American Journal of
Science and Technology

Keywords

Elastic-plastic Materials, Strain Hardening, Strength Criterion, Assessment Method of Crack Size,
Assessment in Whole Process

Received: October 14, 2016
Accepted: October 26, 2016
Published: December 14, 2016

Calculations on Cracking Strength in Whole Process to Elastic-Plastic Materials---The Genetic Elements and Clone Technology in Mechanics and Engineering Fields

Yangui Yu ${ }^{1,2}$
${ }^{1}$ Principal Office, Zhejiang Guangxin New Technology Application Academy of Electromechanical and Chemical Engineering, Hangzhou, China
${ }^{2}$ Wenzhou University, Wenzhou, China
Email address
gx_yyg@126.com
\section*{Citation}
Yangui Yu. Calculations on Cracking Strength in Whole Process to Elastic-Plastic Materials---The Genetic Elements and Clone Technology in Mechanics and Engineering Fields. American Journal of Science and Technology. Vol. 3, No. 6, 2016, pp. 162-173.

Abstract

For the decreasing experiments on fatigue, damage and fracture, the author bases on the principles of similar to the genetic genes in the life sciences, adopts the conventional material constants, discovers new constants to some materials of Masing's and elasticplastic ones which show inherent properties; uses the theoretical approach which the mathematical derivations, the mechanics analysis and the calculations and analysis of the computer; proposes some new computing models from short to long crack which are the calculable mathematic models on crack problem as the threshold size, the transitional size and the critical ones; and sets up new computing formulas on the strength in different stages; provides the calculating criterions which are defined as the crack size and the stress intensity factor at each stage and in the whole process; and puts forward two kinds of the assessment methods in each stage and in whole process. In addition, to supplement again the comprehensive figure of the material behaviours; to give yet a detailed calculating example applied two of kinks for a safety assessment. This works may be there are practical significances for make linking and communication among the modern the material subject, fracture mechanics and damage mechanics; for to promote engineering applications.

1. Introduction

As is well-known, the traditional materials mechanics and the structure mechanics that is the calculable subjects and had made valuable contributions for every industrial engineering designs and calculations, but they cannot solve and calculate the strength and life problems in engineering materials and structures existed cracks. The fracture mechanics and the damage mechanics, which are just based on the local problems as researched objects for the local defects inside materials, to research the driving forces, the crack propagating (damage) rates and the life predictions in the crack growth process. But nowadays, latter these disciplines are all mainly dependent on tests.

The author thinks that in the mechanics and the engineering fields where exists such a scientific law as similar to genetic elements and cloning technology in the life sciences and has used the theoretical approach for similar principles, proposed some calculation
models [1-2], recently sequentially discovered some new scientific laws to the Masing's and the elastic-plastic materials, and provides some new calculable models for the crack growth driving force, the calculating criterions and the assessment methods of the strength problems in the whole process which are from short to long crack. This is to try to make the modern fatigue, the damage mechanics and the fracture mechanics gradually become such calculable disciplines as the traditional materials mechanics. That way, it may be there are practical significances for decreasing experiments, for stinting manpower and funds, for promoting and developing engineering and applying it to relevant disciplines

2. A New Comprehensive Figure on Materials Behaviours

About problems among branch disciplines on fatigue-damage-fracture; about problems among the traditional material mechanics and the modern mechanics for communications and connecting their relations with each other, we must study and find out their correlations between the equations, even the relations between variables, between the material constants, and between the curves. This is because all the significant factors are to be researched and described for materials behaviours at each stage even in the whole process and are also all to have a lot of significations for the engineering calculations and designs. Therefore, we should research and find an effective tool used for analyzing the problems above mentioned. Here, the author provides the "Comprehensive figure of materials behaviors" as Figure 1 [3-4] (or the bidirectional combined coordinate system and simplified schematic curves in the whole process, or combined cross figure) that both is a principle figure of materials behaviors under monotonous loading, and is one under fatigue loading. It is also a comprehensive figure of multidisciplinary. Here in two problems to present as below:

2.1. Explanations on Their Geometrical and Physical Meanings for the Compositions of Coordinate System

In figure 1, it was being provided by the present author; at this time it has been corrected and complemented, that is, diagrammatically shown for the damage growth process or crack propagation process of materials behavior at each stage and in the whole course.

For the coordinate system, it is to consist of six abscissa axes O^{\prime} I', O I', $O_{1} \mathrm{I}, O_{2} \mathrm{II}, O_{3} \mathrm{III}, O_{4} \mathrm{IV}$ and a bidirectional ordinate axis $O_{1}^{\prime} O_{4}$. For the area between the axes $O^{\prime} \mathrm{I}^{\prime \prime}$ and $O I^{\prime}$, it was an area applied as by the traditional material mechanics. Currently, it can also be applied for the microdamage area by the very high cycle fatigue. Between the axes O I' and $O_{2} \mathrm{II}$, it is calculating area applied for the microdamage mechanics and the micro-fracture mechanics. For the
areas among the $O_{2} \mathrm{II}$, the $O_{3} \mathrm{III}$ and $O_{4} \mathrm{IV}$ where they are calculatied and applied by the macro-damage mechanics and the macro-fracture mechanic. But for between the axes $O_{1} \mathrm{I}$ and $O_{2} \mathrm{II}$, it is calculated and applied in areas both for the micro-damage mechanics and for the macro-damage mechanics, or both for the micro-fracture mechanics and for the macro-fracture mechanics.

On the abscissa axis $O^{\prime} \mathrm{I}$ ", it is represented with parameters the stress σ and the strain \mathcal{E} as variables. On the abscissa axis O I' there are the fatigue limits σ_{-1} at point "a" $\left(\sigma_{m}=0\right)$ and "b" $\left(\sigma_{m} \neq 0\right)$ that they just are the locations placed at threshold values for crack (damage) growth to some materials; on the abscissa axis O_{1} I there are points "A" and "D" that just are the locations placed at threshold values as some materials. On the abscissa axes $O_{1} \mathrm{I}$ and O_{2} II that they could all represented as variables with the stress intensity factor range ΔH_{1} of short crack, and the strain intensity factor ΔI, and the stress intensity factor range ΔK_{1} of long crack. On the other hand, they both could yet represented as variables with the short crack a_{1} and the long crack a_{2} (or damage D_{1} and D_{2}). And here there are material constants of two that they are defined as the critical factor K_{y} of crack-stress-intensity and the critical factor $K^{\prime}{ }_{y}$ of the damage-stress-intensity at the first stage, where that are just two parameters corresponded to the transitional size $a_{t r}$ of crack or the transitional value of damage $D_{t r}$, they are just placed at point at the point $\mathrm{B}\left(\sigma_{m}=0\right)$ and at point B_{1} $\left(\sigma_{m} \neq 0\right)$ corresponded to yield stress, that are also the boundary between short crack and long crack growth behaviors. but for some brittle materials would be happened to fracture to this point when their stresses are loaded to this level.

On the abscissa axis O 3 III , it is represented as variable with the stress intensity factor ΔK_{1} (or $\Delta \delta_{t}$) of long crack; it is a boundary of the sizes as the residual strength between some elastic-plastic materials and brittle materials. On this axes O3 III there are the critical points at $\mathrm{D}_{1}\left(\mathrm{D}_{1 \mathrm{c}}\right), \mathrm{A}_{1}\left(\mathrm{~A}_{1 \mathrm{c}}\right)$ and C_{1}. On abscissa $O_{4} \mathrm{IV}$, the point A_{2} is corresponding to the fatigue strength coefficient σ_{f}^{\prime}, the critical stress intensity factor values $K_{1 c}\left(K_{2 f c}\right)$ and the critical values $D^{\prime}{ }_{2 c}$ and $a_{2 c}$ for the mean stress $\sigma_{m}=0$; the point D_{2} is corresponding to the $\sigma_{m} \neq 0$; the point C_{2} corresponding to the fatigue ductility coefficient ε_{f}^{\prime} and critical crack tip open displacement value δ_{c}; the point F corresponding to a very high cycle fatigue strength coefficient $\sigma^{\prime}{ }_{v h f}$. In addition on the same O_{4} IV, there are yet another critical values $J_{1 c}^{\prime}\left(J_{1 c}\right)$, etc. in the long crack propagation process.

For an ordinate axis, an upward direction along the ordinate axis is represented as crack growth rate $d a / d N$ or
damage growth rate $d D / d N$ in each stage and the whole process. But a downward direction is represented as life
$N_{o i}, N_{o j}$ in each stage and the whole lifetime ΣN.

Figure 1. Comprehensive figure of material behaviors 1 (Or called calculating figure of material behaviors or bidirectional combined coordinate system and simplified schematic curves in the whole process).

In the area between axes $O^{\prime} \mathrm{I}^{\prime \prime}$ and $O_{2} \mathrm{II}$, it is the fatigue history from un-crack to micro-crack initiation. In the area between axes $O_{1} \mathrm{I}$ ' and $O_{2} \mathrm{II}$, it is the fatigue history relative
to life $N_{o i}{ }^{\text {mic-mac }}$ from micro-crack growth to macro-crack forming. Consequently, the distance $\mathrm{O}_{2}-\mathrm{O}^{\prime}$ on ordinate axis is as the history relating to life $N_{m a c}$ from grains size to
micro-crack initiation until macro-crack forming; the distance $O_{4}-O^{\prime}$ is as the history relating to the lifetime life $\sum N$ from micro-crack initiation until fracture.

In the crack forming stage, the partial coordinate system made up of the upward and the ordinate axes O_{4} and the abscissa axes O I', $O_{1} \mathrm{I}$ and $O_{2} \mathrm{II}$ is represented as the relationship between the crack growth rate $d D_{1} / d N_{1}$ (or the short crack growth rate $d a_{1} / d N_{1}$) and the crack-stressfactor range ΔH_{1} (or the damage strain factor range ΔI_{1}). In the macro-crack growth stage, the partial coordinate system made up with the ordinate axis $\mathrm{O}_{2} \mathrm{O}_{4}$ and abscissa $\mathrm{O}_{2} \mathrm{II}, \mathrm{O}_{3}$ III and $O_{4} \mathrm{IV}$ at the same direction is represented to be the relationship between the macro-crack growth rate and the stress intensity factor range $\Delta K, J$-integral range ΔJ and crack tip displacement range $\Delta \delta_{t}\left(d a_{2} / d N_{2}-\Delta K, \Delta J\right.$ and $\Delta \delta_{t}$). Inversely, the coordinate systems made up of the downward ordinate axis $O_{4} O_{1}$ and the abscissa axes O_{4} IV, $O_{3} \mathrm{III}, O_{2} \mathrm{II}, O_{1} \mathrm{I}$, and O I' are represented respectively as the relationship between the $\Delta H-\Delta K$ - range and each stage life $N_{o i}, N_{o j}$ and the lifetime $\sum N$ (or between the $\Delta \varepsilon_{p}$ -, $\Delta \delta_{t}$ - range and the life $\sum N$).

2.2. Explanations on the Physical and Geometrical Meanings of Relevant Curves

The curve $A B A_{1}$ is represented as the varying laws as the behaviours of the elastic materials or some elastic-plastic ones under high cycle loading in the macro-crack-forming stage (the first stage): positive direction $A B A_{1}$ represented as the relations between $d D_{1} / d N_{1}$ (or $d a_{1} / d N_{1}$)- ΔH; inverted $A_{1} B A$, between the $\Delta H_{1}-N_{o i}$. The curve $C B C_{1}$ is represented as the varying laws of the behaviours of the elastic-plastic materials or some plastic ones under low-cycle loading at the macro-crack forming stage: positive direction $C B C_{1}$ is represented as the relations between $d a_{1} / d N_{1}-\Delta I_{1}$; inverted $C_{1} B C$, the relations between the $\Delta \varepsilon_{p}-N_{o i}$.

The curve $A_{1} A_{2}$ in the crack growth stage (the second stage) is showed as under high cycle loading: positive direction $A_{1} A_{2}$ showed as $d a_{2} / d N_{2}-\Delta K(\Delta J)$; inverted $A_{2} A_{1}$, between the $\Delta K_{2}, \Delta J-N_{o j}$. The $C_{1} C_{2}$ is showed as: the positive, relation between the $d a_{2} / d N_{2}-\Delta \delta_{t}$ under lowcycle loading, inverted $C_{2} C_{1}$, between $\Delta \delta_{t}(\Delta J)$ - $N_{o j}$. By the way, the curves 'Dbcd', $\left(\sigma_{m}=0\right)$ and the 'Aae' $\left(\sigma_{m}=0\right)$ are represented as the laws under the very high cycle fatigue.

It should yet point that the curve $A A_{1} A_{2}\left(1-1^{\prime}\right)$ is depicted as the rate curve of damage (crack) growth in whole process under symmetrical and high cycle loading (i.e. zero mean stress, $d a / d N \leq 10^{-6}$); the curve $D D_{1} D_{2}\left(3-3^{\prime}\right)$, as the rate curve under unsymmetrical cycle loading (i.e. non-zero mean
stress, $\left(d a / d N \leq 10^{-6}\right)$. The curve $C C_{1} C_{2}(2-2 ’)$ is depicted as the rate curve under low cycle loading. The curve $e a A B A_{1} A_{2}$ is depicted as the damage (crack) growth rate curve in whole process under very high cycle loading ($\sigma_{m}=0, d a / d N<10^{-7}$), the curves $d c b D D_{1} D_{2}$ and $d c b F_{2}$ are depicted as ones of the damage (crack) growth rates in whole process under very high cycle loading ($\sigma_{m} \neq 0, d a / d N<10^{-7}$). Inversely, the curve $A_{2} A_{1} A$ is depicted as the lifetime curve under symmetrical cycle loading (i.e. zero mean stress, $N \leq 10^{6}$), the curve $D_{2} D_{1} D$, as the lifetime curve under unsymmetrical cycle loading $\left(N \leq 10^{6}\right)$. The curve $C_{2} C_{1} C$ is depicted as the lifetime curve under low cycle loading ($N \leq 10^{5}$). On the other hand, the curve $A_{2} A_{1}$ BAae is as the lifetime one in whole process included very high cycle fatigue ($\sigma_{m}=0, N>10^{7}$), the curves $D_{2} D_{1} D b c d$ and $F_{2} b c d$ are all depicted as the lifetime ones in whole process $\left(\sigma_{m} \neq 0, N>10^{7}\right)$.

It should also be explained that the comprehensive figure 1 of the materials behaviours may be as a complement for the

Fundamental knowledge of a material subject; that is a tool to design and calculate for various kinds of structures and materials under different loading conditions, and it is also a bridge to communicate and link the traditional material mechanics and the modern mechanics.

3. Calculations on Cracking Strengh for Elastic Plastic Materials Under Monotonic Loading

Here the variables for describing the crack growth process that are defined as follows:

1) From micro-crack initiation to macro-crack forming process, it is defined in the crack forming stage or defined in the first stage, the changing process of variable a_{1} corresponded to the short crack, it is represented with the curves aAB or AB in figure 1 ;
2) From the macro-crack propagation to the fracture process is defined in the crack growth stage, or defined in the second stage. The changing process corresponded in the long crack variable a_{2} in this stage, it is expressed in curve $\mathrm{BA}_{1} \mathrm{~A}_{2}$;
3) From a short to long crack growth until fracture for a material, to adopt the a as the variable in the whole process, it is corresponded to curve " $\mathrm{aAA}_{1} \mathrm{~A}_{2}$ ".

3.1. About Threshold Size on Crack

In the figure 1 it is seen, for the general steels, they are always shown with various characters in the each stages. The author discovers, which they all have the threshold sizes $a_{t h}$ of the crack growth as in table 1, and are only depended on the constant b_{1} shown a material property. It should point, the locations of the threshold sizes $a_{t h}$ of the cracks, some
materials are near at the point A where it is at the intersection one between the straight line AB and the abscissa axis $\mathrm{O}_{1} \mathrm{I}$ in figure 1 ; and other ones, near at the point a where it is at the intersectional point between the straight line "Aa" and the abscissa axis O I'. And the threshold size $a_{t h}$ can be calculable parameter as following formula [5],

$$
\begin{equation*}
a_{t h}=\left(\frac{1}{(\pi \cdot m m)^{0.5}}\right)^{\frac{1}{0.5+b_{1}}}=(0.564)^{\frac{1}{0.5+b_{1}}}(\mathrm{~mm}) \tag{1}
\end{equation*}
$$

Or

$$
\begin{equation*}
a_{t h}=\left(\frac{1}{(\pi \cdot m m)^{0.5}}\right)^{\frac{1}{0.5-\left(1 / m_{1}\right)}}, \quad(\mathrm{mm}) \tag{2}
\end{equation*}
$$

Where, the range of the $a_{t h}$-length calculated by equations (1-2) is the $0.21 \sim 0.275(\mathrm{~mm})$ in table 1 . Under the condition shown linear-elastic behaviour for some materials, by the crack size $a_{t h}$ is combined with the induced stress σ under the monotonic loading, here it can make a model of the driving force of a crack growth, that is as following form,

$$
\begin{equation*}
H_{1}=\sigma \cdot a_{t h}^{1 / m_{1}}=\sigma \cdot \sqrt[m_{1}]{a_{t h}}\left[M P a \cdot(m)^{1 / m_{1}}\right] \tag{3}
\end{equation*}
$$

In the formula (2-3), $m_{1}=-1 / b_{1}$, the m_{1} is also only a constant shown a property, it is same with the b_{1} also a sole one. Here it should explain that the symbol of the constant b_{1} is a negative value; and the m_{1} is a positive one. the H_{1} is defined as the stress intensity factor of short crack. In an ordinary way, the $\sigma \cdot a_{1}^{1 / m_{1}}$ may be: the $\sigma \cdot a_{1}^{1 / m_{1}} \leq \sigma \cdot \sqrt[m_{1}]{a_{t h}}$ or $\sigma \cdot a_{1}^{1 / m_{1}} \geq \sigma \cdot \sqrt[m_{1}]{a_{t h}}$, then, the strength criterions for them are as below,

$$
\begin{equation*}
H_{1}=\sigma \cdot a_{1}^{1 / m_{1}}=\sigma \cdot \sqrt[m_{1}]{a_{t h}} \leq H_{t h}\left[M P a \cdot(m)^{1 / m_{1}}\right], \tag{4}
\end{equation*}
$$

Or

$$
\begin{equation*}
H_{1}=\sigma \cdot a_{1}^{1 / m_{1}}=\sigma \cdot \sqrt[m_{1}]{a_{t h}} \geq H_{t h}\left[M P a \cdot(m)^{1 / m_{1}}\right] \tag{5}
\end{equation*}
$$

Where the $H_{t h}$ is defined as the threshold factor of a crack. If the $H_{1}<H_{t h}$, the crack in a material does not grow; and the $H_{1} \geq H_{t h}$, the crack is sure to grow.

Table 1. Data calculated threshold sizes $a_{\text {th }}$ for crack growth.

Materials [6-7]	Heat- treatment	$\sigma_{b} M P a$	$\sigma_{s} M P a$	b_{1}	$\boldsymbol{m}_{1}^{\prime}$	$\boldsymbol{a}_{t h}, m m$
(1)30CrMnSiA [17]	Hardeningand Tempering	1177	1104.5	-0.0859	11.64	0.251
(1)LC4CS	CS	613.9	570.8	-0.0727	13.76	0.262
2024-T3 Aluminum		469	379	-0.124	8.06	0.218
(2)QT800-2	Normalization	913	584.3	-0.083	12.05	0.253
4340	Quenching and tempering	1241	1172	-0.076	13.16	0.259
(4) 40 Cr	in oil-quench $850^{\circ} \mathrm{C}$, temper $560^{\circ} \mathrm{C}$, air cooling	940	805	0.12	8.33	0.222
1005-1009	Hot rolled sheet	345	262	-0.109	9.174	0.231
1005-1009	Cold-draw sheet	414	400	-0.073	13.7	0.262
Steel: 1020	Hot rolled sheet	441	262	-0.12	8.33	0.222
RQC-100	Hot rolled sheet	931	883	-0.07	14.3	0.264
9262	anneal	924	455	-0.071	14.1	0.263

3.2. Calculation on Crack Strength in the First Stage

The material property had discovered by Masing, that is as well known [8-9]. For some called Masing's materials, elasticplastic and happened strain hardening ones, which are corresponded to the curve $1(A B)$ or aAB in the first stage between abscissa axis O I' and the O_{2} II in figure 1, here can set up a criterion of the crack strength for it, that is as below form,

$$
\begin{gather*}
H_{1}=\sigma \cdot a_{1}^{1 / m_{1}} \leq\left[H_{1}\right]=H_{1 c} / n_{1},\left(M P a \cdot m^{1 / m_{1}}\right) \tag{6}\\
H_{1 c}=\sigma_{s} \times \sqrt[m_{1}]{a_{t r}},\left(M P a \cdot m^{1 / m_{1}}\right) \tag{7}
\end{gather*}
$$

The $H_{1 c}$ in (6) is defined as a critical value of the stress intensity factor which is corresponded to the yield stress, so it must be the only a constant showing a material property. And the $H_{1 c}$ is also the critical value corresponded to the stress factor K_{y} and the transitional size a_{tr} mentioned following text, their locations are near at points B on abscissa axis O2II (in Fig. 1) where it is on the boundary between the short
crack and the long crack or between the first stage and the second stage.

The behabirous of crack for a material, it is changed with the loading ways and the stress levels, the crack size growed before the yield stress σ_{s} under the monotonous loading can be caculated by following formula,

$$
\begin{equation*}
a_{1}=\frac{\sigma^{2}}{\sigma_{p r}^{2} \times \pi} v,(m m) \tag{8}
\end{equation*}
$$

Where the $\sigma_{p r} \approx \sigma_{e}$ is a stress value of proportional limit (approximating elastic limit σ_{e}), it can also approximatively be took in $(0.955 \sim 0.975) \sigma_{y}$ of the yield stress, as the data is to lack. The v is a conversion coefficient of the unit, $v=1 \mathrm{~mm}$.

3.3. Calculation on Crack Strength in the Second Stage

1. The critical stress factor K_{y} and the critical size $a_{t r}$ at the transitional point

As is well known, the mathematic model to describe a crack in fracture mechanics [10-12], that is to adopt these "genes" σ and π and crack variable a, thereby to make the stress intensity factor $K_{1}=\sigma \sqrt{\pi a}$, that is as following form,

$$
\begin{equation*}
K_{1}=\sigma \times \sqrt{\pi a_{1}},(M P a \cdot \sqrt{m}) \tag{9}
\end{equation*}
$$

As explanation mentioned above, in the area between the abscissa axis $\mathrm{O} 1-\mathrm{I}$ and the O2-II in figure 1, where that stress factor H_{1} of crack is equivalent to the K_{1}, but their dimensions and units are differences at this same point, they are corresponded to the variable a_{1} from the threshold the $a_{t h}$ to the $a_{t r}$ in the section ($a_{t h} \leq a_{1} \leq a_{t r}=a_{\text {mac }}$), it can set up two kinds of the mathematic models called the stress factors. In addition to above equations (6-8) can be applied; in theory below the mathematic models $(9-11)$ are still suitable in the area.

For some Masing's materials, their transitional sizes $a_{t r}$ at transition points between the elastic and the plastic strain, for which are also be calculable, and can be calculated by means of the following equation,

$$
\begin{equation*}
a_{t r}=\left(\sigma_{s}^{\left(1-n^{\prime}\right) / n^{\prime}} \times \frac{E \times \pi^{1 / 2 \times n^{\prime}}}{K^{1 / n^{\prime}}}\right)^{\frac{2 m_{1} n_{1}}{2 n_{1}-m_{1}}}, \quad(\mathrm{~mm}) \tag{10}
\end{equation*}
$$

Here, the K is a strength coefficient under monotonic loading, the n is an exponent happened strain hardening. Then the model of driving force at this point should be as follow

$$
\begin{equation*}
K_{y}=\sigma_{s} \cdot \sqrt{\pi a_{t r}},(M P a \cdot \sqrt{m}) \tag{11}
\end{equation*}
$$

Where the K_{y} is called as the critical stress factor that is relevant to the crack size $a_{t r}$ at transitional point, just is corresponding to size $a_{\text {mac }}\left(\approx a_{t r}\right.$) of forming macro crack, this factor K_{y} should theoretically be equivalent to above mentioned the $H_{1 c}$, although the dimensions and units between them are differences.
2. The critical stress factor $K_{1 c}$ and the critical size $a_{1 c}$ during long crack growth

Over the abscissa axis O2-II, the crack over the transitional point size $a_{t r}$ is to adopt the a_{2} as the variable. When the crack growth gets to the macro crack, where it is corresponding to the curve $B A_{1} A_{2}$ in figure 1. But, for some cast irons, steels of the low toughness and brittle materials, which their behaviours are depicted in curve $B A_{1}$ between the abscissa axis OII and the $\mathrm{O}_{3} \mathrm{III}$. When their stresses are loaded to this level, or gotten to the critical values $a_{1 \mathrm{c}}$ of macro crack, that may be happened to fracture, then its strength criterion should be used as following form,

$$
\begin{gather*}
K_{1}=y(a / b) \cdot \sigma \cdot \sqrt{\pi a_{2}} \leq[K]=K_{1 c} / n_{1},(M P a \sqrt{m}) \tag{12}\\
K_{1 c}=\sigma_{s} \cdot \sqrt{\pi a_{1 \mathrm{c}}}(M P a \sqrt{m}) \tag{13}
\end{gather*}
$$

Where the $y(a / b)$ [13-14] is a correcting factor related with the shape and the size of a crack; the $K_{1 c}$ is a the critical factor called during the long crack growth, that is corresponded to the critical size $a_{1 c}$ on abscissa axis O_{3}-III in fig. 1, also a the critical value in the second stage. It shoud point, because the yield stresses σ_{s} in the formula (13) is the constant of uniquenesses for a material, the critical size of crack $a_{1 c}$ can also be applied as an important parameter showed its property. In practice, the critical value $a_{1 c}$ could be calculated by means of below formula:

$$
\begin{equation*}
a_{1 \mathrm{c}}=\frac{K^{2}}{\sigma_{s}^{2} \times \pi},(\mathrm{mm}) \tag{14}
\end{equation*}
$$

The author researches to discover that the strength coefficient K in the material and the fatigue subjects is virtually the very the critical stress intensity factor K_{Ic} in fracture mechanics under monotonous loading, if they take same calculating parameter and unit. For instance, for the QT800-2 in table 2, its $\sigma_{s}=584.32 M P a$, $a_{1 c}=2.944 \mathrm{~mm}=2.944 \times 10^{-3} \mathrm{~m}$, then if to adopt the calculating model in fracture mechanics to calculate the strength coefficient K, that is as below,

$$
K=\sigma_{s} \sqrt{\pi a_{1 c}}=584.3 \mathrm{MPa} \sqrt{\pi 2.944(\mathrm{~mm})}=1777 \mathrm{MPa} \sqrt{\mathrm{~mm}}=56.2 \mathrm{MPa} \sqrt{\mathrm{~m}} ;
$$

On the other hand, the practical calculable critical factor $K_{\text {Ic }}$ on fracture mechanics subject should also be,

$$
K_{\mathrm{Ic}}=\sigma_{s} \sqrt{\pi a_{\mathrm{lc}}}=584.32 M P a \sqrt{\pi 2.944(\mathrm{~mm})}=1777 M P a \sqrt{\mathrm{~mm}}=56.2 M P a \sqrt{m}
$$

So, the calculating results are completely consistent. It can see from the table 5, this data is close to experiment one ($K_{\text {Ic }}=47.6 M P a \sqrt{m}$). Therefore, its unit of the K to be "MPa" which was called as strength coefficient on material subject is actually the very critical stress intensity factor on fracture mechanics, and the unit of both should be all

"MPa $\sqrt{m m} "$.

Here has to point the above equations, the data error in the calculations is bigger for those materials happened strain softening.

In the table 2 , here are listed to the critical sizes $a_{1 c}$ of crack for 13 kinds of materials.

Table 2. The critical sizes $a_{1 c}$ during long crack growth of some materials in second stage.

Materials	$\boldsymbol{\sigma}_{\boldsymbol{b}}, \boldsymbol{M P a}$	$\boldsymbol{\sigma}_{\boldsymbol{s}}, \boldsymbol{M P a}$	$\boldsymbol{K}, \boldsymbol{M P a}$	$\boldsymbol{a}_{1 \boldsymbol{c}}, \boldsymbol{m \boldsymbol { m }}$
Hot rolled sheet 1005-1009	345	262	531	1.31
Steel: 1005-1009 Cold-draw sheet	414	400	524	0.546
RQC-100, Hot rolled sheet	931	883	1172	0.561
4340, quench and tempering	1241	1172	1579	0.578
Aluminum 2024-T3	469	379	0.46	
30CrMnSiA, (1) Hardening and tempering	1177	1104.5	0.568	
LC4CS, (1) Heat treatment-CS	613.9	570.8	1475.76	0.587
40Cr(3)	940	805	775.05	1.25
60Si2Mn, quench, medium-temperature tempering (3)	1504.8	1369	1592	0.503
QT800-2, (2) normalizing	913	584.3	1721	1777

Note: σ_{b} is a strength limit; σ_{s} is an yield limit;
(A)- $\operatorname{Bar} \varphi=30$; (B)-Y-type test specimen;
(1)---The Masing's materials; (2)---The cycle-harden materials; (3)-Cyclic softening.
3. The critical stress factor $K_{2 c}$ and the critical size $a_{2 c}$ at the momentary fracture
For the behaviours of another materials could be over the abscissa axis $\mathrm{O}_{3} \mathrm{IIII}$ in fagure, while they get to own critical values $a_{1 c}$ of long crack which are usually later than the brittle materials above mentioned, their life are also longer. So the abscissa axis O_{3} III is a boundary that can be the residual intennsity sizes between different materials in crack growth process. In this case that strength criterion (12-14) on crack can still be sutied for calculations.

When the crack growth over the abscissa axis O_{3} III to the O4IV in figure 1, the strength criterion of crack at later time in the second staege should be calculated by following form,

$$
\begin{gather*}
K_{2}=\mathrm{y}(a / b) \sigma \cdot \sqrt{\pi a_{2}} \leq[K]=K_{2 c} / n,(M P a \sqrt{m}) \tag{15}\\
K_{2 c}=\sigma_{f} \cdot \sqrt{\pi a_{2 c}},(M P a \sqrt{m}) \tag{16}
\end{gather*}
$$

Where the K_{2} is also defined as the stress factor of crack in the second stage, the $K_{2 c}$ is called as a critical factor at the momentary fracture, that it is the very the critical stress intensity factor $K_{\mathrm{I} c}$ in fracture mechanics. The σ_{f} is a fracture stress, the $a_{2 \mathrm{c}}$ is a critical crack size at the
momentary fracture where it is at the crossing point A_{2} of the abscissa axis O4-IV and the straight line $1\left(A_{1} A_{2}\right)$ in Fig. 1.

It should yet explain because the $K_{2 \mathrm{c}}$ is also a material constant, it must be the data of uniqueness to show a material performance, and it could be calculated out by mens of the fracture stress σ_{f}. So that the critical size $a_{2 c}$ at the momentary fracture under corresponding to true stress σ_{f} should also be the only data. In theory, it must be to exist as following functional relationship,

$$
\begin{equation*}
a_{2 \mathrm{c}}=\frac{K^{2}}{\sigma_{f}^{2} \times \pi} v,(\mathrm{~mm}) \tag{17}
\end{equation*}
$$

In the table 3, to list the critical sizes $a_{2 c}$ at the momentary fracture in second stage to some materials.

By the way, when a structure is being calculated in design, if the crack grows to the stage of long crack, then the crack sizes a_{1} and a_{2} in above equations $(9,12,15)$ can also be calculated for the predictions by following formula

$$
\begin{equation*}
a_{2}=\frac{\sigma^{2} \times \pi}{\sigma_{y}^{2}},(\mathrm{~mm}) \tag{18}
\end{equation*}
$$

Table 3. The critical sizes $a_{2 c}$ at the momentary fracture in second stage.

Materials	$\boldsymbol{\sigma}_{\boldsymbol{b}}, \boldsymbol{M P a}$	$\boldsymbol{\sigma _ { s }}, \boldsymbol{M P a}$	$\boldsymbol{K}, \boldsymbol{M P a}$	$\boldsymbol{\sigma}_{\boldsymbol{f}}, \boldsymbol{M P a}$	$\boldsymbol{a} 2 \boldsymbol{a}, \boldsymbol{m} \boldsymbol{m}$
Hot rolled sheet 1005-1009	345	262	531	848	0.125
Steel: 1005-1009 Cold-draw sheet	414	400	524	841	
RQC-100, Hot rolled sheet	931	883	1172	1330	0.124
4340, quench and tempering	1241	1172	1579	1655	0.247
Aluminum 2024-T3	469	379	455	558	0.280
30CrMnSiA, (1) Hardening and tempering	1177	1104.5	1475.76	1795.1	0.212
LC4CS, (1) Heat treatment-CS	613.9	570.8	775.05	710.62	0.215
QT800-2, (2) normalizing	913	584.3	1777	946.8	1.121
40Cr(3)	940	805	1592	1305	0.474
60Si2Mn, quench, medium-temperature tempering (3)	1504.8	1369	1721	2172.4	

Note: σ_{b} is a strength limit; σ_{s} is an yield limit; (A)-Bar $\varphi=30$; (B)-Y-type test specimen;
(1)---The Masing's materials; (2)---The cycle-harden materials; (3)-Cyclic softening materials.

3.4. Calculations on Cracking Strength in Whole Process

Due to the behaviors shown by the materials are different at each stage, their dimensions and units in computing models about strength problem are also differences. But the author recently researches finding, on account of the critical sizes in each stage are all inherent constants, they are the only depended on the material properties, therefore which exist necessary the critical sizes of crack in each stage. So that the total critical sizes $a_{w c}$ as the material constants in whole process should be applied as the important parameter
for the assessment, here it proposes as follow:

$$
\begin{equation*}
a_{w c}=a_{t h}+a_{1 c} \tag{19}
\end{equation*}
$$

Or

$$
\begin{equation*}
a_{w c}=a_{t r}+a_{1 c} \tag{20}
\end{equation*}
$$

It shoud point that the data in table 4 is the material constants for six kinds of materials, which they are under the monotonous loading. And the data in table 5 is called as the critical size of crack, which is calculated with calculable formulas.

Table 4. Data of material's performances.

Materials [15-16]	Heat- treatment	σ_{b} MPa	σ_{s} MPa	K MPa	\boldsymbol{n}_{1}	E MPa	σ_{f} MPa	b_{1}	$\boldsymbol{m}_{1}^{\prime}$
(1)30CrMnSiA	Hardeningand Tempering	1177	1104.5	1475.76	0.063	203005	1795.1	-0.0859	11.64
(1)LC4CS	CS	613.9	570.8	775.05	0.063	72571.8	710.62	-0.0727	13.76
2024-T3 Aluminum		469	379	455	0.032	70329	558	-0.124	8.06
(2)QT800-2	Normalization	913	584.3	1777	0.2034	160500	946.8	-0.083	12.05
4340	Quenching and tempering	1241	1172	1579	0.066		1655	-0.076	13.16
(3) 40 Cr	in oil-quench $850^{\circ} \mathrm{C}$, temper $560^{\circ} \mathrm{C}$, air cooling	940	805	1592	0.173		1305	0.12	8.33

(1)---The Masing's materials; (2)---The strain harding material; (3)---it is a material happened the strain softening under cyclic loading.

Table 5. Calculated data by means of the calculable formulas.

Materials	Heat- treatment	$a_{t h} / a_{t r}(5)$	$K_{1 c}(\mathbf{6})$	$a_{1 c}(5)$	$K_{2 c}{ }^{(6)}$	$a_{2 c}$ (5)	$\boldsymbol{K}_{\boldsymbol{w}_{\boldsymbol{c}}}{ }^{(6)}$	$D_{w_{c}}(5)$	$K_{c}(4)$
(1) 30 CrMnSiA	Hardeningand Tempering	$\begin{aligned} & \hline 0.251 / \\ & 0.291 \end{aligned}$	46.64	0.568	46.64	0.212	$\begin{aligned} & \hline 92.05 / \\ & 94.2 \end{aligned}$	$\begin{aligned} & \hline 0.837 / \\ & 0.877 \end{aligned}$	98.9
(1) LC4CS,	CS	0.262	24.51	0.587	24.51	0.3786	36.7	0.849	38.5
2024-T3	Aluminum	0.218	14.4	0.459	14.4	0.212	25.8	0.68	31
(2)QT800-2	Normalization	0.253	56.2	2.944	56.2	1.121	58.56	4.318	47.6
4340	Quenching and tempering	0.259	49.94	0.578	49.94	0.29	60	1.127	50
40 Cr (3)	in oil-quench $850^{\circ} \mathrm{C}$, temper $560^{\circ} \mathrm{C}$, air cooling	0.222	50.36	1.245	50.36	0.475	58.64	1.941	154

(1)---The Masing's materials; (2)---The cycle-harden material; (3)---it is a material happened the strain softening under cyclic loading;
(4) K_{c} is the experiment data of critical stress intensity factor $(M P a \sqrt{m}), M P a \sqrt{m} ;(5)$-Units are the " $m m$ "; (6)--- Units are the " $M P a \sqrt{m}$ ".

It can seen from the above table 5 , for the critical factors $K_{1 c}$ and the $K^{\prime}{ }_{2 c}$ of the crack, $K_{1 c}=K_{2 c}$, because corresponding to end point of the $K_{1 c}$-value just is the starting point of the $K_{2 c}$-value, where they are the same at point A2 on abscissa axis O4 IV; but for their critical sizes of sizes, $a_{2 c} \neq a_{1 c}$. So, when to take the value for the $[K]$ it should only be caculated by the $K_{1 c} / n$ or $K_{2 c} / n$ with the safe factor n.

Here can be compared in calculated data with the experiment ones K_{c}, and can be seen out: 1) the calculated value for the nodular cast iron QT800-2 which is materials happened strain harding, the calculated $K_{2 c}$ of it closes to the experimental data Kc ; the $K_{2 c}$ for the steel 4340 by quenching and tempering is also close to the experimental K c; the calculated values $K_{w_{c}}$ for Masing's materials 30 CrMnSiA and LC 4 CS , between the calculated $K_{W_{c}}$ and the K c, both is approximating; But for the steel 40 Cr of shown strain softening, both error between the calculated and
the experimental data is bigger.
The calculating criterions about the crack strength in whole process there are two kinds of ways: 1) The assessment method for the stress intensity factor; 2) The assessment method for the crack size. It should explain, if to apply the assessment method for the crack size, it must use the variable a in whole process and those relevant material conatants, it has to adopt their critical sizes shown different performances at each stage.

For instance, for a material there are following cases:

1. The assessment method for the stress intensity factor
(1) The condition 1

If the stress factor of a short crack may be,

$$
H_{1}=\sigma \times \sqrt[m_{1}]{a_{1}} \leq H_{t h},(M P a \sqrt[m_{1}]{m}),
$$

Or $H_{1}=\sigma \times \sqrt[m_{1}]{a_{1}} \geq H_{t h},(M P a \sqrt[m_{1}]{m})$.
(2) The condition 2

If to use the assessment method of the stress intensity factor in the first stage, it is as below,

$$
\begin{gathered}
H_{1}=\sigma \times \sqrt[m_{1}]{a} \leq[H]=H_{1 c} / n,(M P a \sqrt[m_{1}]{m}) \\
H_{1 c}=\sigma_{s} \times \sqrt[m_{1}]{a_{t r}}
\end{gathered}
$$

Here, for masing's material, $n=1.6$; for the materials of happened strain hardening, $n=3$.
(3) Condition 3

1) If to use the assessment method of the stress intensity factor K_{1}^{\prime} at earlier time in the second stage, that is as following formula,

$$
K_{1}=y(a / b) \times \sigma \times \sqrt{\pi a} \leq\left[K_{1}\right]=K_{1 c} / n
$$

Here, for the materials of happened strain harding, that the [K_{1}] is

$$
\left[K_{1}\right]=K_{\mathrm{lc}} / n=\sigma_{s} \sqrt{\pi a_{1 c}} / n, n=3 .
$$

For the Masing's materials, it is

$$
\left[K_{1}\right]=K_{1 c} / n=\sigma_{s} \sqrt{\pi a_{1 c}} / n, n=1.6
$$

2) If to calculate the stress intensity factor K_{2} at the latter time in the second stage, that is as below,

$$
K_{2}=y(a / b) \times \sigma \times \sqrt{\pi a} \leq\left[K_{2}\right]=K_{2 c} / n
$$

Here, for the materials of happened strain harding, that the [K_{2}] is

$$
\left[K_{2}\right]=K_{2 c} / n=\sigma_{f} \sqrt{\pi a_{2 c}} / n, n=3 .
$$

where it can see, that the $a_{2 c}$ of the steels QT800-2 and 4340 in the table 5.

For the Masing's materials, it is

$$
\left[K_{2}\right]=K_{2 c} / n=\sigma_{f} \sqrt{\pi a_{2 c}} / n, n=1.6
$$

Where, it can see, that the $a_{2 c}$ of the steels 30 CrMnSiA and LC4CS in the table 5 .
3) If to use the assessment method of the stress intensity factor $K_{w a}$ in whole process, that is as follow,

$$
\begin{gather*}
K_{w}=y(a / b) \times \sigma \times \sqrt{\pi a_{w}} \leq\left[K_{w}\right]=K_{w c} / n \tag{21}\\
{\left[K_{w}\right]=K_{w c} / n=\sigma_{f} \sqrt{\pi a_{w c}} / n, n=3} \tag{22}
\end{gather*}
$$

Where, total size of a crack in whole process, $a_{w}=a_{1}+a_{2}$; total critical size $a_{w c}$ of a crack, $a_{w c}=a_{t h}+a_{1 c}$ or $a_{w c}=a_{t r}+a_{1 c}$, here to take smaller one of both data; $n=3$.
2. The assessment method for the crack size
(1) The cases 1

If the crack size is
It may be: $a_{1} \leq a_{t h},(\mathrm{~mm})$, then the short crack will grow;
or $a_{1} \geq a_{t h}$, $(m m)$, then it will not grow.
(2) The condition 2

1) To apply the assessment method of the crack size in the first stage, it is as below,

$$
\begin{equation*}
a_{1} \leq[a]=a_{t r} / n,(m m), \tag{23}
\end{equation*}
$$

Here, for Masing's material, $n=1.6$; for the materials of happened strain hardening, $n=3.0$.
2) To apply the assessment method of the crack sizes at earlier time in the second stage, that is

$$
\begin{equation*}
a_{2} \leq[a],(\mathrm{mm}),[a]=a_{1 c} / n \tag{24}
\end{equation*}
$$

Here for Masing's material, $n=1.6$;
Here, for the materials of happened strain hardening, $n=3$.
(3) The condition 3

To apply the assessment method of the total crack size in the whole process, that is

$$
\begin{equation*}
a \leq[a]=a_{w c} / n, \tag{25}
\end{equation*}
$$

Here, for Masing's materials, $a_{w c}=a_{t h}+a_{1 c}$ or $a_{w c}=a_{t r}+a_{1 c}$, to take smaller one of both data; $n=3$.

If it can be corresponded under all conditions mentioned above, then is placed to a safe state in a definite time; Otherwise, it isn't a safe case.

4. Calculating Example

The steel 30 CrMnSiA is a Masing's material, its strength limit $\sigma_{b}=1177 M P a$, yield limit $\sigma_{s}=1104.5 M P a$, $E=203005 M P a$
$K=1475.76 \mathrm{MPa}, \sigma_{f}=1795.1 \mathrm{MPa}, n^{\prime}=0.063, b_{1}^{\prime}=-0.0859$; Working stress $\sigma_{\max }=960 \mathrm{MPa}$ under monotonous loading, and supposing $\sigma_{p r} \approx 0.97 \sigma_{y}=0.97 \times 1104.5=1071(M P a)$; $y(a / b)=1$. If it is being calculated by a designer in design, to try to calculate respectively following data:
(1) Calculate the threseld size $a_{t h}$ of a crack, the critical size $a_{1 c}$, the $a_{2 c}$ and the total $a_{w c}$ for the material;
(2) Calculate the factors $H_{t h}, K_{1 c}, K_{2 c}$ and $K_{w c}$ of stress intensity corresponded to each critical crack size mentioned above, respectivaly;
(3) Use two kind of assessment methods to make evaluating for the security of the material.
The processes and steps of calculations are as below.

1. To adopt the assessment method of crack size
1) Calculate each critical size $a_{t h}, a_{1 c}, a_{2 c}$ and $a_{w c}$ for the crack, and make an assessment for safety of the material
According to the formulas (8), (1) and (10), the crack size a_{1}, the threshold $a_{t h}$ and the transitional $a_{t r}$ are respectively calculated as below,

To take $\sigma_{p r} \approx 0.97 \sigma_{y}=0.97 \times 1104.5=1071(M P a)$.

$$
\begin{aligned}
& a_{1}=\frac{\sigma^{2}}{\sigma_{p r}^{2} \times \pi} v=\frac{960^{2}}{1071^{2} \times \pi} 1 \mathrm{~mm}=0.256,(\mathrm{~mm}) \\
& a_{t h}=\left(\frac{1}{(\pi m m)^{0.5}}\right)^{\frac{1}{0.5+b_{1}}}=(0.564)^{\frac{1}{0.5+b_{1}}}=(0.564)^{\frac{1}{0.5+(-.0859)}}=0.251(\mathrm{~mm}),
\end{aligned}
$$

The result $a_{1}=0.256(\mathrm{~mm})>a_{t h}=0.251(\mathrm{~mm})$, then it can predict that the micro crack must initiate on the material.
And $a_{t r}=\left(\sigma_{s}^{\left(1-n^{\prime}\right) / n^{\prime}} \times \frac{E \times \pi^{1 / 2 \times n^{\prime}}}{K^{1 / n^{\prime}}}\right)^{\frac{2 m_{1} n_{1}}{2 n_{1}-m_{1}}}=\left(\sigma_{s}^{(1-0.063) / 0.063} \times \frac{203005 \times \pi^{1 / 2 \times 0.063}}{1475.76^{1 / 0.063}}\right)^{\frac{2 \times 11.64 \times 0.063}{2 \times 0.063-11.64}}=0.291(\mathrm{~mm})$;

$$
[a]=a_{t r} / n=0.291 / 1.6=0.182(\mathrm{~mm}) .
$$

$$
\left[a_{1}\right]=H_{1 c} / n_{1}=581.2 / 1.6=363.25,\left(M P a \cdot m^{1 / m_{1}}\right),
$$

The results $a_{1}=0.256(\mathrm{~mm})>a_{t h}=0.251(\mathrm{~mm})$ and $a_{1}=0.256>\left[a_{1}\right]=0.181(\mathrm{~mm})$, so the crack must also grow in the material.
2) According to the formula (18), its growed size of the crack under work stress σ in the second stage is

$$
a_{2}=\frac{\sigma^{2} \times \pi}{\sigma_{y}^{2}},(\mathrm{~mm})=\frac{960^{2} \times \pi}{1104.5_{y}^{2}}=2.373 \mathrm{~mm}
$$

3) According to the formula (14), its critical size during long crack growth should be,

$$
\begin{gathered}
a_{1 c}=\frac{K^{2}}{\sigma_{s}^{2} \times \pi}=\frac{1475.8^{2}}{1104.5^{2} \times \pi}=0.568(\mathrm{~mm}) \\
{[a]=a_{1 c} / n=0.568 / 1.6=0.355 .}
\end{gathered}
$$

The crack both $a_{2}=2.373>[a]=0.355(\mathrm{~mm})$ and $a_{2}=2.373>a_{1 c}=0.568(\mathrm{~mm})$,
4) The total crack size in the whole process is:
$a_{w}=a_{1}+a_{2}=0.256+2.373=2.629(\mathrm{~mm})$
According to the formula (19), the total critical size of crack should be as below,

$$
\begin{gathered}
a_{w c}=a_{t h}+a_{1 c}=0.251+0.568=0.819(\mathrm{~mm}) . \\
{[a]=a_{w c} / n=0.819 / 3=0.273(\mathrm{~mm})}
\end{gathered}
$$

Now, the crack not only $a_{w}=2.629>\left[a_{w c}\right]=0.273(\mathrm{~mm})$, but also $a_{w}=2.629>a_{w c}=0.819(\mathrm{~mm})$, so that the material of the structure must be fracture.
2. To adopt the assessment method of stress intensity factor.

1) According to the formulas (6) and (7), to calculate the stress factor H_{1} and its critical value in the first stage is as below,

$$
\begin{aligned}
& H_{1}=\sigma \times \sqrt[m_{1}]{a_{1}}=960 \times \sqrt[11.64]{2.56 \times 10^{-4}}=471.74\left(\mathrm{MPa} \cdot \mathrm{~m}^{1 / m_{1}}\right) \\
& H_{1 c}=\sigma_{s} \times \sqrt[m_{1}]{a_{1 c}}=1104.5 \times \sqrt[11.64]{5.68 \times 10^{-4}}=581.2,\left(\mathrm{MPa} \cdot \mathrm{~m}^{1 / m_{1}}\right),
\end{aligned}
$$

$$
H_{1}=471.74>\left[H_{1}\right]=363.25\left(M P a \cdot m^{1 / m_{1}}\right)
$$

Therefore, it is already insecurity in the first stage.
2) According to the formulas (13), (12) and (14), the factor values K, K_{y} and total critical $K_{w c}$ of crack are calculated as below.
Calculate the values K, K_{y} and $K_{w c}$ of stress intensity factors of the crack in the second stage, respectivaly;
a) The stress intensity under work stress is

$$
K_{2}=y(a / b) \sigma \times \sqrt{\pi a_{2}}=1 \times 960 \times \sqrt{\pi 2.373 \times 10^{-3}}=82.89(M P a \sqrt{m})
$$

b) The threshold values $K_{t r}$ of the stress intensity at transitional point under yield stress is as below

$$
\begin{gathered}
K_{y}=\sigma_{s} \times \sqrt{\pi a_{t r}}=1104.5 \times \sqrt{\pi 2.51 \times 10^{-4}}=31(M P a \cdot \sqrt{m}), \\
{\left[K_{y}\right]=K_{y} / n=31 / 1.6=19.4(M P a \cdot \sqrt{m})}
\end{gathered}
$$

c) The critical values $K_{1 c}$ in second stage is,

$$
\begin{gathered}
K_{1 c}=\sigma_{s} \cdot \sqrt{\pi a_{1 \mathrm{c}}}=1104.5 \sqrt{\pi 5.68 \times 10^{-4}}=46.66(\mathrm{MPa} \sqrt{m}), \\
{\left[K_{1}\right]=K_{1 c} / n=46.6 / 1.6=29.1(M P a \cdot \sqrt{m})}
\end{gathered}
$$

So the stress factor values both $K_{2}=82.89\left(M P a \sqrt{m}>\left[K_{y}\right]=19.4\right.$ and $\left[K_{1}\right]=29.1$, and the $K_{2}=82.89>K_{y}=31$ and $K_{1 c}=46.66(M P a \sqrt{m})$.
3) Calculations for the factor method in whole process.

To calculate total size of crack for formula, that is,

$$
a_{w}=a_{1}+a_{2}=0.256+2.373=2.629(\mathrm{~mm})
$$

According to the formulas (21) and (22), the total factor in whole prosess is

$$
K_{w}=y(a / b) \sigma \times \sqrt{\pi a_{w}}=1 \times 960 \sqrt{\pi 2.629 \times 10^{-3}}=87.25(M P a \sqrt{m})
$$

the critical factor of total crack size in the whole process is

$$
K_{w c}=\sigma_{f} \times \sqrt{\pi a_{w c}}=1795.1 \times \sqrt{\pi 8.19 \times 10^{-4}}=91.1(M P a \sqrt{m}) .
$$

Here can see, this critical size of crack with the
experimental data ($\left.K_{c}=98.9 M P a \sqrt{m}\right)$ of that stress intensity factor in table 5 is relatively approximating.
4) Its allowable value of stress intensity factor is,

$$
[K]=K_{w c} / n=91.1 / 3=30.4(M P a \sqrt{m}),
$$

Now, $K_{w}=87.25>[K]=30.4(M P a \sqrt{m})$.
So that the material must be fracture.
Here it can find out, the results for two kinds of calculating and assessment that is coincident.

5. Conclusions

(1) Due to the b_{1} is the only constants for the materials behaviours shown inherent properties, so that the new threshold values $a_{t h}$ depended on them, that are also the sole, and calculable one.
(2) The equation that crack size $a_{t r}$ at transitional point between the elastic and plastic strain, that it is suited to calculate for the materials shown strain hardening and Masing's ones.
(3) As the yield stress $\sigma_{s}\left(\sigma_{y}\right)$ is the only the constant shown own inherent property, so that the new critical value $a_{1 c}$ depended on the σ_{s}, that is also the sole, and the $a_{1 c}$ is a calculable parameter. Similarly, because the fracture stress σ_{f} is the only the constant shown own inherent one, so that the new critical value $a_{2 c}$ depended on the σ_{f} that is also the sole.
(4) The critical $a_{1 \mathrm{c}}$ and $a_{2 \mathrm{c}}$ of a crack are inherent constants shown the materials' characters; therefore the critical stress factors $K_{1 \mathrm{c}}$ and $K_{2 \mathrm{c}}$ based on $a_{1 \mathrm{c}}$ and $a_{2 \mathrm{c}}$ are also sole values, and are all calculable ones.
(5) Because corresponding to the factor at end point of the $K_{1 c}$ is the very one at starting point of the $K_{2 c}$, where they are the same value at point A2 on abscissa axis O4 IV; but for their critical values of cracks, $a_{2 c} \neq a_{1 c}$. So, for some materials of the elastic-plastic and happened strain harding when to take the value for the $[K]$, it must only be calculated by the $K_{1 c} / n$ or $K_{2 c} / n$ in the safe factor n
(6) In assessment for crack strength, there are two kinds of methods that are calculated by the stress factor and by the crack size, both is consistent. For Masing's materials, it must be calculated by $K_{w c} / n=[K]$ or by $a_{w c} / n=[a]$; for the materials happened strain hardening, it must be calculated by $K_{\text {lc }} / n=[K]$ or $a_{1 \mathrm{c}} / n=[a]$; by the way, the assessment way of the crack size is more simpleness.
(7) For Masing's materials, the total critical $a_{w c}$ of a crack is also the only, and it is another new constant shown a material's propertiy; therefore its critical stress factor $K_{w c}$ based on $a_{w c}$ is also the sole value, and also
calculable; Their computing models can be used to calculate both for the safe assessment to some materials preexistted a flaw and for predicting crack in the structure designs; But for as the steel 40 Cr shown strain softening, both error between the calculated and the experimental data is bigger.
(8) If to take same the yield stress and the calculating unit (mm) to calculate the strength coefficient K in fatigue subject, then the K is virtually the very the critical stress intensity factor K_{Ic} on fracture mechanics under monotonous loading.
(9) In those computing models are proposed by the author, if readers want to apply in engineering calculations, it must yet be verified to combine experiments, and it has to consider the influences for the shape and size to the crack and the structure.

References

[1] Yan Gui Yu. Damage Growth Rate Calculations Realized in Whole Process with Two Kinks of Methods. American Journal of Science and Technology. Vol. 2, No. 4, 2015, pp. 146-164.
[2] Yangui Yu. The Life Predicting Calculations Based on Conventional Material Constants from Short Crack to Long Crack Growth Process. International Journal of Materials Science and Applications. Vol. 4, No. 3, 2015, pp. 173-188. doi: 10.11648/j.ijmsa.20150403.15.
[3] Yangui Yu. The Predicting Calculations for Lifetime in Whole Process Realized with Two Kinks of Methods for ElasticPlastic Materials Contained Crack. Journal of Materials Sciences and Applications. Vol. 1, No. 2, 2015, pp. 15-32.
[4] Yangui Yu. The Calculations of Crack Propagation Rate in Whole Process Realized with Conventional Material Constants. Engineering and Technology. Vol. 2, No. 3, 2015, pp. 146-158.
[5] Yangui Yu. Multi-Targets Calculations Realized for Components Produced Cracks with Conventional Material Constants under Complex Stress States. «AASCIT» Engineering and Technology. Vol. 3, No. 1, 2016, pp. 30-46.
[6] China Machine Press, Mechanical design handbook, New Edition, Volume 5.31~124~135; 31-57~60; 31-134~136. (in Chinese).
[7] Shaobian Zhao and Zhongbao Wang, Anti-Fatigue Design--Methods \& Data, China Machine Press, P. 90-109, 469-489 (in Chinese).
[8] Masing, G. Eigerspannungen and Verfestigung bein Messing, Proceeding of the 2nd International Congress of Applied Mechanics, Zurich, 1976, pp. 332-335.
[9] Yung-Li Lee, Jwo Pan, Richard B. Hathaway, Mark E. Barkey. Fatigue Testing and Analysis Theory and Practice. The first edition, Elsever Inc., USA. 142-152.
[10] David Broek Elementary Engineering Fracture Mechanics, Third revised edition Martinus Nijhoff Publishers, 1982, 6-14.
[11] Michael F. Ashby and David R. H. Jones, Engineering Materials, An introduction to their propertied and applications, Pergamon Press, 1980, P. 145-147.
[12] B. P. Kogaev, H. A. Maxymov, A. P. Gycenkov. Calculations on Strength and Durability for the Structure and Mechanical parts, Handbook, Machinery Industry Press, Moscow, 1985 70~75. (in Russian) (В. П. Когаев, Н. А. Махутов, А. П. Гусенков. Расчеты Деталей Машин и Конструкций на Прочность и долговечность, Справочник, Машиностроение 1985, Москва, 70-75).
[13] S. V. Doronin, et al., Ed. RAN U. E. Soken, Models on the
fracture and the strength on technology systems for carry structures, (Novosirsk Science, 2005), PP. 160-165.(in Russian).
[14] U. Zerbst, S. Beretta, G. Kohler, A. Lawton, M. Vormwald, H. Th. Beier, C. Klinger, I. C erny', J. Rudlin, T. Heckel a, D. Klingbeil, Safe life and damage tolerance aspects of railway axles - A review. Engineering Fracture Mechanics. 98, 214 271 (2013).

