, �zz = /�� 

Applying inversion of Hankel transform on (28), (29) and 

(30), we get 

�r = i �∑ ~$�}, h� cosh��$B�z$|� �}p)�}@�P}l)           (31) 

�̅ = i �∑ P$~$�}, h� cosh��$B�z$|� �}p)�}@�P}l)          (32) 

*̅ = i �∑ f$~$�}, h� cosh��$B�z$|� �}p)�}@�P}l)         (33) 

Using (8)-(11), (18) and (31)-(33), we obtain the 

displacement components in the transformed domain as 

�rG�@, B, h� = i }�p��}@�l) ���}, h� cosh��B� + ∑ c�
��O�%��X%jk%�

z$|� cosh��$B�� P}                                         (34) 

�rH�@, B, h� = i }p)�}@�l) �D�}, h� sinh��B� − ∑ c�
��O�%��X%jk%�

z$|� sinh��$B�� P}                                        (35) 

where 

�$ =  cde]>X% f$ − 1 − P$"~$, D�}, h� = �%'��,k�� , � = �}� + ]>X%e h� 

Substituting the values of (31)-(35) in (12)-(15) and with the aid of (18) yield 

2FFrrrrr = �e[X:; i }�p��}@�l) ���}, h� cosh��B� + ∑ c�
��O�%��X%jk%�

z$|� cosh��$B�� P}	 + i ∑ �$ cosh��$B�z$|� }p)�}@�l) P}	           (36) 

2GGrrrr = �e[X:; i }z� ��G p��}@�l) − p)�}@�� ���}, h� cosh��B� + ∑ c�
��O�%��X%jk%�

z$|� cosh��$B�� P} + i ∑ �$ cosh��$B�z$|� }p)�}@�l) P} (37) 

2HHrrrr = �e[X:; i }p)�}@�l) �D�}, h�� cosh��B� + ∑ c���%
��O�%��X%jk%�

z$|� cosh��$B�� P} + i ∑ �$ cosh��$B�z$|� }p)�}@�l) P}            (38) 

2GHrrrr = e�[X:; i }�p��}@�l) � �%j�%� "��}, h� qsinh��B� + 2∑ c�
��O�%��X%jk%�

z$|� �$ 	sinh��$B�� P}                                 (39) 

7r�@, B, h� = i ∑ �$ cosh��$B�z$|� }p)�}@�l) P}		                                                           (40) 

where �$ =  ��j]>X%j]>X%��[X:; " ~$, D�}, h� = �%�'��,k�� , �$ =  −��f$ − ]>X%[X + �]>X%[% P$" ~$�}, h� 
4. Boundary Conditions 

We consider a thermal source and chemical potential 

source (disc load). The disc load which emanates from origin 

of the coordinates and expands radically at constant rate ‘c’ 

over along with vanishing of stress components at the stress 

free surface at B = ±0. Mathematically, these can be written 

as 

�:�H = ±C)D�@, B�,                                 (41) 

2HH = 0,                                       (42) 

2GH = 0,                                       (43) 

7=	f�@, ��= 
���jG���>��%                                (44) 

Applying Laplace transform and Hankel transform on both 
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sides of the boundary conditions (41)-(44), we obtain 

�:�H = C)Dr�}, B�                                  (45) 

2HHrrrr =0                                         (46) 

2GHrrrr = 0                                        (47) 

7r = f̅�}, h� = �
�>���%d�%�%j��                             (48) 

Substitute the values of �r ,2HHrrrr , 2GHrrrr , 7r in (45)-(48), we 

obtain the values of unknown parameters as 

~� = ∆X∆ , ~� = ∆%∆ , ~z = ∆�∆ , ��}, h� = ∆ ∆  

11 12 13

2

21 22 23

1 0
2 2

31 32 33

41 42 43

0

2
cos( )

sinh( )

0

q qb
T

q
qb

q

m
x

b

x

D D D

-
D D D

D =
-

D D D

D D D

 

∆�$= �$ sinh��$0�, ∆�$= ��$�$� + �$� cosh��$0�, ∆z$=

�$�$ sinh��$0�, ∆�$= �$ cosh��$0�, i=1, 2, 3 and ∆$ 
is obtained from ∆ , by interchanging i

th
 column with 

�C)D�}, 0�	0	0	 �
�>���%d�%�%j��

�
�
, where t denotes transpose. 

5. Inversion of Double Transform 

Due to the complexity of the solution in the Laplace 

transform domain, the inverse of the Laplace transform is 

obtained by using the Gaver-Stehfast algorithm. Graver [24] 

and Stehfast [25, 26] derived the formula given below. By 

this method, the inverse f��� of Laplace transform f�̅h�  is 

approximated by 

f��� = ¡¢C2� £/�¤, ��D w¤ ¡¢C2� y+
3|�

 

with 

/�¤, �� = �−1�3d¥ £ ¦¥�2¦�!�¨ − ¦�! ¦! �¦ − 1�! �¤ − ¦�! �2¦ − ¤�!
©ª«	�3,¥�

q|¬
 

Where K is an even integer, whose value depends on the 

word length of computer used. M=K/2, and m is an integer 

part of �¤ + 1�/2. The optimal value of K was chosen as 

described in Gaver-Stehfast algorithm, for the fast 

convergence of results with desired accuracy. The Romberg 

numerical integration technique [27] with variable step size 

was used to evaluate the results involved. 

6. Particular Cases 

(1) If we neglect the diffusion effect (i.e.,	�� = , = 0 =0� , we obtain the expressions for components of 

displacement, stress and temperature distribution in 

thermoelastic isotropic half space. 

(2) If �� = �� = 0 , we obtain traditional Fourier model 

from dual phase lag model. 

(3) If �. = �1 = 0, then it reduces to DPLT model. 

(4) If 	�� = 0 and �. = 0, then DPLT and DPLD models 

reduce to single phase heat model (SPLT) and single 

phase diffusion model (SPLD) 

7. Numerical Results and Discussion 

The mathematical model is prepared with copper material 

for purposes of numerical computation. The material 

constants for the problem are taken from Dhaliwal and Singh 

[28] 

λ = 7.76 × 10�)±²j�, � = 3.86 × 10�)±²j�, � =386p�j�²j�hj�, �� = 5.518 × 10µ±²j�P*Cj�, � =

8954	�C²jz, , = 1.2	 × 10�²�/h�	0 = 0.9	 ×10µ²¸/	Ch�/ = 0.88	 × 10j¹	Ch/²z,�� = 61.38 ×10µ±²j�P*Cj�, �) = 293K, �' = 383.1	p	Cj��j� 

An investigation has been conducted to compare the effect 

of phase lags of heat transfer and diffusion on normal 

displacement u3, Chemical potential function P, Temperature 

change T and mass concentration C by keeping one phase lag 

fixed and varying the values of other phase lag and vice versa 

in both the cases. The graphs have been plotted in the range 0 ≤ @ ≤ 10. 

We consider the following cases 

a) �� = 0.08, �� = 0, 0.02 and 0.04 

b) �� = 0.08, ��= 0, 0.02 and 0.04 

c) �1 = 0.08, �. = 0, 0.02 and 0.04 

d) �.=0.08, �1 = 0,0.02 and 0.04 

In all figures solid line corresponds to the value of phase 

lag =0, small dashed line corresponds to the value of phase 

lag= 0.02, long dashed line with dots corresponds to value of 

phase lag= 0.04 

Figures (1)-(4), exhibits variations of axial displacement uz 

with distance r corresponding to the cases (a), (b), (c), (d) 

respectively. 

In Fig. 1. near the loading surface, there is a sharp decrease 

in range 0≤ r≤ 2 corresponding to �� = .02 and variations 

are in wave form for the rest two curves. 

In Fig. 2. Opposite oscillatory behaviour away from the 

loading surface is observed for �� = 0	,¦P	0.02  whereas 

trends are similar for �� = .04 and �� = 0. 
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In Fig. 3. for �	. = 0, variations are in wave form whereas 

for �. � 0.02	,¦P	�. � 0.04, there is a sharp increase near 

the loading surface and away from it, trend is oscillatory. 

In Fig. 4. illustrates the variations of uzcorresponding to 

case (d). Here variations are similar as discussed in figure 3 

with interchanging �. and �1. 

Figures (5)-(8) represent the variations in chemical 

potential function P with distance r corresponding to the four 

cases. In these figures, we observe that ther is a sharp 

decrease in the range 0? r? 2 and variations are oscillatory 

in the rest with different amplitudes and trends. 

Variations of temperature change T with distance r have 

been shown in figures (9)-(12) corresponding to the cases 

(a),(b),(c) and (d) respectively. 

In Fig. 9. we observe that in the range 2? r? 4 and 7? 

r? 9 values corresponding to �� � 0 and ��=0.04 are smaller 

than for ��=0.02 whereas behaviour is opposite in the rest. 

In Figures (10)-(12), there is a sharp increase in the range 

0 ?  r ? 2  and afterwards behaviour is oscillatory with 

different magnitudes and patterns. Small variations are 

observed near zero in Fig. 12 in the range 4? r? 9. 

In Figures (13)-(16) show variations in mass concentration 

C with distance r corresponding to the four cases 

respectively. Here, we observe a descending behaviour in the 

cases. As r increases, values of mass concentration are 

decreasing. 

In Fig. 13. we observe that, as ��  increases, there is a 

deficiency in the wave. 

In Fig. 14. For �� � .02 and �� � .04 trends are similar 

with difference in amplitude whereas for 	�� � 0, trends are 

different. Small variations near zero are observed in Fig. 15 

and Fig. 16. in the range 4? r? 8 and trends are descending 

oscillatory in the rest. 

 

Fig. 1. Variations of axial displacement zu  with distance r (case a). 
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Fig. 2. Variations of axial displacement zu with distance r (case b). 

 

Fig. 3. Variations of axial displacement zu  with distance r (case c). 
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Fig. 4. Variations of axial displacement zu  with distance r (case d). 

 

Fig. 5. Variations of chemical potential function P with distance r (case a). 
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Fig. 6. Variations of chemical potential function P with distance r (case b). 

 

Fig. 7. Variations of chemical potential function P with distance r(case c). 
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Fig. 8. Variations of chemical potential function P with distance r (case d). 

 

Fig. 9. Variations  of temperature change T with distance r(case a). 
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Fig. 10. Variations of temperature change T with distance r (case b). 

 

Fig. 11. Variations of temperature change T with distance r (case c). 
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Fig. 12. Variations of temperature change T with distance r (case d). 

 

Fig. 13. Variations of mass concentration C with distance r (case a). 
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Fig. 14. Variations of mass concentration C with distance r (case b). 

 

Fig. 15. Variations of mass concentration C with distance r (case c). 
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Fig. 16. Variations of mass concentration C with distance r (case d). 

8. Conclusion 

From the graphs, effects of phase lags are computed and 

comparison of variations is made. It is observed that change 

in phase lags changes the behaviour of deformations of the 

various components of stresses, displacements, chemical 

potential function, temperature change and mass 

concentration. Small difference in phase lags results in big 

difference of thermal waves. A sound impact of diffusion and 

thermal phase-lags on the various quantities is observed. The 

use of diffusion phase-lags in the equation of mass diffusion 

gives a more realistic model of thermoelastic diffusion media 

as it allows a delayed response between the relative mass flux 

vector and the potential gradient. The result of the problem is 

useful in the two dimensional problem of dynamic response 

due to various sources of thermodiffusion which has various 

geophysical and industrial applications. 
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