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Abstract 
The Present investigation deals with the two-layered mathematical model of 

blood flow for a mild stenosis artery in the presence of axially variable, 

peripheral layer thickness and variable slip at the wall. The model consists of a 

core surrounded by a peripheral layer. It is assumed that the fluids of both the 

regions (core and peripheral) are Newtonian having different viscosity. The 

geometry of the interface between the peripheral layer and the core region has 

been determined and the result obtained in the analysis have been evaluated 

numerically and discussed briefly. In the present analysis, new analytic 

expression for the thickness of the peripheral layer has been obtained in terms of 

measurable quantities flow rate ( )Q , centerline velocity ( )U , pressure 

gradient ( )dzdp− , plasma velocity ( )cµ . It is important to mention that in the 

present analysis, core viscosity has been obtained by two methods. Firstly, by 

calculating from the formula obtained in the present analysis; and second, by 

calculating the red cell concentration in the core and then using concentration 

versus relative viscosity curve. It is found that the agreement between the two is 

very good (error<1.4%). The significance of the present model over the existing 

models could be useful in the development of new diagnosis tools for many 

diseases. 

1. Introduction 

Atherosclerosis is the leading cause of death in many countries. There is 

considerable evidence that vascular fluid dynamics plays an important role in the 

development and progression of arterial stenosis, which is one of the most 

widespread diseases in human beings. The fluid mechanical study of blood flow 

in artery bears some important aspects due to the engineering interest as well as 

the feasible medical applications. Stenosis, a medical term which means 

narrowing of an artery, tube or orifice, is the abnormal and unnatural growth in 

arterial wall thickness that develops at various locations of the cardiovascular 

systems under diseased conditions. The actual causes of stenosis are not well  
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known but it has been suggested that the deposits of 

cholesterol on the arterial wall and proliferation of 

connective tissues may be responsible for the same (Young, 

1968; Shukla et al. 1980b; Chaturani and Ponalagusamy, 

1986). Cardiovascular system can cause circulatory 

disorders by reducing or occluding the blood supply which 

may result in serious consequences (myocardial infarction, 

cerebral stroke). The hemodynamic behavior of the blood 

flow is influenced by the presence of the arterial stenosis. 

If the stenosis is present in an artery, normal blood flow is 

disturbed. The actual causes of stenosis are not well known 

but its effects on the cardiovascular system can be 

understood by studying the blood flow in its vicinity 

Bugliarello and Hayden (1963), Bugliarello and Sevilla 

(1970) have experimentally observed that when blood 

flows through narrow tubes there exists a cell free plasma 

layer near the wall. In view of their experiments, it is 

preferable to represent the flow of blood through narrow 

tubes by a two-layered model instead of one-layered model. 

But Lee and Fung (1970) have obtained the numerical 

results for the streamlines and distribution of velocity, 

pressure, vorticity and the shear stress for different 

Reynolds number in blood flow through locally constricted 

tubes. For such type of models, the flow of blood is 

represented by one-layered model. 

Many investigators (Chaturani and Kaloni, 1976; 

Chaturani and Upadhya, 1979; Shukla et al., 1980b) have 

theoretically studied the flow of blood through uniform and 

stenosed tubes and analyzed the influence of slip velocity 

or peripheral plasma layer thickness on the flow variables 

such as velocity, wall shear stress and flow resistance. In 

these models, the peripheral layer thickness and slip 

velocity are assumed a priori based upon the experimental 

observations. To understand the flow patterns in stenosed 

arteries. A fairly good number of theoretical and 

experimental studies on the blood flow through stenosed 

artery are available in the published literature, and some of 

them are Young (1968), has analyzed the flow of blood 

through an arterial stenosis. Shukla et al (1980a, b) have 

taken two-layered models and analyzed the influence of 

peripheral plasma viscosity on flow characteristics. 

Chaturani and Kaloni (1976), Chaturani and Ponalagusamy 

(1982) and Ponalagusamy (1986) considered the flow of 

blood represented by a two-layered model. Kumar and 

Kumar (2006) conducted a numerical study of the axi-

symmetric blood flow in a constricted rigid tube. Sahu et.al 

(2010) obtained results of arterial blood flow in stenosed 

vessel using non-Newtonian couple stress fluid model. 

Basu et.al (2012) investigated a non- Newtonian two-phase 

fluid model for blood flow through arteries under stenotic 

condition. More recently Basu et.al (2013) discussed on a 

non-Newtonian fluid model for blood flow using power 

law through an atherosclerotic arterial segment having slip 

velocity. Ellahi et.al (2014) gave an idea on a mathematical 

study of non-Newtonian micropolar fluid in arterial blood 

flow through composite stenosis. Agarwal and Varshney 

(2014) investigated that the slip velocity effect on MHD 

oscillatory blood flows through stenosed artery. Sharma 

et.al (2014) observed that the pulsatile MHD flow in an 

inclined catheterized stenosed artery with slip on the wall. 

In all these models, the peripheral layer thickness is 

assumed a priori. It would be of interest to obtain the 

analytic expression for peripheral layer thickness in terms 

of the measurable flow variables (flow rates, pressure 

gradient, etc.). 

2. Formulation of the Governing 

Equations 

Consider an axially axisymmetric model of blood 

flow in a uniform circular tubes or vessels of radius R. 

The Symmetric flow of blood assumed to be 

incompressible in the two directions through a rigid 

walled artery with an axially symmetric paired stenosis. 

Also we consider the flow of a plasma layer and a core 

layer with viscosity coefficient ( )pµ  and ( )cµ  

respectively. Thus the geometry of stenosis, (in non-

dimensional form) is given by (Ponalagusamy, 1986), 

which is assumed to be symmetrical:  
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where ( )2≥n is a parameter determining the shape of the 

stenosis, ( )zR is radius of the artery in the stenotic region, 
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1

1

0

−
+=

nn

L
dz . 

 

Figure (1). Geometry of two fluid layers. 

We shall take cylindrical coordinate 

system ( )θ,, rz whose origin is located on the vessels axis. 

The problem is investigated under the following 

assumptions (Philip and Chandra, 1996): 

i. Nobody forces act on fluid. 

ii. The motion is slow, so the inertia effects can be 

neglected.  

iii. Flow, which is due to the pressure gradient, is one-
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dimensional and fluid is incompressible. 

iv. The variation of cross-section of artery is 

considered to be very small. 

The boundary conditions are:  
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where 
0U

u
u

S

S = is the non-dimensional axially variable 

slip velocity, τ is the shear stress and   

PR  is the plug core radius. 

The consistency function ( )rµ may be written as:  
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where Cµ and Pµ are the viscosities of central core fluid 

and plasma respectively and ( ) ( )zRrzR ≤≤1  are the radii 

of central core region and the artery in the stenotic region.  

The non-dimensional variables are:  
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where u and v are velocity components in the 

axial z and radial r directions, p the pressure, ρ is the 

density, 0R is the radius of the normal artery,
0

z the one-

fourth length of the stenosis
00

UL the average velocity in 

the normal artery region and sδ is the maximum height of 

the stenosis (Figure 1). 

As per discussion made by Young (1968), the 

appropriate equations describing the flow in the case of a 

mild stenosis )1/( <<Rsδ , subject to the additional 

condition (a) 1)/(Re 0 <<Lsp δ  (b) )1(~/2 00 oLR are: 

For region, ),(0 1 ZRr ≤≤  













∂
∂

+
∂

∂
=

∂
∂

r

u

rr

u

z

p cc

p

2

2

2
1

Re µ
β

 

(4) 

0=
∂
∂−

r

p
 

(5) 

For region, )()(1 zRrzR ≤≤  













∂
∂

+
∂
∂=

∂
∂

r

u

rr

u

z

p pc

p

2

2

2
1

Re

β
 

(6) 

where
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3. Numerical Approach 

Using boundary condition (2), the solution of (4) and (6) 

can be written as 
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The Flow rate Q may be obtained as: ( )
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Flow rate for peripheral layer pQ by using equation (8) 

is  
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Similarly, flow rate for core region CQ as: 
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The total flow rate Q is: pC QQQ +=  
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Integrating above equation and using the condition 

0pp = at 0=z and 1pp = at Lz =  (From Fig.1) and 

simplifying, we obtained as:  
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where
0z

L
L = and resistance to flow. 

The wall shear stress wτ  can be defined as: 
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Using equation (8) and (12) then: 
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4. Analytical Solution for Velocity, 

Core Viscosity and Thickness 

Case-I For one layered model with the slip at the wall 

(when 1RR = ), then calculate the flow rate LQ1 and wall 

shear stress L1τ from equation (11) and equation (15) as: 
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Case-II For two layered model with the slip at the wall 

(when 0=su ), then calculate the flow rate LQ2 and wall 

shear stress L2τ from equation (11) and equation (15) as: 
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where 
R

A
δ−= 1  and 

R

δ
is the thickness of peripheral 

layer which is a function of axial distance z . Since the one- 

layered with slip and two- layered without slip represent 

the same phenomena.  

The flow rates and wall shear stresses can be equated as: 
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Solving above equation (20) and (21) we obtain Su as: 
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Using equation (19), the expression of core viscosity as: 
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For a two- layered model (plasma layer and a core layer) 

without slip 0=Su , the expression for velocity in the core 

region is obtained from equation (7) as: 
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The centerline velocity ( )U from equation (24) can be 

obtained as: 
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Elimination µ from (18) and (24) gives: 
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From equation (25), we notice that the centerline 

velocity ( )U is always less than
( )

β4

Re 2Rzq p . Since only 

those values of 
R

δ
are of interest which are real and less 

than or equal to unity. The following condition can be 

obtained from (26). 
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The equation (26) becomes: 

( )
( )

2
1

24

*4

4Re

8Re
1













−
−

−=
URRzq

QRzq

R p

p

β
βδ

 

(28) 

We have used experimental data of flow through 

uniform tube. We write equation (22), (23) and (28) in the 

dimensional form as: 
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where ( )
0

0
1

R
A

δ−= , 0δ is the peripheral layer thickness in 

the normal artery region, 0q is the pressure gradient.  
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5. Numerical Result and Discussion 

A two-layer model consisting of a core region of 

suspension of all the erythrocytes in plasma and a 

peripheral layer of plasma (Newtonian fluid) has been 

proposed to describe blood flow in small diameters vessels. 

We have the following data from Bugliarello and Sevilla 

(1963) and Bugliarello and Hayden (1970). 

For diametertubemµ40   sec/3.2144.0,2.3,sec/1023.19*%,40 00
36 cmUandmcmxQC ===== − µµδ  

For diametertubemµ6.66  sec/38.20143.0,87.12,sec/106546.45*%,6 00
36 cmUandmcmxQC ===== − µµδ  

Using these values, the peripheral layer thickness is 

calculated for blood flow in 40 and 66.6 mµ and obtained 

difference 0.094% from equation (12). With the help of the 

obtained values of  peripheral layer thickness, the core 

viscosity and red blood cell in the core have been 

computed from equation (22) –(24). The volumetric flow 

rate Q  vs. pressure gradient 
z

p
∂

∂
 have proposed in the 

model through (12) have been plotted in Figure (2) 

 

Figure (2). pressure-flow rate relationship in a vessel   

6. Conclusion 

The present study investigates a two-layered 

mathematical model of blood flow for a mild stenosis 

artery which has been modeled by core region with a 

Newtonian fluid peripheral layer. It is observed that 

resistance to the flow  and wall shear stress  increases when 

height of stenosis  increases. The values of the apparent 

viscosity of blood, agreeability, rigidity and deformability 

of red cells can be determined by the present analysis more 

accurately than the other existing models because in the 

present study, core viscosity is obtained by calculating the 

actual red cell concentration in the core which is different 

from the concentration of whole blood. The present 

analysis could also serve as the check for experimentally 

measured rheologic values of blood.  It may be mentioned 

at this stage that the variation of peripheral layer thickness, 

core viscosity and slip velocity with the axial distance in 

stenotic region has not been analyzed due to the non-

availability of the experimental values of pressure gradient. 

This rheological information of blood in turn could be 

exploited for the development of new diagnostic tools for 

many diseases such as hypertension, renal, myocardial 

infarction etc.  
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