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Abstract: Spectral analysis studies the power distribution over frequency of a signal. This allows the characterization of 
time signals by its harmonics. This article will establish a relationship between the autocorrelation function and the spectrum. 
The direct implementation of the theory when analyzing a finite time signal results in a raw periodogram or first estimation of 
the spectrum. However, owing to the biased nature of the autocorrelation function, the periodogram obtained will not be a 
good estimation. Thus, several estimation techniques are needed in order to acquire a reliable spectrum. Amongst the 
techniques handled are the averaging Welch method, the use of window functions or tapering and the implementation of Fast 
Fourier Transform algorithms. To validate the accuracy and improvements made with these techniques, an algorithm is 
implemented in Matlab. Several synthetic signals are assessed and the classical Kármán Vortex Street is performed in a wind 
tunnel experiment. The results obtained are proof of the need for a careful study of the different estimation techniques when 
analyzing a signal. 
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1. Introduction 

Spectral Analysis is a tool used in statistical signal 
processing that considers the problem of estimating the 
spectral distribution, i.e. the distribution of power in a 
frequency interval, of a time series obtained from 
measurements. In physics, the term used to describe the 
distribution of power over frequency is Power Spectral 
Density (PSD). The applications of spectral analysis cover 
diverse fields. In fields of Physics such as astronomy or 
meteorology, spectral analysis can be used to reveal hidden 
periodicities in the studied data which can be associated with 
recurring processes. In medicine, spectral analysis can be 
used for diagnosis and data can be obtained when applying 

this technique to signals measured from the patient, such as 
an electrocardiogram or an electroencephalogram. In control 
systems, the need for characterizing the dynamical behavior 
of a given system makes spectral analysis an interesting 
option. Other interesting applications in the field of 
engineering could be the study of characteristic frequencies 
in order to avoid resonance problems, for instance, flutter 
problems in bridges and wings can cause severe damage in 
the structure and careful observation in their frequency 
behavior can avoid this. 

This paper attempts to synthesis the complexity of spectral 
analysis into a simple and concise document where the basic 
mathematical theory is explained and the main techniques 
used in PSD estimation are developed. That way, a Kármán 
vortex street can be studied in the wind tunnel facility. In this 
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article, Fourier analysis will be used as a method to obtain 
the PSD. The use of Discrete Fourier Transform (DFT) 
establishes a relationship between the spectra and the signal. 
Alternative works which follow similar strategies can be 
found in [1] and [2]. 

Examples of specific applications of these techniques are 
the study of brain waves by periodogram estimation [3], 
vibration analysis of turbines using autoregressive methods 
[4] or testing if a time series is consistent with white noise 
using wavelets coefficients [5]. 

2. Spectrum Analysis Definitions 

2.1. Autocorrelation and PSD 

In order to determine the PSD of a signal, it is necessary to 
start by defining the autocorrelation function. The 
autocorrelation function of a real continuous signal �(�) is 
defined in the following expression from [6], 

���(��, �	) = �(�(��)�(�	))                  (1) 

where �(�(��)�(�	)) represents the expectation of a generic 
signal �(�), and �� and �	 are two different instants in time. 
When �� = �	 , the autocorrelation function is equal to the 
variance of the signal. In the case of a stationary signal, the 
statistics of a temporally random process are independent of 
the time origin. This implies that mean values and statistical 
moments of the process are constant as they are not 
dependent upon the absolute value of time. Thus, the 
autocorrelation function only depends on the time lag 
� = �	 − ��. 

���(�) = �(�(�)�(� + �))                  (2) 

In addition, if the random process is ergodic, every 
member of an ensemble in a stationary process has the same 
statistical behavior. Hence, a single sample function can 
determine the statistical behavior of the complete ensemble 
and the statistical moments can be determined by time 
averages over a period of time �  as well as by ensemble 
averages. 

���(�) = lim�→�
�

�
� �(�)�(� + �)���/	

��/	             (3) 

This function, as seen in expression [3], gives an idea of 
the similarity of a signal with itself displaced a lag of time. 
Its relation with spectrum analysis can now be understood. 
The harmonics with a characteristic period of time ��  will 
yield a high value in the integral, e.g. a sine wave displaced a 
value 2�  would conserve its similarity with the original 
signal resulting in a peak in the autocorrelation function for 
that time lag. 

The Wiener–Khintchine theorem presents a relationship 
between the autocorrelation function and the spectrum. Being 
the latter the Fourier Transform of the former [7]. 

�(�) = � ���(�)�� !"���
��                     (4) 

Reciprocally, the autocorrelation function can be retrieved 
with the definition of the inverse Fourier Transform. 

���(�) = � �(�)� !"���
��                          (5) 

It is interesting to observe that for the case of � = 0 the 
spectrum integral over the frequency range is equal to the 
autocorrelation function, that is, the variance of the signal. 

$	 = � �(�)���
��                             (6) 

where $	 = �(�(�)	)  is the variance of the signal. This 
shows that the integrand �(�)�� is the contribution to the 
variance (that is, the fluctuation power) of �(�)  from the 
frequency band �� centered at �. This is the reason why the 
spectrum of a signal is also known as the Power Spectral 
Density (PSD). 

Using the convolution property of the Fourier Transform, 
that states that the transform of the convolution of two 
signals is the product of the transform of those two signals 
[8], the PSD can also be obtained with the following equation 
[7], 

�(�) = lim�→�
|&(!)|'

�
                        (7) 

where ((�) is the Fourier Transform of the time signal �(�). 

2.2. Discrete Formulation 

In real time history records, the signals obtained are not 
continuous but are sampled at discrete time instants. Thus, it 
is necessary to redefine the previous expressions for the 
discrete case. The Discrete Fourier Transform (DFT) of a 
signal can be defined as 

() = ∑ �+�� ',
- )+ /��

+0�
                         (8) 

where the subscript �+ refers to the sample 1 of the discrete 
time signal and ()  refers to the Fourier Transform at the 

frequency 
	2

/
3 , being 4  the number of samples for the 

discrete signal [9]. Hence, to relate this expression to the 
continuous case of the Fourier Transform, it is necessary to 
multiply the DFT by the time between samples ∆�. 

()|6789 :8;7 =  ∆� ∙ ()                (9) 

where ()  is defined in equation (8) and ()|6789 :8;7  
corresponds to the discrete approximation of the continuous 
Fourier Transform of the signal �(�) [10] Finally, the PSD 
expression for discrete time signals results from the 
following expression 

�) = ∆='&>
'

�
=  ∆=&>

'

/
= &>

'

/?@
                      (10) 

where A;  is the sampling frequency at which the discrete 
signal has been recorded, i.e., the inverse of the time 
difference between samples ∆� . The estimation of the 
spectrum in equation (10) is called the periodogram of a 
discrete signal �+. However, this periodogram is not the best 
estimator for the spectra owing to the biasing of the 
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autocorrelation function in the discrete case. The biasing of 
the autocorrelation function is the result of the availability of 
few elements in the estimation for large lags of time in the 
discrete case (there is little overlapping of the two signal 
vectors, the original, and the displaced one). 

The complexity of a DFT algorithm is B(4	), meaning 
that the computational time required for the calculation of the 
transform increases in a quadratic manner with the number of 
elements 4  involved. To improve this, Fast Fourier 
Transform (FFT) algorithms are used in order to reduce 
computational time due to their lower complexity. The 
complexity of these algorithms is B(4CDE	4) [11] allowing 
a decrease in the necessary computational resources. 

2.3. Resampling 

Many types of measurement techniques acquire data in 
random time intervals. Therefore, it is not possible to control 

the time history of the sampling. In the vortex street 
application, velocity measurements are taken by detecting 
particles within the flow, and the arrival of these cannot be 
controlled nor predicted. This is an issue for the estimation of 
Fourier Transforms due to the requirement of evenly 
distributed time signals in FFT algorithms. To solve this 
problem, a resampling technique is needed. 

Many resampling methods have been suggested but the 
Sample & Hold algorithm is the most wide spread and one of 
the easiest to implement [12]. This method consists of a zero 
order interpolation that follows the expression. 

�67;8FG97H(�) = �(� )| �� I � I � J��                (11) 

where ��� � corresponds to the discrete sample recorded in the 
instant � . Figure 1 shows the resampling process of the 
Sample & Hold method of an arbitrary non-dimensional signal. 

 

Figure 1. Sample & Hold resampling method. 

From this figure, two immediate problems can be observed. 
Firstly, if two neighboring true samples are further apart than 
the time between resamples, the first one will be resampled 
several times although no new information about the signal is 
available. Secondly, if various samples are between two 
resamples, the information contained in all but the last one 
will be lost. 

The study carried out by [13] shows that the estimation of 
the spectrum is influenced by two phenomena. 

a) The Sample & Hold method acts like a low pass filter 
due to the fact that not all samples are taken into 
account during the resampling. The cutoff frequency at 
which the spectrum is attenuated by half is 1K/2�. 

b) The Sample & Hold method introduces white noise 
owing to the discontinuity of the steps formed during 
the resampling. The level of noise will be reduced by 
increasing the mean sampling rate of the original signal. 

3. Estimation Techniques 

3.1. Welch Averaging Method 

As mentioned in the previous section, the periodogram is 

not a good estimator for the PSD of a signal. This means that 
even if the number of elements in a signal is increased, the 
autocorrelation function for very large time lags will have 
fewer elements than for smaller lags. Hence, the estimation 
will be poor. 

To solve this, the estimation of the PSD can be improved 
by averaging different periodograms of the signal. This can 
be achieved by splitting the time signal into different portions 
upon which the periodograms are estimated [14]. This 
technique considerably reduces the noise in a signal in 
exchange of reducing the frequency resolution due to the fact 
that the minimum frequency detected in a spectrum is the 
inverse of the duration of the signal [9]. Thus, for a higher 
amount of segments used, the shorter their lengths will be, 

�L 
 �

M
∑ �9M

90�                                 (12) 

where �L  is the estimation of the PSD from N  different 
periodograms calculated for N segments of the original signal. 

Bartlett’s method consists in averaging periodograms 
corresponding to segments of a signal that are not overlapped. 
On the other hand, Welch’s method improves the estimation 
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of spectra by overlapping the segments in the signal so as to increase the number of periodograms for averaging. 

 

Figure 2. Averaging Spectra method. 

Figure 2 shows the improvements made with this 
technique. The spectra correspond to a white noise non-
dimensional function. This function is known to have a 
constant PSD, i.e., it has the same energy content for all 
frequencies. The averaged periodogram has been obtained by 
splitting the signal into 150 different segments and a 
periodogram has been calculated for each one of them. 

3.2. Tapering 

Another problem encountered during the estimation of the 
PSD of a signal is the fact that DFT algorithms treat the signal 

as a period of a periodic function. This is due to the nature of 
the Discrete Fourier Transform, which is the summation of a 
finite number of complex exponentials or harmonics [15]. 

Owing to this periodicity, there will generally be a 
discontinuity between the first and the last elements of the 
signal, resulting in undesirable noise. To solve this problem, 
the original signal is multiplied by a window function so that 
both ends of the signal have zero values, avoiding the 
mentioned discontinuity [16]. In Figure 3 some non-
dimensional window functions are shown. A comparison in 
the effect of the different windows can be seen in [17]. 

 

Figure 3. Window function examples. 
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However, the tapering technique generates a spectral 

leakage where energy content in a frequency is spread over 
its surroundings. To explain this, it is necessary to take into 

account the Fourier Transform convolution property, i.e., the 
product of two signals is transformed into the convolution of 
the transformations of both signals (equation (13)). 

OP�(�) · Q���R 
 (��� S T��� 
 � (�� 
 U� · T�U��U�
��                                       (13) 

This means that for the estimation of the PSD at the 
frequency �, the energy content of the signal at frequency 
� 
 U  is added due to the lobes of the window function 
transform present in the frequency U. The ideal case for a 
window is the one with a Dirac delta function as a Fourier 
Transform. However, in this case the convolution would not 
modify the original signal. The window with this transform 
corresponds to a constant function of unitary value which 
does not attenuate both ends of the time signal. 

The window function choice must depend on the spectral 
form of the original signal. For instance, the number of 
harmonics and its amplitude must be taken into account when 
choosing a window. Preferably, windows should have their 
main lobe as narrow as possible because this leads to a higher 
frequency resolution. They should also have their secondary 
lobes as low as possible so as to mitigate the leakage, 
although this contributes to a wider main lobe, meaning that 
this effect compromises the first point. 

3.3. Zero Padding 

Zero-padding is a technique where zeros are added to the 
end of the original signal in order to increase its length. This 
could seem to result in an increase of frequency resolution 
but it is false. Adding zeros to the signal will not contribute 
with new information and the effect is the same as applying a 
rectangular window, which can lead to an excessive leakage 

[15]. 
Nevertheless, due to the fact that the efficiency of FFT 

algorithms is highly influenced by the number of elements in 
the signal, zero padding is used to obtain a signal with a 
number of elements that is a power of two so that FFT 
efficiency is maximized [11]. 

4. Applications 

4.1. The Algorithm 

The previous techniques have been implemented in an in-
house Matlab program to test its efficiency and accuracy.  

Figure 4 shows the flow chart which includes the main 
aspects of the software. In this program the signal ���� is 
resampled for the case where it is not evenly distributed in 
time. The Welch averaging method is used by splitting the 
signal into a number of portions predefined by the user. Then, 
for each portion, the Hann window function is applied. This 
window is used mainly because of its widespread use but it 
can be changed by the user. In order to maximize 
computational efficiency, zeros are added to the different 
portions so as to acquire a number of samples corresponding 
to a power of two. FFT is applied to each of the portions to 
calculate several periodograms which are then averaged to 
obtain the final estimation of the spectrum ��A�. 

 

Figure 4. Spectral analysis program flow chart. 

4.2. Synthetic Signals 

A way to prove the software’s reliability is to create signals based on mathematical functions and white noise. The goal is to 
minimize the effect that the noise produces in the spectra obtained. 

The signal that will be analyzed is a non-dimensional periodic function with fixed harmonics and white noise. Its 
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mathematical expression is the following 

�(�) = 4 sin�20��� � 2 sin�50��� � 8 sin�60��� � �+\ ;7                                          (14) 

Figure 5 shows the results of using this software for 
obtaining the spectra. On the left, the raw spectrum has been 
represented. It corresponds to the case where none of the 
techniques have been applied and the signal has been directly 
transformed to the frequency domain. On the right, the 
estimation techniques have been applied showing a clearer 

and more accurate spectrum. The frequencies of the peaks 
shown in the spectrum perfectly match the frequencies 
corresponding to each of the harmonics present in the 
original signal. In addition, the intensity of these peaks is 
directly related to the amplitudes of the respective harmonics. 

 

Figure 4. PSD comparison of evenly distributed in time signal. 

The next synthetic signal, with the same harmonics as before, simulates a stochastic signal where the samples are not evenly 
distributed in time. To achieve this, the samples have been generated according to a time vector that follows a Poisson 
statistical distribution [18]. 

 

Figure 5. PSD comparison between even and uneven samples distributions in time. 

Figure 6 shows the result of analyzing a signal which is 
not evenly distributed in time, meaning that resampling is 
necessary. The harmonics are still detected with relatively 
high precision but, due to the Sample & Hold method, the 
resampling behaves as a low pass filter, attenuating high 
frequencies as shown in the spectrum of the right. 

4.3. Kármán Vortex Street 

A real application of the developed software is done by 
reproducing the Kármán Vortex Street flow using a wind 
tunnel and analyzing the characteristic frequencies involved 
in it. This phenomenon consists in the shedding of eddies 
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behind a cylinder which is exposed to a uniform flow of 
velocity ]  [19] as shown in Figure 7. The characteristic 
frequencies will be those corresponding to the eddies 
generated in the flow. 

 

Figure 7. Kármán vortex street visualization at Re=220 (INTA). 

The most important non dimensional parameters involved 
in this fluid-dynamic process are the Reynolds number and 
the Strouhal number, defined as the following expressions, 

�� = ^_M

`
                                    (15) 

�� = ?M

_
                                      (16) 

where A and N  are characteristic values of frequency and 
length, and a and b are the density and dynamic viscosity of 
the fluid respectively. The first number indicates the 
relationship between the convective and viscous forces in a 
fluid and quantifies the turbulence a flow has. On the other 
hand, the Strouhal number describes the oscillating flow 
mechanisms in the process. 

The analysis of characteristic frequencies is done by 
calculating the PSD of the flow velocity behind the cylinder. 
In order to obtain the velocity measurements, a Laser 
Doppler Anemometry system (LDA) is used during the 
experiment. LDA is based on the Doppler effect to establish 
a relationship between flow velocity and the frequency 
changes in a laser beam [20]. Figure 8 shows the experiment 
set up in which two LDA systems are used. The green one 
measures the upstream velocity in order to regulate the wind 
tunnel speed. Its measurements are done more than 10 

diameters ahead of the cylinder in order to minimize the 
perturbations induced by this instrument. The red one 
measures five diameters behind the cylinder and its data is 
analyzed so as to find characteristic frequencies in the fluid 
dynamic process. 

 

Figure 8. Experimental setup. 

The rod diameter is 2 mm and the wind tunnel velocities 
under the measurements taken are 1 m/s and 2 m/s. Taking 
into account a temperature of 293 K, the Reynolds number 
can be estimated to be 

��� = 132
��	 
 265                              (17) 

According to previous experiments, the Reynolds number 
obtained can be related to the Strouhal number [21]. 

��� 
 132 � ��� 
 0.18
��	 
 265 � ��	 
 0.2               (18) 

Once the Strouhal number is known, the shedding 
frequency behind the cylinder can be calculated. This first 
estimation allows us to determine whether or not the spectral 
analysis is successful. 

f� 
 1 g/h � A� 
 90 jk
f� 
 2 g/h � A	 
 200 jk                  (19) 

 

Figure 9. Spectral analysis of Kármán Vortex Street (f� 
 1 g/h;  �� 
 132�. 
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Figure 10. Spectral analysis of Kármán Vortex Street (f� = 2 g/h;  �� = 265). 

Results show a great succes in estimating the vortex 
shedding frequency. In the first case, this frequency results to 
be 95 Hz, very close to the 90 Hz estimated. The slight 
difference can be due to temperature and wind speed 
variations. As for the second case, the frequency is exactly 
200 Hz as predicted before. Figure 9 also shows a second and 
a third harmonics (they are multiples of the fundamental 
harmonic) that can be explained as reshaping of the fluid 
process from a perfect oscillation. 

The spectra also shows more energy content in Figure 10 
as the speed is greater and, thus, there is more kinetic energy. 
In both figures, a decrease in energy as frequency rises can 
be observed. This can be related to the energy cascade of 
turbulent flows characterized by Kolmogorov [22]. For very 
high frequencies this attenuation gets more noticeable owing 
to the low pass filter effect from the resampling. 

5. Conclusions 

Fourier analysis is one of the simplest methods for the 
spectra investigation of discrete time signals. Despite its 
simplicity, results obtained are reliable, accurate and easy to 
interpret. As proved in this article, a raw periodogram 
obtained from a direct transformation with FFT is not helpful 
due to the lack of smoothness that prevents the visualization 
of the power content of the PSD. This has led to the 
development of estimation techniques that enable an 
adequate correction of the curves regarding smoothness and 
resolution. 

Results obtained from different experiments prove the 
reliability of the in-house developed software. In the first 
place, synthetic signals have allowed us to find known 
harmonics and to distinguish them from random noise by 
improving the quality of spectra. On the other hand, the 

Vortex Street experiment was carried out successfully, 
achieving great levels of similarity with previous 
experimental results. 

Once the software has been tested, it can be used in many 
applications of physics and engineering which need a careful 
study of signals not only in the time domain but also in the 
frequency domain. 
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