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Abstract 
Diabetes mellitus is a huge burden for several countries. No matter type I or type 

II diabetes, the insufficient of insulin causes the dysfunction of regulating blood 

sugar and leads to hypoinsulinemia and life threatening ketoacidosis. To our 

knowledge, no effective treatment to cure diabetes and most diabetic patients still 

need to rely on the long-term injection of insulin. Herein, we summarized new 

finding and advantageous resource for regenerative medicine with the possibility 

to be employed in diabetes treatments. We also discuss the differentiation 

potentials of human adipose derived stromal cells (hADSCs) and human 

umbilical cord derived mesenchymal stem cells (hUCMSCs) and give rise to a 

new hope of treatment in the future.  

1. Introduction 

1.1. Diabetes 

Diabetes Mellitus is one of major diseases causing heavy burden of many 

countries and people around the world (1). Both type 1 and type 2 diabetes are due 

to a reduction in beta-cell function and mass which lead to hyperglycemia 

(elevated blood sugar). In type I diabetes, autoimmune response causes the 

destruction of the beta cell itself severely and results in a reduced beta-cell mass to 

lead to marked hypoinsulinemia and potentially life threatening ketoacidosis (2, 

3). In type II diabetes, the deficiency is relative, although functionally insufficient 

to maintain blood glucose levels within the normal range (2, 3). Accordingly, it is 

important to understand how beta-cell mass is maintained during life, not just as a 

biological conundrum, but as a forerunner for minimizing beta-cell loss and 

devising the best strategy for beta-cell regeneration as potentially curative 

treatment of diabetes. Recently, one of effective therapies of diabetes mellitus is 

islet transplantation which was reported in 2001(4). However, the amount of islet 

cells from the patients is insufficient for transplantation (5). Following years, 

several approaches of acquiring islet cells have been studied to reach sufficient  
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number, including differentiation from embryonic stem cells 

(ESCs) (6-9), mesenchymal stem cells (MSCs) (10-12), islet 

precursor, biliary epithelial cells (13), and 

trans-differentiation from duct cells (14).  

1.2. Mesenchymal Stem Cells derived from 

Adipose Tissues and Umbilical Cord 

With regard to ethical issues of ESCs, MSCs are more 

considerable as cell source for cell therapy. In addition, 

sufficient amount of cell numbers, high extension rate, 

immunomodulation, and multipotency of MSCs promote 

MSCs as a suitable population in differentiation of insulin 

producing cells (IPCs) for autologus transplantation (15-21). 

MSCs can be isolated from several organs and tissues such 

as bone marrow, dental pulp, adipose tissues, and umbilical 

cords. Within limit invasions, hADSCs are easy to harvest 

sufficient amount of cells with high proliferation potential, 

and multipotency (22, 23). Moreover, the fetus source of 

MSCs, hUCMSCs, was also considered as highly potential 

of differentiation in many aspects (5, 24-26). Both stem cells 

have been introduced that differentiate into linage of three 

germ layers, neuron, hepatocyte, cardiomyocyte, and insulin 

producing cells (22, 24-28). Human adipose derived stem 

cells were as mesenchymal stem cells have features of 

self-renewal, long-term viability and multilinage 

differentiation potential (27). hADSCs were first isolated 

from adipose tissue after liposuction surgery by Zuk et al. in 

2002 (22). According to previous studies, ADSCs have 

better colony forming unit-fibroblast (CFU-F) and high 

proliferation rate than bone marrow stromal cells 

(BMSCs)(27). Moreover, hADSCs as BMSCs were able to 

be induced to differentiate into multilinage cell types, 

including osteogenesis, chondrogenesis, adipogenesis, 

myogenesis, and neurogenesis (22, 27). Due to the 

multlinage potential of hADSCs, recently, more researches 

focused on the differentiation of insulin producing cells to 

search for the possible treatment of diabetes mellitus (28). 

Timper et al. had shown that hADSCs differentiated into 

insulin producing cells in vitro (28), however, in vivo 

differentiation is still looking forward to being proven by 

animal model in the near future. 

Wharton’s jelly cells (WJCs), umbilical cord derived 

mesenchymal stem cells, is a primitive stromal population 

which display the characteristics of MSCs (25, 26, 29, 30). 

hUCMSCs grow as adherent cells with mesenchymal 

morphology, self-renewing and express cell surface markers 

displayed by MSCs (25, 26, 29, 30). Moreover, hUCMSCs 

are able to differentiate into bone, cartilage, adipose, muscle, 

and neural cells (25, 26, 29-32). Like other stromal cells, 

hUCMSCs support the expansion of other stem cells, such 

as hematopoietic stem cells, show the property of 

immunosuppression (33). When hUCMSCs compare with 

bone marrow MSCs, hUCMSCs have greater expansion 

capability and faster growth in vitro. UC-MSCs have been 

reported that are therapeutic in several different pre-clinical 

animal models of human disease such as neurodegenerative 

disease, cancer, and heart disease (25, 29, 30). Since 

hUCMSCs expand faster and to a greater extent than adult 

derived MSCs, these findings suggest that hUCMSCss are a 

primitive stromal cell population with therapeutic potential. 

1.3. Development and Differentiation of 

Beta Cells to Therapeutic Potential in 

Type 1 Diabetes: In Vitro and in Vivo 

Studies 

A series of transcription factors in utero enacts 

differentiation of multipotent pancreatic progenitors, 

capable of exocrine, ductal or endocrine differentiation, to 

terminally differentiated into islet cell lineages, including 

beta-cells (34). The embryonic pancreas is composed of 

branching duct-like structures made up of epithelial cells 

that express the transcription factor, pancreas-duodenal 

homeobox 1 (Pdx1)(34). Expressing neurogenin 3 (Ngn3), a 

basic helix–loop–helix transcription factor control a part of 

these cells within the centre of the embryonic pancreas 

commit to an endocrine cell fate (35). Lack of Ngn3 leads to 

an absence of islets (36); its ectopic expression 

over-commits cells prematurely to an endocrine cell fate 

(37). A series of further transcription factors lie downstream 

of Ngn3 to differentiate endocrine precursors to beta-cells. 

Characterization of promoter and enhancer regions has 

demonstrated direct regulation by Ngn3 of target genes, 

such as neurod1, paired domain homeobox gene 4 (Pax4), 

NK family member Nkx2.2 and insulinoma associated 1 

(Ia1), all of which when inactivated impair differentiation, 

downstream of Ngn3, to a beta-cell fate (38-42). Ectopic 

expression of NGN3 in adult ductal cells, either carcinoma 

cell lines or preparations of fresh adult pancreatic cells, has 

also been shown to recapitulate something similar to this 

normal beta- cell differentiation program enacted during 

fetal development (43, 44). 

 

Figure 1. Schematic representation illustrating the differentiation protocol 

followed to differentiate the UCMSC to IPC. (A) After step 1 incubation, 

spindle-shaped cells colony formation could be observed. (B) After step 2 

incubation, cells were aggregated and clustered. (C) In the final step of IPC 

maturation, islet-like cluster was formed. 

The origin of beta cells is able to derive from several 

approaches, including differentiation from islet stem cells 

and progenitors (2, 27, 28, 45), differentiation from 

embryonic stem cells (ESCs)(3), and differentiation from 

mesenchymal stem cells (MSCs)(28, 46). However, 

isolation of islet stem cells and progenitors is difficult from 

patients for therapeutic purpose. On the other hand, the 

source of customized ES cells for patients cannot be derived 

easily, despite ES cells have pluripotency to differentiate 
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many cell types. According to the consideration of 

autologous transplantation and derivation of stem cell 

resources, mesenchymal stem cells are a considerable cell 

source to apply in the differentiation of insulin producing 

cells. Therefore, we modified the differentiation approach 

followed by Gao et al. (46) (Figure1). Moreover, we also 

summarized the previous studies for the therapeutic effects 

of UMSC and embryonic stem cells-derived IPC on type 1 

diabetes (24, 47, 48) (Table 1).  

1.4. Comparison of Effectiveness of Various 

Coating Surface in IPC Differentiation 

Coating surface in differentiation of MSCs and ESCs 

plays a key role which leads MSCs or ESCs committed into 

accurate linage, morphological changes, and well function 

in many differentiation of various linage (49-51). In 

differentiation of IPCs, ECM gel coated surface had been 

reported that was required (52). Moreover, pellet suspension 

culture with fibronectin enhanced insulin secretion of IPCs 

from differentiated MSCs (13). Therefore, we suggested 

that it is important compared fibronetin, collagen type I and 

poly-D-lysine coating surfaces in differentiation of IPCs 

from two MSCs, hADSCs and hUCMSCs, under defined 

induction medium to understand the morphological changes 

of IPC differentiation on various coating surfaces.  

Table 1. Summary of MSC treatment protocols for animal models of diabetes. 

Year Authors Model Type Location Time Method 

2008 Chao et al.(24) 
SD rat 200-250 g 

(n=6) 
hUMSCs Liver 7 weeks 

STZ: 50 mg/kg/day for 2 days (>400 mg/dL) 

2×106 cells with a 22#needle slowly injected into 

liver parenchyma 

2008 Chen et al.(47) 
C57BL/6 mice  

7-8 weeks (n=5) 
Mouse ESCs Kidney capsule 25 days 

STZ:50 mg/kg/day for 5 days (>270 mg/Dl) 

5×106 cells werw injected into the renal capsule 

2009 Mao et al.(48) 
SCID mice 

6-8 weeks (n=9) 
Human ESCs  Kidney capsule 7 weeks 

STZ: 180 mg/kg (>300 mg/Dl) 

8×106 cells were injected into a microinjector 

under kidney capsule 

2. Conclusion 

Based on previous studies suggesting the multipotency of 

hADSCs and hUCMSCs, both of them would be a good 

source for differentiation into insulin producing cells and 

give rise to a possible treatment of diabetes by cell therapy. 

Moreover, hADSCs are adult tissues whereas hUCMSCs are 

fetal tissues. Comparing these two types of stem cells would 

be interesting in this study to understand the potential 

differences between adult and fetal stem cells for the future 

clinic application. Furthermore, IPCs function in animal 

model and new transplantation sites of STZ null mice will 

be addressed in this study as well. 
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