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Abstract 
The information dimension dI of a geometric object (e.g., grey matter) is one of several 

fractal dimensions that have been used in medicine. The information dimension dI is 

computed from N data points (e.g., pixels or voxels) by imposing a uniform grid (with 

grid box size s) covering the N points, measuring the number of points in each box of the 

grid, computing the resulting probability distribution, computing the entropy H(s) 

associated with this probability distribution and box size s, and then examining how H(s) 

scales with log s. The slope of the −H(s) vs. log s curve is the estimate of dI. The purpose 

of this paper is to highlight two studies which used an incorrect definition of dI: they 

defined dI to be the slope of the –log H(s) vs. log s curve. These studies are a 2016 study 

relating dI of subcortical grey matter structures to schizophrenia, and a 2005 study 

relating dI of human lungs to asthma. This paper first reviews the theory and application 

of computing dI for geometric objects, and then points out the error in these two studies. 

Given the attention now devoted to complex network models of the brain and other 

biological systems, recent results on computing dI and other fractal dimensions for a 

complex network are also briefly discussed. 

1. Introduction 

The information dimension dI, originally defined by Balatoni and Renyi in 1956 and 

popularized by Farmer in 1982 ([4], [5]), has been an important tool for physicists ([1], 

[8], [9], [13], [18]). However, this fractal dimension has been applied far less frequently 

than the box counting dimension or the correlation dimension. Perhaps because it is less 

well known, two studies applying dI to medicine used an incorrect definition of this 

dimension: a 2005 study relating to asthma, and a 2016 study relating to schizophrenia. 

Their use of incorrect definitions of dI, which apparently has not previously been 

recognized, means that other researchers attempting to duplicate their results will not be 

successful if these other researchers utilize the correct definition of dI. Given the obvious 

importance of highlighting an error in the application of fractal dimensions to medicine, 

this paper first reviews the computation of dI for geometric objects and then points out 

the error in these 2005 and 2016 studies. Also, given the attention now devoted to 

complex network models of the brain (e.g., [12], [17]), recent results on computing dI 

and other fractal dimensions for a complex network are also briefly discussed. 

2. The Information Dimension of a Geometric Object 

As explained by Farmer [4], an information dimension dI can be computed for a 

probability distribution. Farmer describes how dI arises from the measurement process  
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for a physical system, as follows. Suppose the region under 

study is contained in an E-dimensional “large” hypercube of 

side length L. For s < 1, the “large” hypercube is partitioned 

into “small” E-dimensional hypercubes, where the side 

length of each “small” hypercube is sL. Thus the partition 

contains � �
���� = s��  “small” E-dimensional hypercubes, 

called “boxes”. A probability is associated with each of the 

s�� boxes: let pj(s) be the probability associated with box Bj. 

Define B(s) ≡ {Bj | pj(s) > 0}, so B(s) is the set of boxes with 

nonzero probability. The set {pj(s) | Bj ∈ B(s)} is known as 

the coarse-grained probability distribution at resolution s. 

The entropy H(s) of the probability distribution is defined by 

H(s) ≡ −∑   ��∈�(�) pj(s) log pj(s)                  (1) 

where the sum is over all boxes Bj in B(s). The information 

dimension dI is defined by 

d� ≡  − lim� →�
�(�)
��� �                         (2) 

assuming this limit exists. Thus dI is the rate at which the 

information scales as the precision of measurement is 

increased [4]. 

More insight into the fractal dimension dI arises from 

recalling that H(s) = −E log2 s bits are needed to specify the 

position of a point in the unit hypercube in R
E
 to an accuracy 

of s, where s < 1. The expression H(s) = −E log2 s 

corresponds to the special case of (1) for which each of the 

s��  boxes with side length s in the E-dimensional unit 

hypercube is equally likely, with probability pj(s) = s�. For 

then the number |B(s)| of boxes is s�� and 

H(s) = −∑   ��∈�(�) pj(s) log pj(s) = −∑   ��∈�(�) sE log2 s
E = 

−log2 s
E = −E log2 s. 

Thus dI is the limit, as s → 0, of the expected number of 

bits needed to specify the position of a point to accuracy s 

[20]. 

Given N points in R
E
 from a geometric object (e.g., a 

human lung, or brain structure, or the retina), dI can be 

computed as follows. Cover the N points with a uniform grid 

of E-dimensional boxes with side length s. Discard any box 

containing none of the N points, and let B(s) denote the 

remaining set of nonempty boxes. For box Bj ∈ B(s), define 

the probability pj(s) by pj(s) ≡ Nj(s)/N, where Nj(s) is the 

number of points contained in box Bj. Then compute the 

entropy H(s) using definition (1), and repeat this process for 

different box sizes. If a straight line is fitted to the plot of 

−H(s) vs. log s, over the range where this plot is roughly 

linear, the slope of the line is the estimate of dI. When the 

distribution has a long tail, reflecting many very improbable 

boxes, this computation may be more efficient than box 

counting, since box counting requires counting each box 

containing at least one of the N points. 

Definition (2) of dI can also be obtained from the 

generalized dimensions defined in 1983 by Grassberger [7] 

and also by Hentschel and Procaccia [11]. The generalized 

dimension Dq is defined, for q ≠ 1, by 

 D� = �
��� lim� →�

��� [∑   !�∈!(") #�
$(�)]

��� �
.                    (3) 

D1 is evaluated by applying L’Hospital’s rule, which 

yields 

 D� =  lim� →�
∑ #�(�) ��� #�(�) !� ∈!(") 

��� � = lim� → �
��(�)
��� � ,       (4) 

so it follows by (2) that D1 = dI. (Setting q = 0 in (3) yields 

' p)
�(s) = |B(s)| 

�� ∈�(�)
 

where |B(s)| is the number of occupied boxes, so D0 is the 

box counting dimension.) 

3. Two Incorrect Definitions of the 

Information Dimension 

This section discusses the two studies with an incorrect 

definition of dI. In 2016, Zhao et al. [21] used dI to study 

schizophrenia. Three-dimensional MRIs were obtained from 

38 people, 19 with schizophrenia, and 19 without. They 

computed dI, using a 3-dimensional grid, for different sub-

cortical areas of the brain, especially the hippocampus, which 

contributes to the encoding, consolidation, and retrieval of 

memory, and the representation of the temporal context. 

They chose to compute dI, rather than some other fractal 

dimension, because dI has been shown to have a higher inter-

class correlation [6]. To estimate dI, points that deviate from 

the regression line were repeatedly excluded, and a new 

regression line computed, until most data points could be 

fitted. The results of their study included a finding that dI is 

significantly lower in the left and right hippocampus and in 

the left thalmus in patients with schizophrenia, compared 

with the healthy patients. However, they used an incorrect 

definition of dI, namely 

d� = − lim� →�
��� �(�)

��� � .                            (5) 

This incorrect definition is not a single “typo" or misprint, 

since “log H(s)” is used throughout [21]. 

A similar error in the computation of dI was made by 

Boser et al. [2], who in 2005 used dI to study differences 

between the lungs of three groups of deceased human non-

smokers: fatal asthma (people who died from asthma), non-

fatal asthma, and non-asthma control. From lung images of 

1280 × 960 pixels, dI was calculated using 9 box sizes, 

ranging from about 10 pixels to about 100 pixels. They 

calculated dI = 1.83 for the non-asthma control group, dI = 

1.76 for the non-fatal asthma group, and dI = 1.72 for the 

fatal asthma group. A statistical analysis showed that dI for 

the fatal asthma group and non-fatal asthma group are 

significantly lower than dI for the non-asthma group. 
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However, the difference in dI for the fatal asthma group and 

non-fatal asthma group is not significantly different. They 

observed that an advantage of using dI rather the box 

counting dimension is that dI is less likely to result in a false 

detection of multifractal characteristics. They also observed, 

as have many other researchers, that the exact interpretation 

of a fractal dimension, when used to quantify structure or 

change in structure, is less important than the ability of a 

fractal dimension to discriminate between states. However, 

their definition of dI is ([2], p. 818) 

log H(s) ≈ −dI log s,                             (6) 

which is also incorrect, since the left hand side of (6) should 

be “H(s)” and not “log H(s)”. This is also not a misprint: the 

graphs in [2] plot log H(s) vs. log s. 

The fact that incorrect definitions of dI were used in [2] 

and [21] does not necessarily negate their findings. However, 

it does mean that their findings are valid only with respect to 

their definition of dI, and other researchers may obtain very 

different conclusions when using the correct definition of dI. 

4. The Information Dimension of a 

Complex Network 

This section briefly discusses the computation of dI for a 

complex network G, where a complex network is an arbitrary 

network without special structure (as opposed to, e.g., a 

regular lattice), for which all arcs have unit cost (so the 

length of a shortest path between two nodes is the number of 

arcs in that path), and all arcs are undirected (so the arc 

between nodes i and j can be traversed in either direction). 

The first step in computing dI is to determine, for a range of 

positive integer values of s, the minimal number of 

subnetworks (called “boxes") of diameter s needed to cover 

G. This step is called “box counting", and a wide variety of 

box counting methods are available [19]. Let N be the 

number of nodes in the network, and let Nj(s) be the number 

of nodes in box Bj of the minimal covering of G by boxes of 

diameter at most s-1. The probabilities pj(s) are defined by 

pj(s) = Nj(s)/N, and H(s) is then computed using (1). The 

information dimension dI is the slope of the −H(s) vs. log s 

plot, over the range of s for which this plot is roughly linear. 

However, as shown in [14], there are in general multiple 

minimal coverings of G, and these different minimal 

coverings can yields different values of dI. For a given 

integer box size s, a unique minimal covering of G can be 

obtained by computing the minimal covering that also 

maximizes the entropy H(s) [14], and computing this unique 

minimal covering can be accomplished by a simple 

modification of whatever box counting method is used. 

Unfortunately, even computing a maximal entropy minimal 

covering for each s does not eliminate ambiguity in the 

computation of dI, since the choice of upper and lower 

bounds on the box sizes used to estimate the slope of the H(s) 

vs. log s curve can also lead to different values of dI [16]. 

Similar ambiguities arise in computing the generalized 

dimensions of G [15]. Thus, while the use of complex 

networks opens the door to computing a wide range of 

network characterizations [3], fractal dimensions of G must 

be computed and interpreted with the same care [10] required 

to compute and analyze fractal dimensions of geometric 

objects such as the brain or lungs. 

5. Conclusion 

The information dimension dI is a useful metric that can be 

calculated for a geometric object (e.g., a human lung, or brain 

structure, or the retina). The information dimension can also be 

calculated for complex networks, which are very useful for 

modelling biological systems. Unfortunately, incorrect 

definitions of dI were applied in a 2005 study of asthma, and in 

a 2016 study of schizophrenia. The error in these two studies, 

which apparently has not previously been recognized, means 

that other researchers attempting to duplicate their results will 

not be successful if these other researchers utilize the correct 

definition of dI. This paper highlights these errors and provides 

the correct definition of the information dimension. 
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